

Reinforcement Learning (1) Machine Learning 64-360, Part II

Norman Hendrich

University of Hamburg MIN Faculty, Dept. of Informatics Vogt-Kölln-Str. 30, D-22527 Hamburg hendrich@informatik.uni-hamburg.de

17/06/2015

Schedule

Introduction

Reinforcement-Learning: a set of learning problems and diverse algorithms and approaches to solve the problems.

- ▶ 17/06/2015 Introduction, MDP
- ▶ 22/06/2015 Value Functions, Bellmann Equation
- 24/06/2015 Monte-Carlo, $TD(\lambda)$
- ▶ 29/06/2015 Function Approximation
- ▶ 01/07/2015 Function Approximation
- ▶ 06/07/2015 Inverse-RL, Apprenticeship Learning
- ▶ 08/07/2015 Applications in Robotics, Wrap-Up

Recommended Literature

- S. Sutton and A. G. Barto, *Reinforcement Learning, an Introduction*, MIT Press, 1998 http://webdocs.cs.ualberta.ca/~sutton/book/ebook/
- C. Szepesvari, Algorithms for Reinforcement Learning, Morgan & Claypool Publishers, http://www.ualberta.ca/~szepesva/papers/RLAlgsInMDPs.pdf
- Kaelbling, Littman, and A. Moore, *Reinforcement learning: a survey*, JAIR 4:237-285, 1996
- D.P. Bertsekas and J.N. Tsitsiklis, *Neuro-Dynamic Programming*, Athena Scientific, 1996 (theory!)
- several papers to be added later

MIN Faculty Department of Informatics

Reinforcement Learning 1

Context

Introduction

What is Reinforcement Learning?

the term usually refers to the problem/setting, rather than a particular algorithm:

- learning from/during interaction with an external environment
- learning "what to do" how to map situations to actions to maximize a numeric reward signal
- learning about delayed rewards
- learning about structure, continuous learning
- goal-oriented learning
- in-between supervised and unsupervised learning
- applications in many areas

Supervised Learning

error = (target output - actual system output)

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Reinforcement Learning

no way to directly calculate an error instead: try to achieve as much *reward* as possible

<ロ> < □> < □> < □> < 三> < 三> < ○<

Reinforcement Learning

- goal: act "successfully" in the environment
- this implies: maximize the sequence of rewards R_t

The agent

- continuous learning and planning
- affects the environment
- with or without a model of the environment
- environment may be stochastic and uncertain

Introduction

Reinforcement Learning 1

Elements of RL

- policy: what to do
- reward: what is good (immediately)
- value: estimate the expected reward (long-run)
- model: how does the environment work?

Example: playing Tic-tac-toe

winning requires an imperfect opponent: he/she makes mistakes

RL-approach for Tic-tac-toe

1. Make a table with one entry per state:

But 10% of the time pick a move at random; an *exploratory move*.

Introduction

Reinforcement Learning 1

RL-learning rule for Tic-tac-toe

- イロト イロト イヨト イヨト わえぐ

Improving the Tic-tac-toe player

- take notice of symmetries
 - in theory, much smaller state-space
 - representation / generalization
 - will it work? how can it fail?
- what can we learn from random moves?
- b do we need random moves?
 - ▶ do we always need 10 %?
- can we learn offline?
 - pre-learning by playing against oneself?
 - using the learned models of the opponent?

. . .

Introduction

Reinforcement Learning 1

The role of generalization

Why is Tic-tac-toe simple?

