
University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning 1

Reinforcement Learning (1)
Machine Learning 64-360, Part II

Norman Hendrich

University of Hamburg
MIN Faculty, Dept. of Informatics

Vogt-Kölln-Str. 30, D-22527 Hamburg
hendrich@informatik.uni-hamburg.de

17/06/2015

N. Hendrich 1

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning 1

Schedule

Reinforcement-Learning: a set of learning problems and diverse
algorithms and approaches to solve the problems.

I 17/06/2015 Introduction, MDP

I 22/06/2015 Value Functions, Bellmann Equation

I 24/06/2015 Monte-Carlo, TD(λ)

I 29/06/2015 Function Approximation

I 01/07/2015 Function Approximation

I 06/07/2015 Inverse-RL, Apprenticeship Learning

I 08/07/2015 Applications in Robotics, Wrap-Up

N. Hendrich 2

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning 1

Recommended Literature

I S. Sutton and A. G. Barto, Reinforcement Learning, an
Introduction, MIT Press, 1998
http://webdocs.cs.ualberta.ca/˜sutton/book/ebook/

I C. Szepesvari, Algorithms for Reinforcement Learning, Morgan
& Claypool Publishers,
http://www.ualberta.ca/˜szepesva/papers/RLAlgsInMDPs.pdf

I Kaelbling, Littman, and A. Moore, Reinforcement learning: a
survey, JAIR 4:237-285, 1996

I D.P. Bertsekas and J.N. Tsitsiklis, Neuro-Dynamic
Programming, Athena Scientific, 1996 (theory!)

I several papers to be added later

N. Hendrich 3

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning 1

Context

(robotics)
automation and control

reinforcement Learning (RL)

psychology

neuroscience

artificial neural networks

artificial Intelligence (planning)

operations research

N. Hendrich 4

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning 1

What is Reinforcement Learning?

the term usually refers to the problem/setting, rather than a
particular algorithm:

I learning from/during interaction with an external environment

I learning “what to do” — how to map situations to actions —
to maximize a numeric reward signal

I learning about delayed rewards

I learning about structure, continuous learning

I goal-oriented learning

I in-between supervised and unsupervised learning

I applications in many areas

N. Hendrich 5

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning 1

Supervised Learning

training data = inputs + desired (target) outputs

input data

input labels

outputssupervised learning

error = (target output – actual system output)

N. Hendrich 6

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning 1

Reinforcement Learning

training information = evaluation (“rewards” / “penalties”)

reinforcement learning

reward (scalar)

outputs
input data

"actions"

no way to directly calculate an error
instead: try to achieve as much reward as possible

N. Hendrich 7

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning 1

Reinforcement Learning

I goal: act
”
successfully“ in the environment

I this implies: maximize the sequence of rewards Rt

�

(�	�

�� �!�	

�����

N. Hendrich 8

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning 1

The agent

I continuous learning and planning

I affects the environment

I with or without a model of the environment

I environment may be stochastic and uncertain

Umgebung

Aktion
Zustand

Reward
Agent

N. Hendrich 9

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning 1

Elements of RL

policy

environment model

value

reward

I policy: what to do

I reward: what is good (immediately)

I value: estimate the expected reward (long-run)

I model: how does the environment work?

N. Hendrich 10

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning 1

Example: playing Tic-tac-toe

winning requires an imperfect opponent: he/she makes mistakes

N. Hendrich 11

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning 1

RL-approach for Tic-tac-toe

N. Hendrich 12

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning 1

RL-learning rule for Tic-tac-toe

N. Hendrich 13

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning 1

Improving the Tic-tac-toe player

I take notice of symmetries
I in theory, much smaller state-space
I representation / generalization
I will it work? how can it fail?

I what can we learn from random moves?
I do we need random moves?

I do we always need 10 %?

I can we learn offline?
I pre-learning by playing against oneself?
I using the learned models of the opponent?

I . . .

N. Hendrich 14

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning 1

The role of generalization

s

learning step

3s
2s

)s(Vvalue sstate)s(Vvalue sstate

Ns

1s

function approximationtable

.

.

.

N. Hendrich 15

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning 1

Why is Tic-tac-toe simple?

