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Schedule

Reinforcement-Learning: a set of learning problems and diverse
algorithms and approaches to solve the problems.

» 17/06/2015 Introduction, MDP

» 22/06/2015 Value Functions, Bellmann Equation
» 24/06/2015 Monte-Carlo, TD(A)

» 29/06/2015 Function Approximation

» 01/07/2015 Function Approximation

» 06/07/2015 Inverse-RL, Apprenticeship Learning
» 08/07/2015 Applications in Robotics, Wrap-Up
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Recommended Literature

» S. Sutton and A. G. Barto, Reinforcement Learning, an
Introduction, MIT Press, 1998
http://webdocs.cs.ualberta.ca/“sutton/book /ebook/

» C. Szepesvari, Algorithms for Reinforcement Learning, Morgan
& Claypool Publishers,
http://www.ualberta.ca/~szepesva/papers/RLAlgsInMDPs.pdf

» Kaelbling, Littman, and A. Moore, Reinforcement learning: a
survey, JAIR 4:237-285, 1996

» D.P. Bertsekas and J.N. Tsitsiklis, Neuro-Dynamic
Programming, Athena Scientific, 1996 (theory!)

» several papers to be added later
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Context

operations research

\ artificial Intelligence (planning)

reinforcement Learning (RL)

psychology 7 \

automation and control
(robotics)

neuroscience

artificial neural networks

N. Hendrich [m] = =




UH
Department of Informatic:
L2 University of Hamburg

Introduction

Reinforcement Learning 1

What is Reinforcement Learning?

the term usually refers to the problem/setting, rather than a
particular algorithm:

>

>

learning from /during interaction with an external environment

learning “what to do” — how to map situations to actions —
to maximize a numeric reward signal

learning about delayed rewards
learning about structure, continuous learning

goal-oriented learning

in-between supervised and unsupervised learning

applications in many areas

N. Hendrich
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training data = inputs + desired (target) outputs

input labels

input data _> supervised learning

_> outputs

error = (target output — actual system output)

N. Hendrich (=] = = = o™
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Reinforcement Learning

training information = evaluation (“rewards” / “penalties”)

reward (scalar)

outputs

input data _> reinforcement learning

"actions"

no way to directly calculate an error
instead: try to achieve as much reward as possible

N. Hendrich [=] = = = o> 7
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Reinforcement Learning

» goal: act ,,successfully” in the environment

> this implies: maximize the sequence of rewards R;

Umgebung

N. Hendrich
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Introduction

The agent

» continuous learning and planning
» affects the environment
» with or without a model of the environment

» environment may be stochastic and uncertain

Umgebung

Aktion

N. Hendrich (=] = = = o
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Elements of RL

reward
value

environment model

v

policy: what to do

v

reward: what is good (immediately)

v

value: estimate the expected reward (long-run)

model: how does the environment work?

v
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Example: playing Tic-tac-toe

4 E 4 } X's move

s A Y R N T L

} X's move

} o’'s move

Assume an imperfect opponent: m
he/she ti K istal

} X’s move

#*

winning requires an imperfect opponent: he/she makes mistakes

N. Hendrich [m] = =
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RL-approach for Tic-tac-toe

1. Make a table with one entry per state:

N. Hendrich

State V(s) — estimated probability of winning

=

S ? 2. Now play lots of games. To pick our
5 ?
moves, look ahead one step:

*

n

:ﬁ: o s current state

i.‘i:t: m various possible

0 draw
<' * next states

Just pick the next state with the highest
estimated prob. of winning — the largest V(s);
a greedy move.

But 10% of the time pick a move at random;
an exploratory move.

[m] = = = o> 12
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RL-learning rule for Tic-tac-toe

starting position

opponent's move {

our move { \
opponent's move {
our move { "n_;
&— “Exploratory” move
opponent's move {
our move { L s — the state before our greedy move

s — the state after our greedy move

We increment each ¥ () toward V (s') —a backup:
Vis)€V(s)+q V(s’)—V(s]}

a small positive fraction, e.g., a=.1
the step-size parameter

N. Hendrich [m] = = o™ 13
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Improving the Tic-tac-toe player

» take notice of symmetries

> in theory, much smaller state-space
> representation / generalization
» will it work? how can it fail?