- discrete state space
- small number of states
- deterministic actions
- the agent has complete information about the game, all states are recognizable

Similar approach in this lecture:

- we will look at toy examples mostly
- real applications will be (a lot) more complex
- but using the same principles

Example RL applications

- ► TD-Gammon: (Tesauro 1996)
 - fully know state space, but probabilistic element
 - at the time, world's best backgammon program/player
- elevator control: Crites & Barto
 - high performance "down-peak" elevator control
 - finite but very large state-space
- ▶ warehouse management: Van Roy, Bertsekas, Lee & Tsitsiklis
 - approximate the extremely large state space
 - ▶ 10–15 % improvement compared to standard industry methods
- ▶ dynamic channel assignment: Singh & Bertsekas, Nie & Haykin
 - efficient assignment of channels for mobile communication

TD-Gammon

Tesauro 1992-1995:

- start with a randomly initialized network,
- play many games against yourself,
- learn a value function based on the simulated experience.
- ▶ at the time, one of the best players in the world

Elevator control

conservative estimation: about $10^{22} \mbox{ states}$

Crites and Barto 1996: 10 floors, 4 cabins

Elevator control performance

- RL approaches vs. state-of-the-art planning algorithms
- simple reward function: sum of waiting times

Evaluating feedback

- evaluate actions instead of instructing the correct action.
- pure evaluating feedback only depends on the chosen action. pure instructing feedback does not depend on the chosen action at all.
- supervised learning is instructive; optimization is evaluating.
- associative vs. non-associative:
 - associative inputs are mapped to outputs; learn the best output for each input.
 - non-associative: "learn" (find) the best output.
- *n*-armed bandit (slot machine) in the context of RL:
 - non-associative
 - evaluating feedback

The *n*-armed bandit

- choose one of *n* actions *a* repeatedly; each selection is called game.
- after each game a_t a reward r_t is obtained, where:

$$E\left\langle r_{t}|a_{t}
ight
angle =Q^{*}(a_{t})$$

These are unknown action values.

The distribution of r_t just depends on a_t .

the goal is to maximize the long-term reward, e.g. over 1000 games. To solve the task of the *n*-armed bandit,

a set of actions have to be **explored** and the best of them will be **exploited**.

The exploration/exploitation dilemma

• our learner estimates the value of its actions: $Q_t(a) \approx Q^*(a)$ Estimation of Action Values

the greedy-action for time t is:

 $egin{array}{lll} a_t^* &= rg\max_a Q_t(a) \ a_t &= a_t^* \Rightarrow exploitation \ a_t &\neq a_t^* \Rightarrow exploration \end{array}$

- you cannot explore all the time (many wasted actions)
- but also not exploit all the time (no more learning)
- exploration should never be stopped, but it may be reduced over time (when the agent has learned enough)

General action-value methods

- the name for learning methods that only consider the estimates for action values.
- suppose in the *t*-th game action *a* has been chosen k_a times, and the agent received *rewards* r₁, r₂, ..., r_a, then

$$Q_t(a) = \frac{r_1 + r_2 + \dots + r_{k_a}}{k_a}$$

is the average reward.

and in stationary environments:

$$\lim_{k_a\to\infty}Q_t(a)=Q^*(a)$$

$\epsilon\text{-greedy}$ action selection

greedy action selection

$$a_t = a_t^* = rg\max_a Q_t(a)$$

ε-greedy action selection:

$$a_t = egin{cases} a_t^* & ext{with probability} \quad 1-\epsilon \ & ext{random action with probability} \quad \epsilon \end{cases}$$

...the easiest way to combine *exploration* and *exploitation*.

Example: 10-armed bandit

- n = 10 possible actions
- every Q*(a) is chosen randomly from the normal distribution:
 N(0,1)
- every r_t is also normally distributed: $\mathcal{N}(Q^*(a_t), 1)$
- play a number of games (here: 1000 games)
- repeat everything 2000 times and average the results:

$\epsilon\text{-}\mathsf{greedy}$ method for the 10-armed bandit example

- the greedy agent is stuck very soon
- higher ϵ implies more learning, and finds good actions faster,
- lower ϵ eventually reaches higher rewards (why?)

