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Schedule

Reinforcement-Learning: a set of learning problems and diverse
algorithms and approaches to solve the problems.

I 17/06/2015 Introduction, MDP

I 22/06/2015 Value Functions, Bellmann Equation

I 24/06/2015 Monte-Carlo, TD(λ)

I 29/06/2015 Function Approximation

I 01/07/2015 Function Approximation

I 06/07/2015 Inverse-RL, Apprenticeship Learning

I 08/07/2015 Applications in Robotics, Wrap-Up
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Recommended Literature

I S. Sutton and A. G. Barto, Reinforcement Learning, an
Introduction, MIT Press, 1998
http://webdocs.cs.ualberta.ca/˜sutton/book/ebook/

I C. Szepesvari, Algorithms for Reinforcement Learning, Morgan
& Claypool Publishers,
http://www.ualberta.ca/˜szepesva/papers/RLAlgsInMDPs.pdf

I Kaelbling, Littman, and A. Moore, Reinforcement learning: a
survey, JAIR 4:237-285, 1996

I D.P. Bertsekas and J.N. Tsitsiklis, Neuro-Dynamic
Programming, Athena Scientific, 1996 (theory!)

I several papers to be added later
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Context

(robotics)
automation and control

reinforcement Learning (RL)

psychology

neuroscience

artificial neural networks

artificial Intelligence (planning)

operations research
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What is Reinforcement Learning?

the term usually refers to the problem/setting, rather than a
particular algorithm:

I learning from/during interaction with an external environment

I learning “what to do” — how to map situations to actions —
to maximize a numeric reward signal

I learning about delayed rewards

I learning about structure, continuous learning

I goal-oriented learning

I in-between supervised and unsupervised learning

I applications in many areas
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Supervised Learning

training data = inputs + desired (target) outputs

input data

input labels

outputssupervised learning

error = (target output – actual system output)
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Reinforcement Learning

training information = evaluation (“rewards” / “penalties”)

reinforcement learning

reward (scalar)

outputs
input data

"actions"

no way to directly calculate an error
instead: try to achieve as much reward as possible
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Reinforcement Learning

I goal: act
”
successfully“ in the environment

I this implies: maximize the sequence of rewards Rt
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The agent

I continuous learning and planning

I affects the environment

I with or without a model of the environment

I environment may be stochastic and uncertain

Umgebung

Aktion
Zustand

Reward
Agent
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Elements of RL

policy

environment model

value

reward

I policy: what to do

I reward: what is good (immediately)

I value: estimate the expected reward (long-run)

I model: how does the environment work?
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Example: playing Tic-tac-toe

winning requires an imperfect opponent: he/she makes mistakes

N. Hendrich 11



University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning 1

RL-approach for Tic-tac-toe
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RL-learning rule for Tic-tac-toe
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Improving the Tic-tac-toe player

I take notice of symmetries
I in theory, much smaller state-space
I representation / generalization
I will it work? how can it fail?

I what can we learn from random moves?
I do we need random moves?

I do we always need 10 %?

I can we learn offline?
I pre-learning by playing against oneself?
I using the learned models of the opponent?

I . . .

N. Hendrich 14



University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning 1

The role of generalization

s

learning step

3s
2s

)s(Vvalue sstate )s(Vvalue sstate 
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1s

function approximationtable
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Why is Tic-tac-toe simple?

I discrete state space

I small number of states

I deterministic actions

I the agent has complete information about the game,
all states are recognizable

Similar approach in this lecture:

I we will look at toy examples mostly

I real applications will be (a lot) more complex

I but using the same principles
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Example RL applications

I TD-Gammon: (Tesauro 1996)
I fully know state space, but probabilistic element
I at the time, world’s best backgammon program/player

I elevator control: Crites & Barto
I high performance “down-peak” elevator control
I finite but very large state-space

I warehouse management: Van Roy, Bertsekas, Lee & Tsitsiklis
I approximate the extremely large state space
I 10–15 % improvement compared to standard industry methods

I dynamic channel assignment: Singh & Bertsekas, Nie & Haykin
I efficient assignment of channels for mobile communication
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TD-Gammon

Tesauro 1992-1995:

I start with a randomly initialized network,

I play many games against yourself,

I learn a value function based on the simulated experience.

I at the time, one of the best players in the world
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Elevator control

Crites and Barto 1996: 10 floors, 4 cabins

conservative estimation: about 1022 states
N. Hendrich 19
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Elevator control performance

I RL approaches vs. state-of-the-art planning algorithms

I simple reward function: sum of waiting times
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Evaluating feedback

I evaluate actions instead of instructing the correct action.