» what can we learn from random moves?
» do we need random moves?
» do we always need 10 %?

» can we learn offline?
» pre-learning by playing against oneself?
» using the learned models of the opponent?

>

N. Hendrich (=] = = = o> 14
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Introduction

The role of generalization

table function approximation
state s value V(s) state s value (s)
-
51
)
S3
learning step —p
SNy sy

N. Hendrich [m] = = o™ 15
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Why is Tic-tac-toe simple?

» discrete state space
» small number of states
» deterministic actions

» the agent has complete information about the game,
all states are recognizable

Similar approach in this lecture:
» we will look at toy examples mostly
» real applications will be (a lot) more complex

> but using the same principles

N. Hendrich (=] = = = o™ 16
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Example RL applications

» TD-Gammon: (Tesauro 1996)

» fully know state space, but probabilistic element
> at the time, world's best backgammon program /player

» elevator control: Crites & Barto

> high performance “down-peak” elevator control
» finite but very large state-space

» warehouse management: Van Roy, Bertsekas, Lee & Tsitsiklis

> approximate the extremely large state space
» 10-15 % improvement compared to standard industry methods

» dynamic channel assignment: Singh & Bertsekas, Nie & Haykin
» efficient assignment of channels for mobile communication

N. Hendrich
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TD-Gammon

Reinforcement Learning 1

predicted probability

white pieces move of winning, V,
*

counterclockwise

TD error, V- V,

black pieces
move clockwise

I
i
8
&
«
s
3
3
3
S
°
g
a -
3
S
3
@
e
3
£
c
ES
&

Tesauro 1992-1995:
» start with a randomly initialized network,
» play many games against yourself,

» learn a value function based on the simulated experience.

» at the time, one of the best players in the world

N. Hendrich [m] = = = o™ 18



UH
L2 University of Hamburg

Example RL applications

Elevator control

MIN Faculty
Department of Informatics

Reinforcement Learning 1

Crites and Barto 1996: 10 floors, 4 cabins

dropoff

request . |

s}
elsvator/g
s}

going up

N. Hendrich

hall
buttons
D@
oo
D
pickup
8 request
- (down)
Be
ge age of
e _ﬁ/ request
DC
b2
BE
(il
ue

conservative estimation: about 1022 states
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Elevator control performance

B0

BOO

Average 60 2 Average o
waiting % Waiting
squared
and 40 =1 minute waiting o
system 1 time 4
times 20

Dispatcher Dispatcher Dispatcher

» RL approaches vs. state-of-the-art planning algorithms

» simple reward function: sum of waiting times

N. Hendrich (=] = = = o™



UH MIN Faculty
iti Department of Informatics
L2 University of Hamburg

Action selection Reinforcement Learning 1

Evaluating feedback

» evaluate actions instead of instructing the correct action.
» pure evaluating feedback only depends on the chosen action.

pure instructing feedback does not depend on the chosen
action at all.

» supervised learning is instructive; optimization is evaluating.

> associative vs. non-associative:
> associative inputs are mapped to outputs; learn the best output
for each input.
» non-associative: “learn” (find) the best output.
» n-armed bandit (slot machine) in the context of RL:

» non-associative
» evaluating feedback

N. Hendrich
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The n-armed bandit

» choose one of n actions a repeatedly;
each selection is called game.

» after each game a; a reward r; is obtained, where:
*
E(r]ar) = Q*(ar)
These are unknown action values.

The distribution of r; just depends on a;.

» the goal is to maximize the long-term reward, e.g. over 1000
games. To solve the task of the n-armed bandit,

a set of actions have to be explored
and the best of them will be exploited.

N
N}

N. Hendrich (=] = = = o
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The exploration /exploitation dilemma

» our learner estimates the value of its actions:
Q:(a) =~ Q*(a) Estimation of Action Values

» the greedy-action for time t is:

a; = argmax, Q:(a)

ar = ai = exploitation

ar # ai = exploration

» you cannot explore all the time (many wasted actions)

» but also not exploit all the time (no more learning)

» exploration should never be stopped, but it may be reduced
over time (when the agent has learned enough)

N. Hendrich [m] = = = o™ 23
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General action-value methods

» the name for learning methods that only consider the estimates
for action values.