I discrete state space

I small number of states

I deterministic actions

I the agent has complete information about the game,
all states are recognizable

Similar approach in this lecture:

I we will look at toy examples mostly

I real applications will be (a lot) more complex

I but using the same principles

N. Hendrich 16

University of Hamburg

MIN Faculty

Department of Informatics

Example RL applications Reinforcement Learning 1

Example RL applications

I TD-Gammon: (Tesauro 1996)
I fully know state space, but probabilistic element
I at the time, world’s best backgammon program/player

I elevator control: Crites & Barto
I high performance “down-peak” elevator control
I finite but very large state-space

I warehouse management: Van Roy, Bertsekas, Lee & Tsitsiklis
I approximate the extremely large state space
I 10–15 % improvement compared to standard industry methods

I dynamic channel assignment: Singh & Bertsekas, Nie & Haykin
I efficient assignment of channels for mobile communication

N. Hendrich 17

University of Hamburg

MIN Faculty

Department of Informatics

Example RL applications Reinforcement Learning 1

TD-Gammon

Tesauro 1992-1995:

I start with a randomly initialized network,

I play many games against yourself,

I learn a value function based on the simulated experience.

I at the time, one of the best players in the world

N. Hendrich 18

University of Hamburg

MIN Faculty

Department of Informatics

Example RL applications Reinforcement Learning 1

Elevator control

Crites and Barto 1996: 10 floors, 4 cabins

conservative estimation: about 1022 states
N. Hendrich 19

University of Hamburg

MIN Faculty

Department of Informatics

Example RL applications Reinforcement Learning 1

Elevator control performance

I RL approaches vs. state-of-the-art planning algorithms

I simple reward function: sum of waiting times

N. Hendrich 20

University of Hamburg

MIN Faculty

Department of Informatics

Action selection Reinforcement Learning 1

Evaluating feedback

I evaluate actions instead of instructing the correct action.

I pure evaluating feedback only depends on the chosen action.
pure instructing feedback does not depend on the chosen
action at all.

I supervised learning is instructive; optimization is evaluating.
I associative vs. non-associative:

I associative inputs are mapped to outputs; learn the best output
for each input.

I non-associative:“learn”(find) the best output.

I n-armed bandit (slot machine) in the context of RL:
I non-associative
I evaluating feedback

N. Hendrich 21

University of Hamburg

MIN Faculty

Department of Informatics

Action selection Reinforcement Learning 1

The n-armed bandit

I choose one of n actions a repeatedly;
each selection is called game.

I after each game at a reward rt is obtained, where:

E 〈rt |at〉 = Q∗(at)

These are unknown action values.
The distribution of rt just depends on at .

I the goal is to maximize the long-term reward, e.g. over 1000
games. To solve the task of the n-armed bandit,

a set of actions have to be explored
and the best of them will be exploited.

N. Hendrich 22

University of Hamburg

MIN Faculty

Department of Informatics

Action selection Reinforcement Learning 1

The exploration/exploitation dilemma

I our learner estimates the value of its actions:
Qt(a) ≈ Q∗(a) Estimation of Action Values

I the greedy -action for time t is:

a∗t = arg maxa Qt(a)

at = a∗t ⇒ exploitation

at 6= a∗t ⇒ exploration

I you cannot explore all the time (many wasted actions)

I but also not exploit all the time (no more learning)

I exploration should never be stopped, but it may be reduced
over time (when the agent has learned enough)

N. Hendrich 23

University of Hamburg

MIN Faculty

Department of Informatics

Action selection Reinforcement Learning 1

General action-value methods

I the name for learning methods that only consider the estimates
for action values.

I suppose in the t-th game action a has been chosen ka times,
and the agent received rewards r1, r2, ...,ra , then

Qt(a) =
r1 + r2 + · · ·+ rka

ka

is the average reward.

I and in stationary environments:

lim
ka→∞

Qt(a) = Q∗(a)

N. Hendrich 24

University of Hamburg

MIN Faculty

Department of Informatics

Action selection Reinforcement Learning 1

ε-greedy action selection

I greedy action selection

at = a∗t = arg max
a

Qt(a)

I ε-greedy action selection:

at =

{
a∗t with probability 1− ε

random action with probability ε

...the easiest way to combine exploration and exploitation.