I pure evaluating feedback only depends on the chosen action.
pure instructing feedback does not depend on the chosen
action at all.

I supervised learning is instructive; optimization is evaluating.
I associative vs. non-associative:

I associative inputs are mapped to outputs; learn the best output
for each input.

I non-associative:“learn”(find) the best output.

I n-armed bandit (slot machine) in the context of RL:
I non-associative
I evaluating feedback
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The n-armed bandit

I choose one of n actions a repeatedly;
each selection is called game.

I after each game at a reward rt is obtained, where:

E 〈rt |at〉 = Q∗(at)

These are unknown action values.
The distribution of rt just depends on at .

I the goal is to maximize the long-term reward, e.g. over 1000
games. To solve the task of the n-armed bandit,

a set of actions have to be explored
and the best of them will be exploited.

N. Hendrich 22



University of Hamburg

MIN Faculty

Department of Informatics

Action selection Reinforcement Learning 1

The exploration/exploitation dilemma

I our learner estimates the value of its actions:
Qt(a) ≈ Q∗(a) Estimation of Action Values

I the greedy -action for time t is:

a∗t = arg maxa Qt(a)

at = a∗t ⇒ exploitation

at 6= a∗t ⇒ exploration

I you cannot explore all the time (many wasted actions)

I but also not exploit all the time (no more learning)

I exploration should never be stopped, but it may be reduced
over time (when the agent has learned enough)
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General action-value methods

I the name for learning methods that only consider the estimates
for action values.

I suppose in the t-th game action a has been chosen ka times,
and the agent received rewards r1, r2, ...,ra , then

Qt(a) =
r1 + r2 + · · ·+ rka

ka

is the average reward.

I and in stationary environments:

lim
ka→∞

Qt(a) = Q∗(a)
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ε-greedy action selection

I greedy action selection

at = a∗t = arg max
a

Qt(a)

I ε-greedy action selection:

at =

{
a∗t with probability 1− ε

random action with probability ε

...the easiest way to combine exploration and exploitation.
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Example: 10-armed bandit

I n = 10 possible actions

I every Q∗(a) is chosen randomly from the normal distribution:
N (0, 1)

I every rt is also normally distributed: N (Q∗(at), 1)

I play a number of games (here: 1000 games)

I repeat everything 2000 times and average the results:

N. Hendrich 26



University of Hamburg

MIN Faculty

Department of Informatics

Action selection Reinforcement Learning 1

ε-greedy method for the 10-armed bandit example

I the greedy agent is stuck very soon

I higher ε implies more learning, and finds good actions faster,

I lower ε eventually reaches higher rewards (why?)

N. Hendrich 27



University of Hamburg

MIN Faculty

Department of Informatics

Action selection Reinforcement Learning 1

Softmax action selection

I softmax-action selection method approximates action
probabilities

I the most common softmax-method uses a Gibbs- or a
Bolzmann-distribution:
choose action a in game t with probability

eQt(a)/τ∑n
b=1 e

Qt(b)/τ

where τ is a control parameter, the temperature

I high τ : all actions almost equally probable

I τ → 0: only the best action has high probability
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Example: binary bandit

Assume there are only two actions:at = 1 or at = 2 and only two
rewards : rt = success or rt = error

Then we could define a goal- or target-action:

dt =

{
at if success

the other action if error

and choose always the action that leads to the goal most often.
This is a supervised algorithm.

If works well for deterministic problems. . .
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Binary bandit task space

The space of all possible binary bandit-tasks:
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Linear learning automata

Let be πt(a) = Pr{a1 = a} the only parameter to be adapted:

LR−I (Linear, reward -inaction):

on success: πt+1(at) = πt(at) + α(1− πt(at)) 0 < α < 1

on failure: no change
LR−P (Linear, reward -penalty):

on success: πt+1(at) = πt(at) + α(1− πt(at)) 0 < α < 1

on failure: πt+1(at) = πt(at) + α(0− πt(at)) 0 < α < 1

I after each update the other probabilities get updated in a way that

the sum of all probabilities is 1.
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Performance of the binary bandit-tasks A and B
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Incremental calculation of the average reward

Remember the definition of the average rewards:

The average of the k first ewards is (neglecting the dependency on a):

Qk =
r1 + r2 + · · ·+ rk

k

problem: we need to keep all previously received rewards. . .

The running average trick is more memory efficient:

Qk+1 = Qk +
1

k + 1
[rk+1 − Qk ]

Note: this is a common form for update-rules:

NewEstimation = OldEstimation + Stepsize · [Value - OldEstimation]
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Non-stationary problems

Using Qk as the average reward is adequate for a stationary
problem, i.e. if none of the Q∗(a) changes over time.