Softmax action selection

- softmax-action selection method approximates action probabilities
- the most common softmax-method uses a Gibbs- or a Bolzmann-distribution:

choose action a in game t with probability

 $\frac{e^{Q_t(a)/\tau}}{\sum_{b=1}^n e^{Q_t(b)/\tau}}$

where τ is a control parameter, the *temperature*

- high τ : all actions almost equally probable
- $\tau \rightarrow 0$: only the best action has high probability

Example: binary bandit

Assume there are only **two** actions: $a_t = 1$ or $a_t = 2$ and only **two** rewards : $r_t = success$ or $r_t = error$

Then we could define a **goal**- or **target-action**:

$$d_t = \begin{cases} a_t & \text{if success} \\ \text{the other action if error} \end{cases}$$

and choose always the action that leads to the goal most often. This is a **supervised algorithm**.

If works well for deterministic problems...

Binary bandit task space

The space of all possible binary bandit-tasks:

Linear learning automata

Let be $\pi_t(a) = Pr\{a_1 = a\}$ the only parameter to be adapted:

L_{R-1} (Linear, reward -inaction):

on success: $\pi_{t+1}(a_t) = \pi_t(a_t) + \alpha(1 - \pi_t(a_t))$ $0 < \alpha < 1$ on failure: no change \underline{L}_{R-P} (Linear, reward -penalty):

- on success: $\pi_{t+1}(a_t) = \pi_t(a_t) + \alpha(1 \pi_t(a_t))$ $0 < \alpha < 1$ on failure: $\pi_{t+1}(a_t) = \pi_t(a_t) + \alpha(0 - \pi_t(a_t))$ $0 < \alpha < 1$
- after each update the other probabilities get updated in a way that the sum of all probabilities is 1.

Performance of the binary bandit-tasks A and B

Incremental calculation of the average reward

Remember the definition of the *average rewards*:

The average of the k first *ewards* is (neglecting the dependency on a):

$$Q_k = \frac{r_1 + r_2 + \dots + r_k}{k}$$

problem: we need to keep all previously received rewards... The *running average* trick is more memory efficient:

$$Q_{k+1} = Q_k + \frac{1}{k+1} [r_{k+1} - Q_k]$$

Note: this is a common form for *update*-rules: NewEstimation = OldEstimation + Stepsize · [Value - OldEstimation]

Non-stationary problems

Using Q_k as the average reward is adequate for a stationary problem, i.e. if none of the $Q^*(a)$ changes over time.

But in the case of a non-stationary problem, this is better:

$$\begin{aligned} Q_{k+1} &= \qquad Q_k + \alpha \left[r_{k+1} - Q_k \right] & \text{for constant } \alpha, 0 < \alpha \leq 1 \\ &= \qquad (1 - \alpha)^k Q_0 + \sum_{i=1}^k \alpha (1 - \alpha)^{k-i} r_i \end{aligned}$$

the exponential, recency-weighted average

Optimistic initial values

- ▶ all previous methods depend on $Q_0(a)$, i.e., they are *biased*.
- ▶ initialize the action-values **optimistically**, e.g. for the 10-armed testing environment: Q₀(a) = 5 for all a
- this enforces exploration during the first few iterations (until the values have stabilized):

Reinforcement-comparison

- compare rewards with a known reference-reward r
 _t,
 e.g. the average of all possible rewards
- ▶ strengthen or weaken the chosen action depending on $r_t \bar{r}_t$.
- let $p_t(a)$ be the **preference** for action a.
- The preferences determine the action-probabilities, e.g. by a Gibbs-distribution:

$$\pi_t(a) = Pr\{a_t = a\} = rac{e^{p_t(a)}}{\sum_{b=1}^n e^{p_t(b)}}$$

▶ then: $p_{t+1}(a_t) = p_t(a) + \beta [r_t - \bar{r}_t]$ and $\bar{r}_{t+1} = \bar{r}_t + \alpha [r_t - \bar{r}_t]$

Reinforcement-comparison example

Action selection

Pursuit methods

- incorporate both estimations of action values as well as action preferences.
- "Pursue" always the greedy-action, i.e. make the greedy-action more probable in the action selection.
- Update the action values after the t-th game to obtain Q_{t+1} .
- The new greedy-action is $a_{t+1}^* = \arg \max_{a} Q_{t+1}(a)$
- ► Then: π_{t+1}(a^{*}_{t+1}) = π_t(a^{*}_{t+1}) + β [1 π_t(a^{*}_{t+1})] and the probabilities of the other actions are reduced to keep their sum 1.