N. Hendrich 25

University of Hamburg

MIN Faculty

Department of Informatics

Action selection Reinforcement Learning 1

Example: 10-armed bandit

I n = 10 possible actions

I every Q∗(a) is chosen randomly from the normal distribution:
N (0, 1)

I every rt is also normally distributed: N (Q∗(at), 1)

I play a number of games (here: 1000 games)

I repeat everything 2000 times and average the results:

N. Hendrich 26

University of Hamburg

MIN Faculty

Department of Informatics

Action selection Reinforcement Learning 1

ε-greedy method for the 10-armed bandit example

I the greedy agent is stuck very soon

I higher ε implies more learning, and finds good actions faster,

I lower ε eventually reaches higher rewards (why?)

N. Hendrich 27

University of Hamburg

MIN Faculty

Department of Informatics

Action selection Reinforcement Learning 1

Softmax action selection

I softmax-action selection method approximates action
probabilities

I the most common softmax-method uses a Gibbs- or a
Bolzmann-distribution:
choose action a in game t with probability

eQt(a)/τ∑n
b=1 e

Qt(b)/τ

where τ is a control parameter, the temperature

I high τ : all actions almost equally probable

I τ → 0: only the best action has high probability

N. Hendrich 28

University of Hamburg

MIN Faculty

Department of Informatics

Action selection Reinforcement Learning 1

Example: binary bandit

Assume there are only two actions:at = 1 or at = 2 and only two
rewards : rt = success or rt = error

Then we could define a goal- or target-action:

dt =

{
at if success

the other action if error

and choose always the action that leads to the goal most often.
This is a supervised algorithm.

If works well for deterministic problems. . .

N. Hendrich 29

University of Hamburg

MIN Faculty

Department of Informatics

Action selection Reinforcement Learning 1

Binary bandit task space

The space of all possible binary bandit-tasks:

N. Hendrich 30

University of Hamburg

MIN Faculty

Department of Informatics

Action selection Reinforcement Learning 1

Linear learning automata

Let be πt(a) = Pr{a1 = a} the only parameter to be adapted:

LR−I (Linear, reward -inaction):

on success: πt+1(at) = πt(at) + α(1− πt(at)) 0 < α < 1

on failure: no change
LR−P (Linear, reward -penalty):

on success: πt+1(at) = πt(at) + α(1− πt(at)) 0 < α < 1

on failure: πt+1(at) = πt(at) + α(0− πt(at)) 0 < α < 1

I after each update the other probabilities get updated in a way that

the sum of all probabilities is 1.

N. Hendrich 31

University of Hamburg

MIN Faculty

Department of Informatics

Action selection Reinforcement Learning 1

Performance of the binary bandit-tasks A and B

N. Hendrich 32

University of Hamburg

MIN Faculty

Department of Informatics

Action selection Reinforcement Learning 1

Incremental calculation of the average reward

Remember the definition of the average rewards:

The average of the k first ewards is (neglecting the dependency on a):

Qk =
r1 + r2 + · · ·+ rk

k

problem: we need to keep all previously received rewards. . .

The running average trick is more memory efficient:

Qk+1 = Qk +
1

k + 1
[rk+1 − Qk]

Note: this is a common form for update-rules:

NewEstimation = OldEstimation + Stepsize · [Value - OldEstimation]

N. Hendrich 33

University of Hamburg

MIN Faculty

Department of Informatics

Action selection Reinforcement Learning 1

Non-stationary problems

Using Qk as the average reward is adequate for a stationary
problem, i.e. if none of the Q∗(a) changes over time.

But in the case of a non-stationary problem, this is better:

Qk+1 = Qk + α [rk+1 − Qk] for constant α, 0 < α ≤ 1

= (1− α)kQ0 +
k∑

i=1

α(1− α)k−i ri

the exponential, recency-weighted average

N. Hendrich 34

University of Hamburg

MIN Faculty

Department of Informatics

Action selection Reinforcement Learning 1

Optimistic initial values

I all previous methods depend on Q0(a) , i.e., they are biased.

I initialize the action-values optimistically, e.g. for the 10-armed
testing environment: Q0(a) = 5 for all a

I this enforces exploration during the first few iterations (until the
values have stabilized):

N. Hendrich 35

University of Hamburg

MIN Faculty

Department of Informatics

Action selection Reinforcement Learning 1

Reinforcement-comparison

I compare rewards with a known reference-reward r̄t ,
e.g. the average of all possible rewards

I strengthen or weaken the chosen action depending on rt − r̄t .

I let pt(a) be the preference for action a.