» suppose in the t-th game action a has been chosen k, times,
and the agent received rewards ri, o, ...,.,, then

n+nrn+--+rg
ka

Q:i(a) =

is the average reward.

» and in stationary environments:

lim Q:(a) = Q*(a)

ka—o0

N. Hendrich (=] = = = o™
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e-greedy action selection

» greedy action selection
ay = a; = arg max Q:(a)
» c-greedy action selection:
a; with probability 1—e€

ar = . . -
random action with probability ¢

...the easiest way to combine exploration and exploitation.

N. Hendrich (=] = = = o> 25
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Example: 10-armed bandit

v

n = 10 possible actions

v

every Q*(a) is chosen randomly from the normal distribution:
N(0,1)
> every rq is also normally distributed: N'(Q*(at),1)

» play a number of games (here: 1000 games)

» repeat everything 2000 times and average the results:

N. Hendrich (=] = = = o™ 26
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Action selection

e-greedy method for the 10-armed bandit example

b i ) Lo0re
0 Lip redbbkd]
" e =001
il " e
| o " s
Average 9, AR
reward Optimal
action e
os
€= (greedy)
W
T T T T 1 e = T T T
o 250 S0 750 1o o 250 500 750
Plays Plays

» the greedy agent is stuck very soon
> higher € implies more learning, and finds good actions faster,
> lower ¢ eventually reaches higher rewards (why?)

N. Hendrich (=] = = = o
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Softmax action selection

> softmax-action selection method approximates action

>

probabilities

the most common softmax-method uses a Gibbs- or a
Bolzmann-distribution:
choose action a in game t with probability

le(a)/T
S5 eI

where 7 is a control parameter, the temperature

» high 7: all actions almost equally probable

» 7 — 0: only the best action has high probability

N. Hendrich
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Example: binary bandit

Assume there are only two actions:a; = 1 or a; = 2 and only two
rewards : ry = SLICCESS Of ry = error

Then we could define a goal- or target-action:

ar if  success

the other action if error

and choose always the action that leads to the goal most often.
This is a supervised algorithm.

If works well for deterministic problems. ..

N. Hendrich (=] = = = o
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Action selection

Binary bandit task space

The space of all possible binary bandit-tasks:

1
EASY B.
DIFFICULT
PROBLEMS PE_IOE!LEMS
Success
robability 05
or action 2
DIFFICULT EASY
PROBLEMS | PROBLEMS
eA
0
0 0.5 1

Success probability for action 1

N. Hendrich (=] = = = o 30
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Linear learning automata

Let be m¢(a) = Pr{a; = a} the only parameter to be adapted:

Lg_; (Linear, reward -inaction):

on success:  7ii1(ar) = me(ar) + (1l —m(ar)) O<a<l
on failure: no change
Lg_p (Linear, reward -penalty):

on success:  mer1(ar) = me(ar) + (1l —7me(ar)) 0<a<1
on failure: mTer1(ar) = me(ar) + (0 —me(ar)) 0<a<1

» after each update the other probabilities get updated in a way that
the sum of all probabilities is 1.

N. Hendrich [m] = = = o™ 31



UH

Department of Informatics

it [
L2 University of Hamburg

Action selection

Reinforcement Learning 1

Performance of the binary bandit-tasks A and B

MG

BanDIT A

action valugs

Y

BanpIr B

action values,

% o, W
o ™ el
0% (2]
S LH—F' S0%
r‘l oo ZI‘IJ JL‘I] 4(‘]3 SI‘D E‘l ILTJ 2&0 3['11 44"(1 Slllﬂ
Plays Plays
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Incremental calculation of the average reward
Remember the definition of the average rewards:
The average of the k first ewards is (neglecting the dependency on a):

ntrn+--+r
k

Qk =

problem: we need to keep all previously received rewards. ..
The running average trick is more memory efficient:

1
Qr41 = Qk + PR [rk+1 — Q]

Note: this is a common form for update-rules:
NewEstimation = OldEstimation + Stepsize - [Value - OldEstimation]

N. Hendrich (=] = = = o™ 33
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Non-stationary problems

Using Q as the average reward is adequate for a stationary
problem, i.e. if none of the @*(a) changes over time.