Performance of a Pursuit-Method

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Summary

- a class of problems in-between supervised and un-supervised learning
- agent takes actions, receivces rewards
- goal is to maximize accumulated reward over time
- *n*-armed bandit problems illustrate action-selection
- so far, independent of states
- exploitation-exploration dilemma
- ϵ -greedy and softmax action selection
- comparison of RL approach with supervised learning

The Reinforcement-Learning problem

formalization of the RL problem: Markov Decision Process (MDP)

- an idealized and very general form of the RL problem with precise mathematical definition and theory
- interaction between agent and environment
- state- and action-spaces
- state transitions and rewards
- goal is to maximize the return: accumulated reward
- Markov assumption: behaviour only depends on current state, not on history
- idea of value-functions and relation to policies
- Bellman equation

The learning agent in an environment

agent and environment interact at discrete times:t = 0, 1, 2... Kagent observed state at the time t: $s_t \in S$ executes action at the time t: $a_t \in A(s_t)$ obtains reward: $r_{t+1} \in \mathcal{R}$ and the following state: s_{t+1}

The agent learns a *policy*

```
policy at time t, \pi_t:
```

mapping of states to action-probabilities $\pi_t(s, a) =$ probability, that $a_t = a$ if $s_t = s$

- Reinforcement learning methods describe how an agent updates its *policy* as a result of its experience.
- The overall goal of the agent is to maximize the long-term sum of *rewards*.

Modeling approach and abstraction

- time steps do not need to be fixed intervals of real time.
- actions can be *low-level* (e.g., voltage of motors), or *high-level* (e.g., take a job offer), "mental" (z.B., shift in focus of attention), etc.
- states can be *low-level* "perception", abstract, symbolic, memory-based, or subjective (e.g. the state of being surprised).
- the environment is not necessarily unknown to the agent, but it is incompletely controllable.
- the reward-calculation is done in the environment, and outside of control of the agent.

Goals and rewards

- Is a scalar *reward* signal an adequate description for a goal?
 perhaps not, but it is surprisingly flexible.
- A goal should describe what we want to achieve and not how we want to achieve it.
- A goal must be beyond the control of the agent therefore outside the agent itself.
- ▶ The agent needs to be able to measure success:
 - explicit;
 - frequently during its lifetime.

Markov Decision Process

Reinforcement Learning 1

Accumulated rewards or *return*

the sequence of rewards after time t is:

$$r_{t+1}, r_{t+2}, r_{t+3}, \ldots$$

What do we want to maximize?

In general, we want to maximize the **expected** *return*, $E\{R_t\}$ at each time step t.

Episodic task : Interaction splits in episodes,

e.g. a game round,

passes through a labyrinth

$$R_t = r_{t+1} + r_{t+2} + \cdots + r_T$$

where \mathcal{T} is a final time where a final state is reached and the episode ends.

Markov Decision Process

Reinforcement Learning 1

Return for continuous tasks

- continuous tasks: no final/terminal state
 - the interaction has no episodes
 - naive sum of all rewards may diverge

discounted return:

$$R_{t} = r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1},$$

where $\gamma, 0 \leq \gamma \leq 1$, is the *discount rate*.