I The preferences determine the action-probabilities, e.g. by a
Gibbs-distribution:

πt(a) = Pr{at = a} =
ept(a)∑n
b=1 e

pt(b)

I then: pt+1(at) = pt(a) + β [rt − r̄t] and r̄t+1 = r̄t + α [rt − r̄t]

N. Hendrich 36

University of Hamburg

MIN Faculty

Department of Informatics

Action selection Reinforcement Learning 1

Reinforcement-comparison example

N. Hendrich 37

University of Hamburg

MIN Faculty

Department of Informatics

Action selection Reinforcement Learning 1

Pursuit methods

I incorporate both estimations of action values as well as action
preferences.

I “Pursue” always the greedy -action, i.e. make the greedy -action
more probable in the action selection.

I Update the action values after the t-th game to obtain Qt+1.

I The new greedy-action is a∗t+1 = argmax
a

Qt+1(a)

I Then: πt+1(a∗t+1) = πt(a
∗
t+1) + β

[
1− πt(a∗t+1)

]
and the probabilities of the other actions are reduced to keep
their sum 1.

N. Hendrich 38

University of Hamburg

MIN Faculty

Department of Informatics

Action selection Reinforcement Learning 1

Performance of a Pursuit-Method

N. Hendrich 39

University of Hamburg

MIN Faculty

Department of Informatics

Action selection Reinforcement Learning 1

Summary

I a class of problems in-between supervised and un-supervised
learning

I agent takes actions, receivces rewards

I goal is to maximize accumulated reward over time

I n-armed bandit problems illustrate action-selection

I so far, independent of states

I exploitation-exploration dilemma

I ε-greedy and softmax action selection

I comparison of RL approach with supervised learning

N. Hendrich 40

University of Hamburg

MIN Faculty

Department of Informatics

Markov Decision Process Reinforcement Learning 1

The Reinforcement-Learning problem

formalization of the RL problem: Markov Decision Process (MDP)

I an idealized and very general form of the RL problem with
precise mathematical definition and theory

I interaction between agent and environment

I state- and action-spaces

I state transitions and rewards

I goal is to maximize the return: accumulated reward

I Markov assumption: behaviour only depends on current state,
not on history

I idea of value-functions and relation to policies

I Bellman equation

N. Hendrich 41

University of Hamburg

MIN Faculty

Department of Informatics

Markov Decision Process Reinforcement Learning 1

The learning agent in an environment

agent and environment interact at discrete times: t = 0,1,2. . . K
agent observed state at the time t: st ∈ S
executes action at the time t: at ∈ A(st)
obtains reward : rt+1 ∈ R
and the following state: st+1

N. Hendrich 42

University of Hamburg

MIN Faculty

Department of Informatics

Markov Decision Process Reinforcement Learning 1

The agent learns a policy

policy at time t, πt :

mapping of states to action-probabilities
πt(s, a) = probability, that at = a if st = s

I Reinforcement learning methods describe how an agent updates
its policy as a result of its experience.

I The overall goal of the agent is to maximize the long-term sum
of rewards.

N. Hendrich 43

University of Hamburg

MIN Faculty

Department of Informatics

Markov Decision Process Reinforcement Learning 1

Modeling approach and abstraction

I time steps do not need to be fixed intervals of real time.

I actions can be low-level (e.g., voltage of motors), or high-level (e.g.,
take a job offer), “mental” (z.B., shift in focus of attention), etc.

I states can be low-level “perception”, abstract, symbolic,
memory-based, or subjective (e.g. the state of being surprised).

I the environment is not necessarily unknown to the agent, but it is
incompletely controllable.

I the reward-calculation is done in the environment, and outside of
control of the agent.

N. Hendrich 44

University of Hamburg

MIN Faculty

Department of Informatics

Markov Decision Process Reinforcement Learning 1

Goals and rewards

I Is a scalar reward signal an adequate description for a goal?
– perhaps not, but it is surprisingly flexible.

I A goal should describe what we want to achieve and not how
we want to achieve it.

I A goal must be beyond the control of the agent – therefore
outside the agent itself.

I The agent needs to be able to measure success:
I explicit;
I frequently during its lifetime.

N. Hendrich 45

University of Hamburg

MIN Faculty

Department of Informatics

Markov Decision Process Reinforcement Learning 1

Accumulated rewards or return

the sequence of rewards after time t is:

rt+1, rt+2, rt+3, . . .
What do we want to maximize?

In general, we want to maximize the expected returnreturnreturn,E{Rt} at each
time step t.
Episodic task : Interaction splits in episodes,
e.g. a game round,
passes through a labyrinth

Rt = rt+1 + rt+2 + · · ·+ rT
where T is a final time where a final state is reached and the episode

ends.