But in the case of a non-stationary problem, this is better:

Qui1=  Qu+afrke1 — Q] for constant a,0 < a <1

k
= (1—a)kQ0—|—Zoz(1—a)k_"r,-

i=1

the exponential, recency-weighted average

N. Hendrich (=] = = = o> 34
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Optimistic initial values

> all previous methods depend on @Qy(a) , i.e., they are biased.

> initialize the action-values optimistically, e.g. for the 10-armed
testing environment:  Qy(a) =5 for all a

> this enforces exploration during the first few iterations (until the
values have stabilized):

100% 7
optimistic, greedy
80% 0y=5,¢€=0
%, 0% realistic, £-greedy
Optimal Qy=0, €=0.1
action 40 4
20% o
0% = T T T T d
0 200 400 600 200 1000
N. Hendrich [m] = = o > 35
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Reinforcement-comparison

» compare rewards with a known reference-reward r;,
e.g. the average of all possible rewards

» strengthen or weaken the chosen action depending on r; — F;.

> let p:(a) be the preference for action a.

» The preferences determine the action-probabilities, e.g. by a
Gibbs-distribution:

epf(a)

7Tt(a) = Pr{at = a} = W
b=1

> then: pry1(as) = pe(a) + Blre — 1] and Fry1 =1 + a[re — T

N. Hendrich [m] = = = o™ 36
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Reinforcement-comparison example

100%

reinforcement

comparison
%
Optimal
action
e-greedy
20 4 e=0.1, =1k
0% T T T T T 1
[} 200 400 600 800 1000
Plays
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Pursuit methods

» incorporate both estimations of action values as well as action
preferences.

» “Pursue” always the greedy-action, i.e. make the greedy-action
more probable in the action selection.

» Update the action values after the t-th game to obtain Q;11.
» The new greedy-action is a; ; = arg max Q;+1(a)

a
> Then: mei1(afyq) = me(afy1) + B [1 — me(afy )]

and the probabilities of the other actions are reduced to keep
their sum 1.

N. Hendrich (=] = = = o 38
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Performance of a Pursuit-Method

100%
pursuit
805
e-greedy
o 60 e=0.1, o=1/k
Optimal
action  40% reinforcement
comparison
20%
0% I T I 1 T 1
0 200 400 600 R00 1000

N. Hendrich (=] = = = o™ 39
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Summary

» a class of problems in-between supervised and un-supervised
learning

> agent takes actions, receivces rewards
» goal is to maximize accumulated reward over time

n-armed bandit problems illustrate action-selection
» so far, independent of states

» exploitation-exploration dilemma
» c-greedy and softmax action selection

» comparison of RL approach with supervised learning

N. Hendrich [=} =) = = Al 40
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The Reinforcement-Learning problem

formalization of the RL problem: Markov Decision Process (MDP)

> an idealized and very general form of the RL problem with
precise mathematical definition and theory

> interaction between agent and environment

» state- and action-spaces

» state transitions and rewards

» goal is to maximize the return: accumulated reward

» Markov assumption: behaviour only depends on current state,
not on history

» idea of value-functions and relation to policies

» Bellman equation

N. Hendrich
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Markov Decision Process

The learning agent in an environment

| Agent
state reward action
5, ! dy
]
i sn | Environment |

agent and environment interact at discrete times: t =0,1,2...K

agent observed state at the time t: ss €5
executes action at the time t: ar € A(st)
obtains reward: ry1 € R
and the following state: St+1

D
[ %+ G 7 %43
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Markov Decision Process

The agent learns a policy

policy at time t, 7 :
mapping of states to action-probabilities
m¢(s, a) = probability, that a; = aif sy = s
» Reinforcement learning methods describe how an agent updates
its policy as a result of its experience.

» The overall goal of the agent is to maximize the long-term sum
of rewards.

N. Hendrich (=] = = = o> 43
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Modeling approach and abstraction

> time steps do not need to be fixed intervals of real time.