- "nearsighted"
$$0 \leftarrow \gamma
ightarrow 1$$
 "farsighted"

Example: pole balancing

Avoid **Failure**: the pole turns over a critical angle or the waggon reaches the end of the track

As an episodic task where episodes end on failure:

 \Rightarrow Return = number of steps to failure

As **continuous task** with *discounted Return*:

Reward	=	-1 on failure; 0 otherwise
\Rightarrow Return	=	$-\gamma^k$, for k steps before failure

In both cases, the return is maximized by avoiding failure as long as possible.

Example: mountain car

Drive as fast as possible to the top of the mountain.

Reward = -1 for each step where the top of the mountain is **not** reached

Return = -number of steps before reaching the top of the mountain.

The *return* is maximized by minimizing the number of steps to reach the top of the mountain.

イロト 〈母 〉 〈ヨ 〉 〈モ 〉 クタぐ

Unified notation

- In episodic tasks, we number the time steps of each episode starting with zero.
- In general, we do not differentiate between episodes. We write s(t) instead of s(t,j) for the state at time t in episode j.
- Consider the end of each episode as an absorbing state that always returns a reward of 0:

• We summarize all cases:

$$R_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1},$$

where γ can only be 1 if an absorbing state is reached.

Markov assumption

- the state s_t at time t includes all information that the agent has (and needs) about its environment.
- the state can include instant perceptions, processed perceptions and structures or features that are built on a sequence of perceptions.
- but the behaviour of the environment does *not* depend on the history of the agent-environment interaction. The current state contains all "relevant" information, this is equivalent to the *Markov property*:

$$Pr \{s_{t+1} = s', r_{t+1} = r | s_t, a_t, r_t, s_{t-1}, a_{t-1}, \dots, r_1, s_0, a_0\} = Pr \{s_{t+1} = s', r_{t+1} = r | s_t, a_t\}$$

For all s', r, and histories s_t , a_t , r_t , s_{t-1} , a_{t-1} , ..., r_1 , s_0 , a_0 .

Markov decision processes

- if the Markov proporty holds for a given RL-task, it is called a Markov Decision Process (MDP)
- if state and action spaces are finite, it is a finite MDP.
- ▶ to define a finite MDP, we need:

state and action spaces

environment "dynamics" defined by the transition probabilities:

$$P^{\mathsf{a}}_{\mathsf{s}\mathsf{s}'} = \Pr\left\{\mathsf{s}_{t+1} = \mathsf{s}' | \mathsf{s}_t = \mathsf{s}, \mathsf{a}_t = \mathsf{a}\right\} \forall \mathsf{s}, \mathsf{s}' \in \mathsf{S}, \mathsf{a} \in \mathsf{A}(\mathsf{s}).$$

reward probabilities:

$$R^{a}_{ss'} = E\{r_{t+1} | s_t = s, a_t = a, s_{t+1} = s'\} \forall s, s' \in S, a \in A(s).$$

Markov decision process

MDP: a five-tuple (S, A, P, R, γ) , where

- ► *S* is a set of states *s*,
- A is a set of actions, where A(s) is the finite set of actions available in state s,
- ▶ P^a_{s,s'} is the probability that action a in state s at time t will lead to state s' at time t + 1,
- R^a_{s,s'} is the immediate reward received after transition from state s to state s' at time t,
- the transition and reward probabilities only depend on the current state s, but not on the history of the system,
- $\gamma \in [0, 1]$ is the discount factor used for calculating the return.
- ▶ most basic algorithms assume that the sets *S* and *A* are finite.

Recycling-robot: toy example for a finite MDP

Consider a robot designed to collect empty cans:

- reward = number of collected cans.
- at each time step the robot decides, whether it
 - 1. actively searches for cans,
 - 2. waits for someone bringing a can, or,
 - 3. drives to the basis for recharge.
- searching is better, but uses battery; if the batteries runs empty during searching, the robot needs to be recovered (bad).
- decisions are made based on the current battery level: {high, low}.