But in the case of a non-stationary problem, this is better:

Qk+1 = Qk + α [rk+1 − Qk ] for constant α, 0 < α ≤ 1

= (1− α)kQ0 +
k∑

i=1

α(1− α)k−i ri

the exponential, recency-weighted average
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Optimistic initial values

I all previous methods depend on Q0(a) , i.e., they are biased.

I initialize the action-values optimistically, e.g. for the 10-armed
testing environment: Q0(a) = 5 for all a

I this enforces exploration during the first few iterations (until the
values have stabilized):
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Reinforcement-comparison

I compare rewards with a known reference-reward r̄t ,
e.g. the average of all possible rewards

I strengthen or weaken the chosen action depending on rt − r̄t .

I let pt(a) be the preference for action a.

I The preferences determine the action-probabilities, e.g. by a
Gibbs-distribution:

πt(a) = Pr{at = a} =
ept(a)∑n
b=1 e

pt(b)

I then: pt+1(at) = pt(a) + β [rt − r̄t ] and r̄t+1 = r̄t + α [rt − r̄t ]
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Reinforcement-comparison example
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Pursuit methods

I incorporate both estimations of action values as well as action
preferences.

I “Pursue” always the greedy -action, i.e. make the greedy -action
more probable in the action selection.

I Update the action values after the t-th game to obtain Qt+1.

I The new greedy-action is a∗t+1 = argmax
a

Qt+1(a)

I Then: πt+1(a∗t+1) = πt(a
∗
t+1) + β

[
1− πt(a∗t+1)

]
and the probabilities of the other actions are reduced to keep
their sum 1.
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Performance of a Pursuit-Method
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Summary

I a class of problems in-between supervised and un-supervised
learning

I agent takes actions, receivces rewards

I goal is to maximize accumulated reward over time

I n-armed bandit problems illustrate action-selection

I so far, independent of states

I exploitation-exploration dilemma

I ε-greedy and softmax action selection

I comparison of RL approach with supervised learning
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The Reinforcement-Learning problem

formalization of the RL problem: Markov Decision Process (MDP)

I an idealized and very general form of the RL problem with
precise mathematical definition and theory

I interaction between agent and environment

I state- and action-spaces

I state transitions and rewards

I goal is to maximize the return: accumulated reward

I Markov assumption: behaviour only depends on current state,
not on history

I idea of value-functions and relation to policies

I Bellman equation
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The learning agent in an environment

agent and environment interact at discrete times: t = 0,1,2. . . K
agent observed state at the time t: st ∈ S
executes action at the time t: at ∈ A(st)
obtains reward : rt+1 ∈ R
and the following state: st+1
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The agent learns a policy

policy at time t, πt :

mapping of states to action-probabilities
πt(s, a) = probability, that at = a if st = s

I Reinforcement learning methods describe how an agent updates
its policy as a result of its experience.

I The overall goal of the agent is to maximize the long-term sum
of rewards.
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Modeling approach and abstraction

I time steps do not need to be fixed intervals of real time.

I actions can be low-level (e.g., voltage of motors), or high-level (e.g.,
take a job offer), “mental” (z.B., shift in focus of attention), etc.

I states can be low-level “perception”, abstract, symbolic,
memory-based, or subjective (e.g. the state of being surprised).

I the environment is not necessarily unknown to the agent, but it is
incompletely controllable.

I the reward-calculation is done in the environment, and outside of
control of the agent.
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Goals and rewards

I Is a scalar reward signal an adequate description for a goal?
– perhaps not, but it is surprisingly flexible.

I A goal should describe what we want to achieve and not how
we want to achieve it.

I A goal must be beyond the control of the agent – therefore
outside the agent itself.

I The agent needs to be able to measure success:
I explicit;
I frequently during its lifetime.
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Accumulated rewards or return

the sequence of rewards after time t is:

rt+1, rt+2, rt+3, . . .
What do we want to maximize?

In general, we want to maximize the expected returnreturnreturn,E{Rt} at each
time step t.
Episodic task : Interaction splits in episodes,
e.g. a game round,
passes through a labyrinth

Rt = rt+1 + rt+2 + · · ·+ rT
where T is a final time where a final state is reached and the episode

ends.
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Return for continuous tasks

I continuous tasks: no final/terminal state
I the interaction has no episodes
I naive sum of all rewards may diverge

I discounted return:

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑
k=0

γk rt+k+1,

where γ, 0 ≤ γ ≤ 1, is the discount rate.