N. Hendrich 46

University of Hamburg

MIN Faculty

Department of Informatics

Markov Decision Process Reinforcement Learning 1

Return for continuous tasks

I continuous tasks: no final/terminal state
I the interaction has no episodes
I naive sum of all rewards may diverge

I discounted return:

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑
k=0

γk rt+k+1,

where γ, 0 ≤ γ ≤ 1, is the discount rate.

I
”
nearsighted“ 0← γ → 1

”
farsighted“

N. Hendrich 47

University of Hamburg

MIN Faculty

Department of Informatics

Markov Decision Process Reinforcement Learning 1

Example: pole balancing

Avoid Failure: the pole turns

over a critical angle or the

waggon reaches the end of

the track

As an episodic task where episodes end on failure:

Reward = +1 for every step before failure
⇒ Return = number of steps to failure

As continuous task with discounted Return:

Reward = −1 on failure; 0 otherwise
⇒ Return = −γk , for k steps before failure

In both cases, the return is maximized by

avoiding failure as long as possible.

N. Hendrich 48

University of Hamburg

MIN Faculty

Department of Informatics

Markov Decision Process Reinforcement Learning 1

Example: mountain car

Drive as fast as possible to the top of the mountain.

Reward = −1 for each step where the top of the mountain is not reached

Return = −number of steps before reaching the top of the mountain.

The return is maximized by minimizing the number of steps to
reach the top of the mountain.

N. Hendrich 49

University of Hamburg

MIN Faculty

Department of Informatics

Markov Decision Process Reinforcement Learning 1

Unified notation

I In episodic tasks, we number the time steps of each episode starting
with zero.

I In general, we do not differentiate between episodes. We write s(t)
instead of s(t, j) for the state at time t in episode j .

I Consider the end of each episode as an absorbing state
that always returns a reward of 0:

I We summarize all cases:

Rt =
∞∑
k=0

γk rt+k+1,

where γ can only be 1 if an absorbing state is reached.

N. Hendrich 50

University of Hamburg

MIN Faculty

Department of Informatics

Markov Decision Process Reinforcement Learning 1

Markov assumption

I the state st at time t includes all information that the agent has (and
needs) about its environment.

I the state can include instant perceptions, processed perceptions and
structures or features that are built on a sequence of perceptions.

I but the behaviour of the environment does not depend on the history
of the agent-environment interaction. The current state contains all
“relevant” information, this is equivalent to the Markov property:

Pr {st+1 = s ′, rt+1 = r |st , at , rt , st−1, at−1, . . . , r1, s0, a0} =

Pr {st+1 = s ′, rt+1 = r |st , at}

For all s ′, r ,and histories st , at , rt , st−1, at−1, . . . , r1, s0, a0.

N. Hendrich 51

University of Hamburg

MIN Faculty

Department of Informatics

Markov Decision Process Reinforcement Learning 1

Markov decision processes

I if the Markov proporty holds for a given RL-task, it is called a
Markov Decision Process (MDP)

I if state and action spaces are finite, it is a finite MDP.

I to define a finite MDP, we need:

I state and action spaces
I environment “dynamics” defined by the transition probabilities:

Pa
ss′ = Pr {st+1 = s ′|st = s, at = a} ∀s, s ′ ∈ S , a ∈ A(s).

I reward probabilities:

Ra
ss′ = E {rt+1|st = s, at = a, st+1 = s ′} ∀s, s ′ ∈ S , a ∈ A(s).

N. Hendrich 52

University of Hamburg

MIN Faculty

Department of Informatics

Markov Decision Process Reinforcement Learning 1

Markov decision process

MDP: a five-tuple (S ,A,P,R, γ), where
I S is a set of states s,
I A is a set of actions, where A(s) is the finite set of actions

available in state s,
I Pa

s,s′ is the probability that action a in state s at time t will
lead to state s ′ at time t + 1,

I Ra
s,s′ is the immediate reward received after transition from

state s to state s ′ at time t,
I the transition and reward probabilities only depend on the

current state s, but not on the history of the system,
I γ ∈ [0, 1] is the discount factor used for calculating the return.