Recycling-robot MDP

state space: $S = \{high, low\}$ action space depends on the states: $A(high) = \{search, wait\},$ $A(low) = \{search, wait, recharge\}$ rewards depends on the actions: $R^{search} = expected$ number of cans during search, Durit

 $R^{\text{wait}} = \text{expected number of cans during wait,}$ assuming $R^{\text{search}} > R^{\text{wait}}$

dynamics $P_{ss'}^a$ depends on two parameters $\{\alpha, \beta\}$:

- $\alpha:$ probability of the battery keeping high value
- $\beta:$ probability of the battery keeping low value

Recycling-robot transition table

low

robot example.							
s	s'	а	$\mathcal{P}^{a}_{ss'}$	$\mathcal{R}^{a}_{ss'}$			
high	high	search	α	$\mathcal{R}^{ ext{search}}$			
high	low	search	$1 - \alpha$	$\mathcal{R}^{ t search}$			
low	high	search	$1 - \beta$	-3			
low	low	search	β	$\mathcal{R}^{ t search}$			
high	high	wait	1	$\mathcal{R}^{\texttt{wait}}$			
high	low	wait	0	$\mathcal{R}^{\texttt{wait}}$			
low	high	wait	0	$\mathcal{R}^{\texttt{wait}}$			
low	low	wait	1	$\mathcal{R}^{\texttt{wait}}$			
low	high	recharge	1	0			

Table 3.1 Transition probabilities and expected rewards for the finite MDP of the recycling

Note: There is a row for each possible combination of current state, s, next state, s', and action possible in the current state, $a \in \mathcal{A}(s)$.

recharge

low

0

0

Recycling-robot transition graph

 α, β : probability of battery keeping its level during searching

e.g., *low-search-high* implies running out of battery, reward -3 because then the operator needs to recover and recharge the robot.

<ロ> <日> <日> <日> <日> <日> <日</p>

Value Function

the value of a state is the expected return beginning with this state; depends on the *policy* of the agent:

state-value-function for policy π :

$$V^{\pi}(s) = E_{\pi} \{ R_t | s_t = s \} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s \right\}$$

the action value of an action in a state under a *policy* π is the expected *return* beginning with this state, if this action is chosen and π is pursued afterwards.

action-value-function for policy π :

$$Q^{\pi}(s,a) = E_{\pi} \{ R_t | s_t = s, a_t = a \} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s, a_t = a \right\}$$

The Bellman-Equation for policy $\boldsymbol{\pi}$

Basic Idea:

$$R_{t} = r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \gamma^{3} r_{t+4} + \dots$$

= $r_{t+1} + \gamma \left(r_{t+2} + \gamma r_{t+3} + \gamma^{2} r_{t+4} + \dots \right)$
= $r_{t+1} + \gamma R_{t+1}$

Thus:

$$V^{\pi}(s) = E_{\pi} \{ R_t | s_t = s \}$$

= $E_{\pi} \{ r_{t+1} + \gamma V(s_{t+1}) | s_t = s \}$

Or, without expectation operator:

$$V^{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} P^{a}_{ss'} \left[R^{a}_{ss'} + \gamma V^{\pi}(s') \right]$$

More about the Bellman-Equation

$$V^{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} P^{a}_{ss'} \left[R^{a}_{ss'} + \gamma V^{\pi}(s') \right]$$

These are a set of (linear) equations, one for each state. The value-function for π is an unique solution.