> actions can be low-level (e.g., voltage of motors), or high-level (e.g.,
take a job offer), “mental” (z.B., shift in focus of attention), etc.

> states can be low-level “perception”, abstract, symbolic,
memory-based, or subjective (e.g. the state of being surprised).

> the environment is not necessarily unknown to the agent, but it is
incompletely controllable.

» the reward-calculation is done in the environment, and outside of
control of the agent.

N. Hendrich [=] = = = o> 44
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Goals and rewards

» |Is a scalar reward signal an adequate description for a goal?
— perhaps not, but it is surprisingly flexible.
» A goal should describe what we want to achieve and not how
we want to achieve it.
» A goal must be beyond the control of the agent — therefore
outside the agent itself.
» The agent needs to be able to measure success:
» explicit;
» frequently during its lifetime.

N. Hendrich [=] = = = o> 45
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Markov Decision Process

Accumulated rewards or return

the sequence of rewards after time t is:

Fe1y Fe42, Fe43, - -
What do we want to maximize?

In general, we want to maximize the expected return, E{R;} at each
time step t.

Episodic task : Interaction splits in episodes,

e.g. a game round,

passes through a labyrinth

Re =ty +rgpo+ -+ rr
where T is a final time where a final state is reached and the episode

ends.

N. Hendrich (=] = = = o> 46
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Return for continuous tasks

» continuous tasks: no final/terminal state

> the interaction has no episodes
» naive sum of all rewards may diverge

» discounted return:
oo
R, = 2 _ k
t=re41 T Y2 Y43+ = Vet k+1,
k=0

where v,0 <~ <1, is the discount rate.

» nearsighted” 0 < v — 1 , farsighted”

N. Hendrich (=] = = = o> a7
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Example: pole balancing

Avoid Failure: the pole turns

over a critical angle or the

waggon reaches the end of
= the track

As an episodic task where episodes end on failure:
Reward = +1 for every step before failure

= Return = number of steps to failure

As continuous task with discounted Return:
Reward = —1 on failure; 0 otherwise
= Return = —~k for ksteps before failure

In both cases, the return is maximized by
avoiding failure as long as possible.

N. Hendrich [=] = = = o> 48
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Example: mountain car

Drive as fast as possible to the top of the mountain.

Reward = —1 for each step where the top of the mountain is not reached

Return = —number of steps before reaching the top of the mountain.

The return is maximized by minimizing the number of steps to
reach the top of the mountain.

N. Hendrich (=] = = = o> 49
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Markov Decision Process

Unified notation

» In episodic tasks, we number the time steps of each episode starting
with zero.

> In general, we do not differentiate between episodes. We write s(t)
instead of s(t,/) for the state at time t in episode j.

» Consider the end of each episode as an absorbing state
that always returns a reward of 0:

."J=+1 .F2:+l ‘FS:_H' Q:U
rp=10

» We summarize all cases:

o0
k
Re = E Vo re4k+1,
k=0

where «y can only be 1 if an absorbing state is reached.

N. Hendrich [m] = = = o™ 50
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Markov assumption

> the state s; at time t includes all information that the agent has (and
needs) about its environment.

> the state can include instant perceptions, processed perceptions and
structures or features that are built on a sequence of perceptions.

> but the behaviour of the environment does not depend on the history
of the agent-environment interaction. The current state contains all
“relevant” information, this is equivalent to the Markov property:

/
Pr{siy1 =", req1 = rlse, ar, rey Se—1, 3t—1, -« -, 1,50, 30} =

Pr {5t+1 = 5,, 41 = r|5t’ 3:}

For all s, r,and histories s;, ay, r+, S¢—1, at—1,- - - , 1, S0, Ao-

N. Hendrich [m] = = = o™ 51
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Markov decision processes

» if the Markov proporty holds for a given RL-task, it is called a
Markov Decision Process (MDP)

> if state and action spaces are finite, it is a finite MDP.
» to define a finite MDP, we need:

» state and action spaces
» environment “dynamics” defined by the transition probabilities:

P2, = Pr{siy1 =§'|st = s,a; = a} Vs,s’ € S,a € A(s).
» reward probabilities:

R:, = E{res1lst =s,ar = a,5141 = '} Vs, s’ € S,a € A(s).