I most basic algorithms assume that the sets S and A are finite.
N. Hendrich 53

University of Hamburg

MIN Faculty

Department of Informatics

Markov Decision Process Reinforcement Learning 1

Recycling-robot: toy example for a finite MDP

Consider a robot designed to collect empty cans:

I reward = number of collected cans.
I at each time step the robot decides, whether it

1. actively searches for cans,
2. waits for someone bringing a can, or,
3. drives to the basis for recharge.

I searching is better, but uses battery; if the batteries runs empty
during searching, the robot needs to be recovered (bad).

I decisions are made based on the current battery level:
{high, low}.

N. Hendrich 54

University of Hamburg

MIN Faculty

Department of Informatics

Markov Decision Process Reinforcement Learning 1

Recycling-robot MDP

state space: S = {high, low}
action space depends on the states:

A(high) = {search,wait},
A(low) = {search,wait, recharge}

rewards depends on the actions:

Rsearch = expected number of cans during search,
Rwait = expected number of cans during wait,
assuming Rsearch > Rwait

dynamics Pa
ss′ depends on two parameters {α, β}:

α: probability of the battery keeping high value
β: probability of the battery keeping low value

N. Hendrich 55

University of Hamburg

MIN Faculty

Department of Informatics

Markov Decision Process Reinforcement Learning 1

Recycling-robot transition table

N. Hendrich 56

University of Hamburg

MIN Faculty

Department of Informatics

Markov Decision Process Reinforcement Learning 1

Recycling-robot transition graph

α, β: probability of battery keeping its level during searching

e.g., low-search-high implies running out of battery, reward -3 because then
the operator needs to recover and recharge the robot.

N. Hendrich 57

University of Hamburg

MIN Faculty

Department of Informatics

Value Functions and the Bellman-Equation Reinforcement Learning 1

Value Function

I the value of a state is the expected return beginning with this state;
depends on the policy of the agent:

state-value-function for policy π:

V π(s) = Eπ {Rt |st = s} = Eπ

{ ∞∑
k=0

γk rt+k+1|st = s

}
I the action value of an action in a state under a policy π is the

expected return beginning with this state, if this action is chosen and
π is pursued afterwards.

action-value-function for policy π:

Qπ(s, a) = Eπ {Rt |st = s, at = a} = Eπ

{ ∞∑
k=0

γk rt+k+1|st = s, at = a

}

N. Hendrich 58

University of Hamburg

MIN Faculty

Department of Informatics

Value Functions and the Bellman-Equation Reinforcement Learning 1

The Bellman-Equation for policy π

Basic Idea:

Rt = rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 + . . .

= rt+1 + γ
(
rt+2 + γrt+3 + γ2rt+4 + . . .

)
= rt+1 + γRt+1

Thus:

V π(s) = Eπ {Rt |st = s}
= Eπ {rt+1 + γV (st+1)|st = s}

Or, without expectation operator:

V π(s) =
∑
a

π(s, a)
∑
s′

Pa
ss′ [Ra

ss′ + γV π(s ′)]

N. Hendrich 59

University of Hamburg

MIN Faculty

Department of Informatics

Value Functions and the Bellman-Equation Reinforcement Learning 1

More about the Bellman-Equation

V π(s) =
∑
a

π(s, a)
∑
s′

Pa
ss′
[
Ra
ss′ + γV π(s ′)

]
These are a set of (linear) equations, one for each state. The
value-function for π is an unique solution.

Backup-Diagrams :

for V π for Qπ

N. Hendrich 60

University of Hamburg

MIN Faculty

Department of Informatics

Value Functions and the Bellman-Equation Reinforcement Learning 1

Example: Gridworld I

I actions: up, down, right, left; deterministic.

I if the agent would leave the grid: no motion, but reward = −1.

I other actions reward = 0, except actions that move the agent
out of state A or B (reward 10 or 5).

state-value-function for the uniform random policy; γ = 0.9

N. Hendrich 61

University of Hamburg

MIN Faculty

Department of Informatics

Value Functions and the Bellman-Equation Reinforcement Learning 1

Example: Golf

I state is the position of the ball

I reward is -1 for each swing until the ball is in the hole

I two actions: putt (use putter) driver (use driver)

I putt on the “green” area is always successful (hole)

I sketch of the state value function V (s):

N. Hendrich 62

University of Hamburg

MIN Faculty

Department of Informatics

Value Functions and the Bellman-Equation Reinforcement Learning 1

Optimal Value Function

I For finite MDPs, the policies can be partially ordered

π ≥ π′ if V π(s) ≥ V π′(s) ∀s ∈ S

I There is always at least one (maybe more) policies that are better than or
equal all others. This is an optimal policypolicypolicy . We call it π∗.