Backup-Diagrams :

Example: Gridworld I

- actions: up, down, right, left; deterministic.
- if the agent would leave the grid: no motion, but reward = -1.
- other actions reward = 0, except actions that move the agent out of state A or B (reward 10 or 5).

state-value-function for the uniform random policy; $\gamma=0.9$

Example: Golf

- state is the position of the ball
- reward is -1 for each swing until the ball is in the hole
- two actions: putt (use putter) driver (use driver)
- putt on the "green" area is always successful (hole)
- sketch of the state value function V(s):

Optimal Value Function

For finite MDPs, the *policies* can be partially ordered

$$\pi \geq \pi'$$
 if $V^{\pi}(s) \geq V^{\pi'}(s) \ \forall s \in S$

- There is always at least one (maybe more) *policies* that are better than or equal all others. This is an **optimal** *policy*. We call it π^{*}.
- Optimal policies share the same ,optimal state-value-function:

$$V^*(s) = \max_{\pi} V^{\pi}(s) \ \forall s \in S$$

Optimal policies also share the same ,optimal action-value-function:

$$Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a) \; orall s \in S \; and \; a \in A(s)$$

This is the expected *return* after choosing action *a* in state *s* an continuing to pursue an optimal *policy*.

Example: Golf

N. Hendrich

- we can strike the ball further with the driver than with the putter, but with less accuracy.
- Q*(s, driver) gives the values for the choice of the driver at the given start position, and afterwards always the best action is chosen.

Optimal Bellman-Equation for $V^*(s)$

The value of a state under an optimal *policy* is equal to the expected *returns* for choosing the best actions from now on.

$$V^{*}(s) = \max_{a \in A(s)} Q^{\pi^{*}}(s, a)$$

=
$$\max_{a \in A(s)} E\{r_{t+1} + \gamma V^{*}(s_{t+1}) | s_{t} = s, a_{t} = a\}$$

=
$$\max_{a \in A(s)} \sum_{s'} P^{a}_{ss'} \left[R^{a}_{ss'} + \gamma V^{*}(s') \right]$$

 V^* is the unique solution of this system of nonlinear equations. The corresponding backup diagram:

MIN Faculty Department of Informatics

Reinforcement Learning 1

Optimal Bellman-Equation for Q^*

$$Q^{*}(s,a) = E\left\{r_{t+1} + \gamma \max_{a'} Q^{*}(s_{t+1},a') | s_{t} = s, a_{t} = a\right\}$$
$$= \sum_{s'} P^{a}_{ss'} \left[R^{a}_{ss'} + \gamma \max_{a'} Q^{*}(s',a')\right]$$

The backup diagram:

 Q^* is the unique solution of this system of nonlinear equations.

Why optimal state-value functions are useful

A *policy* that is *greedy* with respect to V^* is an optimal *policy*! Therefore, given V^* , the (one-step-ahead)-search produces optimal action sequences. In the gridworld example:

22.0	24.4	22.0	19.4	17.5
19.8	22.0	19.8	17.8	16.0
17.8	19.8	17.8	16.0	14.4
16.0	17.8	16.0	14.4	13.0
14.4	16.0	14.4	13.0	11.7

a) gridworld

What about Optimal Action-Values Functions?

Given Q^* , the agent does not need to perform the *one-step-ahead*-search:

$$\pi^*(s) = rg\max_{a \in A(s)} Q^*(s,a)$$

Solving the optimal Bellman-Equation

- to determine an optimal policy π* by solving the optimal Bellman-equation we need the following:
 - knowledge of the dynamics of the environment $(P_{ss'}^a)$,
 - enough storage space and computation time,
 - the Markov property must hold.
- how much space and time do we need?
 - polynomially with the number of states (with *dynamic* programming, see below)
 - ► BUT, usually the number of states is very large (e.g., backgammon has about 10²⁰ states).
- we usually have to resort to approximations.
- many RL methods can be understood as an approximate solution to the optimal Bellman equation.

Summary

- agent-environment interaction
 - states
 - actions
 - rewards
- policy: stochastic action selection rule
- return: the function of the rewards that the agent tries to maximize
- episodic and continuing tasks
- Markov assumption (Markov property)
- MDP or Markov decision process
 - transition probabilities
 - expected rewards

Summary (cont.)

Value functions

- state-value function for a *policy*
- action-value function for a *policy*
- optimal state-value function
- optimal action-value function
- optimal policies
- Bellman-equation
- the need for approximation