I
”
nearsighted“ 0← γ → 1

”
farsighted“
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Example: pole balancing

Avoid Failure: the pole turns

over a critical angle or the

waggon reaches the end of

the track

As an episodic task where episodes end on failure:

Reward = +1 for every step before failure
⇒ Return = number of steps to failure

As continuous task with discounted Return:

Reward = −1 on failure; 0 otherwise
⇒ Return = −γk , for k steps before failure

In both cases, the return is maximized by

avoiding failure as long as possible.
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Example: mountain car

Drive as fast as possible to the top of the mountain.

Reward = −1 for each step where the top of the mountain is not reached

Return = −number of steps before reaching the top of the mountain.

The return is maximized by minimizing the number of steps to
reach the top of the mountain.
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Unified notation

I In episodic tasks, we number the time steps of each episode starting
with zero.

I In general, we do not differentiate between episodes. We write s(t)
instead of s(t, j) for the state at time t in episode j .

I Consider the end of each episode as an absorbing state
that always returns a reward of 0:

I We summarize all cases:

Rt =
∞∑
k=0

γk rt+k+1,

where γ can only be 1 if an absorbing state is reached.

N. Hendrich 50



University of Hamburg

MIN Faculty

Department of Informatics

Markov Decision Process Reinforcement Learning 1

Markov assumption

I the state st at time t includes all information that the agent has (and
needs) about its environment.

I the state can include instant perceptions, processed perceptions and
structures or features that are built on a sequence of perceptions.

I but the behaviour of the environment does not depend on the history
of the agent-environment interaction. The current state contains all
“relevant” information, this is equivalent to the Markov property:

Pr {st+1 = s ′, rt+1 = r |st , at , rt , st−1, at−1, . . . , r1, s0, a0} =

Pr {st+1 = s ′, rt+1 = r |st , at}

For all s ′, r ,and histories st , at , rt , st−1, at−1, . . . , r1, s0, a0.
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Markov decision processes

I if the Markov proporty holds for a given RL-task, it is called a
Markov Decision Process (MDP)

I if state and action spaces are finite, it is a finite MDP.

I to define a finite MDP, we need:

I state and action spaces
I environment “dynamics” defined by the transition probabilities:

Pa
ss′ = Pr {st+1 = s ′|st = s, at = a} ∀s, s ′ ∈ S , a ∈ A(s).

I reward probabilities:

Ra
ss′ = E {rt+1|st = s, at = a, st+1 = s ′} ∀s, s ′ ∈ S , a ∈ A(s).

N. Hendrich 52



University of Hamburg

MIN Faculty

Department of Informatics

Markov Decision Process Reinforcement Learning 1

Markov decision process

MDP: a five-tuple (S ,A,P,R, γ), where
I S is a set of states s,
I A is a set of actions, where A(s) is the finite set of actions

available in state s,
I Pa

s,s′ is the probability that action a in state s at time t will
lead to state s ′ at time t + 1,

I Ra
s,s′ is the immediate reward received after transition from

state s to state s ′ at time t,
I the transition and reward probabilities only depend on the

current state s, but not on the history of the system,
I γ ∈ [0, 1] is the discount factor used for calculating the return.

I most basic algorithms assume that the sets S and A are finite.
N. Hendrich 53
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Recycling-robot: toy example for a finite MDP

Consider a robot designed to collect empty cans:

I reward = number of collected cans.
I at each time step the robot decides, whether it

1. actively searches for cans,
2. waits for someone bringing a can, or,
3. drives to the basis for recharge.

I searching is better, but uses battery; if the batteries runs empty
during searching, the robot needs to be recovered (bad).

I decisions are made based on the current battery level:
{high, low}.
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Recycling-robot MDP

state space: S = {high, low}
action space depends on the states:

A(high) = {search,wait},
A(low) = {search,wait, recharge}

rewards depends on the actions:

Rsearch = expected number of cans during search,
Rwait = expected number of cans during wait,
assuming Rsearch > Rwait

dynamics Pa
ss′ depends on two parameters {α, β}:

α: probability of the battery keeping high value
β: probability of the battery keeping low value
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Recycling-robot transition table
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Recycling-robot transition graph

α, β: probability of battery keeping its level during searching

e.g., low-search-high implies running out of battery, reward -3 because then
the operator needs to recover and recharge the robot.
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Value Function

I the value of a state is the expected return beginning with this state;
depends on the policy of the agent:

state-value-function for policy π:

V π(s) = Eπ {Rt |st = s} = Eπ

{ ∞∑
k=0

γk rt+k+1|st = s

}
I the action value of an action in a state under a policy π is the

expected return beginning with this state, if this action is chosen and
π is pursued afterwards.

action-value-function for policy π:

Qπ(s, a) = Eπ {Rt |st = s, at = a} = Eπ

{ ∞∑
k=0

γk rt+k+1|st = s, at = a

}
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The Bellman-Equation for policy π

Basic Idea:

Rt = rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 + . . .