I Optimal policies share the same ,optimal state-value-function:

V ∗(s) = max
π

V π(s) ∀s ∈ S

I Optimal policies also share the same ,optimal action-value-function:

Q∗(s, a) = max
π

Qπ(s, a) ∀s ∈ S and a ∈ A(s)

This is the expected return after choosing action a in state s an continuing to

pursue an optimal policy .

N. Hendrich 63

University of Hamburg

MIN Faculty

Department of Informatics

Value Functions and the Bellman-Equation Reinforcement Learning 1

Example: Golf

I we can strike the ball further with the driver than with the
putter, but with less accuracy.

I Q∗(s, driver) gives the values for the choice of the driver at
the given start position, and afterwards always the best action
is chosen.

N. Hendrich 64

University of Hamburg

MIN Faculty

Department of Informatics

Value Functions and the Bellman-Equation Reinforcement Learning 1

Optimal Bellman-Equation for V ∗(s)

The value of a state under an optimal policy is equal to the expected returns
for choosing the best actions from now on.

V ∗(s) = max
a∈A(s)

Qπ∗(s, a)

= max
a∈A(s)

E {rt+1 + γV ∗(st+1)|st = s, at = a}

= max
a∈A(s)

∑
s
′

Pa
ss
′

[
Ra
ss
′ + γV ∗(s

′
)
]

V ∗ is the unique solution of this system of nonlinear equations.
The corresponding backup diagram:

N. Hendrich 65

University of Hamburg

MIN Faculty

Department of Informatics

Value Functions and the Bellman-Equation Reinforcement Learning 1

Optimal Bellman-Equation for Q∗

Q∗(s, a) = E

{
rt+1 + γmax

a′
Q∗(st+1, a

′
)|st = s, at = a

}
=

∑
s′

Pa
ss′

[
Ra
ss′

+ γmax
a′

Q∗(s
′
, a
′
)

]
The backup diagram:

Q∗ is the unique solution of this system of nonlinear equations.

N. Hendrich 66

University of Hamburg

MIN Faculty

Department of Informatics

Value Functions and the Bellman-Equation Reinforcement Learning 1

Why optimal state-value functions are useful

A policy that is greedy with respect to V ∗ is an optimal policy!

Therefore, given V ∗, the (one-step-ahead)-search produces optimal
action sequences. In the gridworld example:

N. Hendrich 67

University of Hamburg

MIN Faculty

Department of Informatics

Value Functions and the Bellman-Equation Reinforcement Learning 1

What about Optimal Action-Values Functions?

Given Q∗, the agent does not need to perform the
one-step-ahead-search:

π∗(s) = arg max
a∈A(s)

Q∗(s, a)

N. Hendrich 68

University of Hamburg

MIN Faculty

Department of Informatics

Value Functions and the Bellman-Equation Reinforcement Learning 1

Solving the optimal Bellman-Equation

I to determine an optimal policy π∗ by solving the optimal
Bellman-equation we need the following:
I knowledge of the dynamics of the environment (Pa

ss′),
I enough storage space and computation time,
I the Markov property must hold.

I how much space and time do we need?
I polynomially with the number of states (with dynamic

programming, see below)
I BUT, usually the number of states is very large (e.g.,

backgammon has about 1020 states).

I we usually have to resort to approximations.

I many RL methods can be understood as an approximate
solution to the optimal Bellman equation.

N. Hendrich 69

University of Hamburg

MIN Faculty

Department of Informatics

Value Functions and the Bellman-Equation Reinforcement Learning 1

Summary

I agent-environment interaction

I states
I actions
I rewards

I policy: stochastic action selection rule

I return: the function of the rewards that the agent tries to maximize

I episodic and continuing tasks

I Markov assumption (Markov property)

I MDP or Markov decision process

I transition probabilities
I expected rewards

N. Hendrich 70

University of Hamburg

MIN Faculty

Department of Informatics

Value Functions and the Bellman-Equation Reinforcement Learning 1

Summary (cont.)

I Value functions

I state-value function for a policy
I action-value function for a policy
I optimal state-value function
I optimal action-value function

I optimal policies

I Bellman-equation

I the need for approximation

N. Hendrich 71

	Introduction
	Example RL applications
	Action selection
	Markov Decision Process
	Value Functions and the Bellman-Equation