N. Hendrich [m] = = = o™ 52
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Markov decision process

MDP: a five-tuple (S, A, P, R,~), where

>
>

| 2

N. Hendrich

S is a set of states s,
A is a set of actions, where A(s) is the finite set of actions
available in state s,

2. is the probability that action a in state s at time t will
lead to state s’ at time t + 1,
RZ . is the immediate reward received after transition from
state s to state s’ at time t,
the transition and reward probabilities only depend on the
current state s, but not on the history of the system,

v € [0, 1] is the discount factor used for calculating the return.

most basic algorithms assume that the sets S and A are finite.
o = - = o™ 53
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Recycling-robot: toy example for a finite MDP

Consider a robot designed to collect empty cans:
» reward = number of collected cans.

> at each time step the robot decides, whether it

1. actively searches for cans,
2. waits for someone bringing a can, or,
3. drives to the basis for recharge.

» searching is better, but uses battery; if the batteries runs empty
during searching, the robot needs to be recovered (bad).

» decisions are made based on the current battery level:
{high, low}.

N. Hendrich [=] = = = o> 54



UH MIN Faculty
iti Department of Informatics
L2 University of Hamburg

Markov Decision Process Reinforcement Learning 1

Recycling-robot MDP

state space: S = {high, low}
action space depends on the states:
A(high) = {search, wait},
A(low) = {search, wait, recharge}
rewards depends on the actions:

Rseareh — expected number of cans during search,
R¥ait — expected number of cans during wait,
assuming Rsearch . Rvait

dynamics PZ, depends on two parameters {c, 5}

«: probability of the battery keeping high value
(: probability of the battery keeping low value

N. Hendrich [m] = = = o™ 55



UH MIN Faculty
Department of Informatics
L2 University of Hamburg

Markov Decision Process Reinforcement Learning 1

Recycling-robot transition table

Table 3.1 Transition probabilities and expected rewards for the finite MDP of the recycling

robot example.

s s a P, !Rf:,
high high search a Rsearch
high low search 1-a Rsearch
low high search 1-8 7

low low search B Rsearch
high high wait 1 Rvait
high low wait 0 Ruait
low high wait 0 RVait
low low wait 1 Rvait
low high recharge 1 0

low low recharge 0 0

Note: There is a row for each possible combination of current state, s, next state, s’, and action
possible in the current state, a € A(s).
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Recycling-robot transition graph

l, Rwait I_Bv -3

B Rsearc':\

1, 0 recharge

search

wait
o, R.search -, R search L R

a, B: probability of battery keeping its level during searching

e.g., low-search-high implies running out of battery, reward -3 because then
the operator needs to recover and recharge the robot.
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Value Function

> the value of a state is the expected return beginning with this state;

N. Hendrich

depends on the policy of the agent:

state-value-function for policy 7:
oo
V™(s) = E; {Ri|st = s} = E; Z'ykrt+k+1|st =s
k=0

the action value of an action in a state under a policy « is the
expected return beginning with this state, if this action is chosen and
7 is pursued afterwards.

action-value-function for policy 7:

o0
Q7(s,a) = Ex {Ri|s: = s,ar = a} = Ex karurmlst =s,a=a
k=0
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The Bellman-Equation for policy 7

Basic Idea:
Re=  rp+ore+ 'ert+3 + 73rt+4 +...
rev1+ 7y (rt+2 + Yreg3 + 72rt+4 + .. )
rer1 +vRea
Thus:

V™ (s) E: {R:|s: = s}

Er {req1 +vV(Se41)|se = s}

Or, without expectation operator:

VT(s) = m(s,a) Y Pa R + V()]

a
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More about the Bellman-Equation

VW(S) = ZTF(S, a) Z ;?s’ [R:s’ + ’YVW(S/)]

These are a set of (linear) equations, one for each state. The
value-function for 7 is an unique solution.

Backup-Diagrams :
(a) ! (b) e
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Example: Gridworld |

» actions: up, down, right, left; deterministic.
» if the agent would leave the grid: no motion, but reward = —1.