= rt+1 + γ
(
rt+2 + γrt+3 + γ2rt+4 + . . .

)
= rt+1 + γRt+1

Thus:

V π(s) = Eπ {Rt |st = s}
= Eπ {rt+1 + γV (st+1)|st = s}

Or, without expectation operator:

V π(s) =
∑
a

π(s, a)
∑
s′

Pa
ss′ [Ra

ss′ + γV π(s ′)]
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More about the Bellman-Equation

V π(s) =
∑
a

π(s, a)
∑
s′

Pa
ss′
[
Ra
ss′ + γV π(s ′)

]
These are a set of (linear) equations, one for each state. The
value-function for π is an unique solution.

Backup-Diagrams :

for V π for Qπ
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Example: Gridworld I

I actions: up, down, right, left; deterministic.

I if the agent would leave the grid: no motion, but reward = −1.

I other actions reward = 0, except actions that move the agent
out of state A or B (reward 10 or 5).

state-value-function for the uniform random policy; γ = 0.9
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Example: Golf

I state is the position of the ball

I reward is -1 for each swing until the ball is in the hole

I two actions: putt (use putter) driver (use driver)

I putt on the “green” area is always successful (hole)

I sketch of the state value function V (s):
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Optimal Value Function

I For finite MDPs, the policies can be partially ordered

π ≥ π′ if V π(s) ≥ V π′(s) ∀s ∈ S

I There is always at least one (maybe more) policies that are better than or
equal all others. This is an optimal policypolicypolicy . We call it π∗.

I Optimal policies share the same ,optimal state-value-function:

V ∗(s) = max
π

V π(s) ∀s ∈ S

I Optimal policies also share the same ,optimal action-value-function:

Q∗(s, a) = max
π

Qπ(s, a) ∀s ∈ S and a ∈ A(s)

This is the expected return after choosing action a in state s an continuing to

pursue an optimal policy .
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Example: Golf

I we can strike the ball further with the driver than with the
putter, but with less accuracy.

I Q∗(s, driver) gives the values for the choice of the driver at
the given start position, and afterwards always the best action
is chosen.
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Optimal Bellman-Equation for V ∗(s)

The value of a state under an optimal policy is equal to the expected returns
for choosing the best actions from now on.

V ∗(s) = max
a∈A(s)

Qπ∗(s, a)

= max
a∈A(s)

E {rt+1 + γV ∗(st+1)|st = s, at = a}

= max
a∈A(s)

∑
s
′

Pa
ss
′

[
Ra
ss
′ + γV ∗(s

′
)
]

V ∗ is the unique solution of this system of nonlinear equations.
The corresponding backup diagram:
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Optimal Bellman-Equation for Q∗

Q∗(s, a) = E

{
rt+1 + γmax

a′
Q∗(st+1, a

′
)|st = s, at = a

}
=

∑
s′

Pa
ss′

[
Ra
ss′

+ γmax
a′

Q∗(s
′
, a
′
)

]
The backup diagram:

Q∗ is the unique solution of this system of nonlinear equations.
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Why optimal state-value functions are useful

A policy that is greedy with respect to V ∗ is an optimal policy!

Therefore, given V ∗, the (one-step-ahead)-search produces optimal
action sequences. In the gridworld example:
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What about Optimal Action-Values Functions?

Given Q∗, the agent does not need to perform the
one-step-ahead-search:

π∗(s) = arg max
a∈A(s)

Q∗(s, a)
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Solving the optimal Bellman-Equation

I to determine an optimal policy π∗ by solving the optimal
Bellman-equation we need the following:
I knowledge of the dynamics of the environment (Pa

ss′),
I enough storage space and computation time,
I the Markov property must hold.

I how much space and time do we need?
I polynomially with the number of states (with dynamic

programming, see below)
I BUT, usually the number of states is very large (e.g.,

backgammon has about 1020 states).

I we usually have to resort to approximations.

I many RL methods can be understood as an approximate
solution to the optimal Bellman equation.
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Summary

I agent-environment interaction

I states
I actions
I rewards

I policy: stochastic action selection rule

I return: the function of the rewards that the agent tries to maximize

I episodic and continuing tasks

I Markov assumption (Markov property)

I MDP or Markov decision process

I transition probabilities
I expected rewards
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Summary (cont.)

I Value functions

I state-value function for a policy
I action-value function for a policy
I optimal state-value function
I optimal action-value function

I optimal policies

I Bellman-equation

I the need for approximation
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