» other actions reward = 0, except actions that move the agent
out of state A or B (reward 10 or 5).

Ad |By 3.3 8.8 4.4/53/1.5
NE 1.5(3.0/ 2.3/ 1.9/ 0.5
«o B 0107/ 07| 0.4|-0.4
/ 1.0-0.4-0.4-0.6-1.2

AX Actions 1.9[-1.3-1.2-1.4-20

(a) (b)
state-value-function for the uniform random policy; v = 0.9
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Example: Golf

state is the position of the ball
reward is -1 for each swing until the ball is in the hole

| 4

| 4

> two actions: putt (use putter) driver (use driver)
» putt on the “green” area is always successful (hole)
| 4

sketch of the state value function V/(s):

Vputt

—0

-4
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Optimal Value Function

» For finite MDPs, the policies can be partially ordered
r>a if V(s)> VT (s)VseS

> There is always at least one (maybe more) policies that are better than or
equal all others. This is an optimal policy. We call it 7*.

» Optimal policies share the same ,optimal state-value-function:
V*(s) =max V7 (s) Vs € S
s
» Optimal policies also share the same ,optimal action-value-function:
Q*(s,a) =max Q" (s,a) Vs € S and a € A(s)
s

This is the expected return after choosing action a in state s an continuing to

pursue an optimal policy.
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Example: Golf

» we can strike the ball further with the driver than with the
putter, but with less accuracy.

» Q*(s,driver) gives the values for the choice of the driver at
the given start position, and afterwards always the best action
is chosen.

Q*(S, driver)

—O
b
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Optimal Bellman-Equation for V*(5s)

The value of a state under an optimal policy is equal to the expected returns
for choosing the best actions from now on.

Vi(s) = max Q" (s,a)

= E V* =S5, =
max {re+1 + 9V (se41)|st = 5, ar = a}

- p?, [Ra, v ]
argj()s() - ss s +7 (5)

V* is the unique solution of this system of nonlinear equations.
The corresponding backup diagram: @) §
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Optimal Bellman-Equation for @*

Q*(s,a) = E {rt+1 + v max Q*(5t+173/)|5t =S5,ar = 3}
a

P2, [R:S, + ymax Q" (s ,a )]

’

S
The backup diagram: () 54
.
o
max
a
Q™" is the unique solution of this system of nonlinear equations.
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Why optimal state-value functions are useful

A policy that is greedy with respect to V* is an optimal policy!

Therefore, given V*, the (one-step-ahead)-search produces optimal
action sequences. In the gridworld example:

Al |B 22.0124.4/22.019.4{17.5 —ebs e feds

N 19.8(22.0{19.817.8/16.0 AR A D

n(;l B 17.8(19.8/17.8 16.0{14.4 N P )

/ 1s.n1?_a|1a_o 14.413.0 LI I S O O

A 14.4(16.0114.4{13.0117 N
a) gridworld b) V* c) ¥
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What about Optimal Action-Values Functions?

Given Q*, the agent does not need to perform the
one-step-ahead-search:

T(s) = arg nax, Q*(s, a)
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Solving the optimal Bellman-Equation

> to determine an optimal policy 7* by solving the optimal
Bellman-equation we need the following:

» knowledge of the dynamics of the environment (PZ,),

> enough storage space and computation time,

» the Markov property must hold.

» how much space and time do we need?

> polynomially with the number of states (with dynamic
programming, see below)

» BUT, usually the number of states is very large (e.g.,
backgammon has about 10%° states).

» we usually have to resort to approximations.

» many RL methods can be understood as an approximate
solution to the optimal Bellman equation.

N. Hendrich
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Summary

> agent-environment interaction

» states
» actions
> rewards

» policy: stochastic action selection rule

> return: the function of the rewards that the agent tries to maximize
> episodic and continuing tasks

> Markov assumption (Markov property)

» MDP or Markov decision process

> transition probabilities
» expected rewards
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Summary (cont.)

» Value functions

>
>
>
>

state-value function for a policy
action-value function for a policy
optimal state-value function
optimal action-value function

» optimal policies

> Bellman-equation

» the need for approximation

N. Hendrich
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