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Gesture Recognition in General

I several applications (more natural interaction with robots, way
of communication, sign language, ...)

I Gesture recognition “is the process by which the gestures made
by the user are recognized by the receiver.” (Mitra & Acharya,
2007 [3])

I static vs. dynamic gestures
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Previous Work

I TAMS - Master Project “Intelligent Robotics” (2013-2014)

I vision-based system (Microsoft Kinect) for recognizing static
gestures

I depth images and Support Vector Machines (SVMs)

I project paper (Paetzel & Staron, 2014 [4])
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Problems in Gesture Recognition

I recognition results in general

I context-depended applications

I changed circumstances, e.g. new users / users with different
figures, changed environments, changed camera properties
(position, calibration, ...), light changes, ...

⇒ exploiting features of Robotics (a robot might have more than
one sensor; possible interaction between user and robot)
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Hypotheses

I use of multiple inputs ⇒ improved recognition results (&
context-independent systems)

I use of multiple inputs ⇒ robustness

I possible interaction between user and robot ⇒ ability of the
system to adapt to changed circumstances

I possible interaction between user and robot ⇒ omitting of
preliminary training

⇒ development of an adaptive gesture recognition system that
makes use of multiple inputs
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Depth Images

I gray value images

I information about distances to the camera

I preprocessing (noise reduction, foreground separation,
histogram equalization, grid) (Biswas & Basu, 2011 [2])

I gray value binning in grid cells ⇒ 520 features
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Exemplary Preprocessing of a Depth Image

RGB image of an exemplary gesture.
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Exemplary Preprocessing of a Depth Image

The corresponding depth image prior to preprocessing.
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Exemplary Preprocessing of a Depth Image

The depth image but with reduced noise.
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Exemplary Preprocessing of a Depth Image

Only the foreground of the depth image.
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Exemplary Preprocessing of a Depth Image

The foreground of the depth image after histogram equalization.
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Exemplary Preprocessing of a Depth Image

The equalized foreground of the depth image with a grid put on it.
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Skeletal Information

I OpenNI tracker

I position and orientation of several joints of the human skeleton

I a coordinate frame for each joint ⇒ transformations into target
frame

I 8 joints ⇒ 56 features
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Collecting Training and Test Data

I 12 gestures

I 10 test users ⇒ different groups (users with similar/differing
figures)

I different poses and positions (to the left or right)

I but no different distances to the camera

I different environments

I camera calibration and illumination remained unchanged
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Different Environments
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Evaluation Criteria

I precision: proportion of test instances classified correctly

I recall: proportion of instances that should have been classified
as a certain gesture that have actually got the respective label

I F1-score = (2 · precision · recall)/(precision + recall)

I average classification and (initial) training time

I nr. of training instances
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k-Nearest Neighbor (k-NN) Classifier

I supervised learning method

I arbitrary number of dimensions

I no explicit training (computations during classification)

I label that occurred most among the k-nearest neighbors of a
query instances is chosen

I distance measure (e.g. Euclidean distance)
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Exemplary Dataset in the 2-Dimensional Space
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Three classes, represented by blue squares, magenta diamonds and yellow
pentagons respectively; the red square is the query instance.Tobias Staron 22
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Weighted k-NN Classifier

I if a training example matches the query instance, its label will
be chosen ⇒ Generalization

I the nearer one of its k-nearest neighbors lies by the query
instance, the higher the probability that its label is the result
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Training of Classifiers

I classifiers for each kind of input, for each group of users and for
each environment

I the same amount of training (and test) data for each classifier
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Sensor Fusion

I low-level sensor fusion: fusion at signal level, one classifier

I high-level sensor fusion: fusion at a more symbolic level, one
classifier per input, classification results are fused

I low-level sensor fusion does not allow for variations regarding
the chosen inputs (e.g. adding or removing of sensors) without
omitting previous data / retraining everything

I ⇒ high-level sensor fusion was chosen
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Hypotheses Verification

I inspired by Aldoma et al. (Aldoma et al., 2013 [1])

I high-level sensor fusion approach

I one classifier per kind of input

I each classifier can generate an unspecified number of
hypotheses

I each hypothesis is weighted

I hypothesis with the highest weight is chosen as recognition
result
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Weighting Cues

I each hypothesis is weighted by an unspecified number of
weighting cues

I neighboring cue (in case of k-NN classifiers): all labels
occurring among k-nearest neighbors as hypotheses; weights
depend on nr. of examples with respective labels / on their
distance to the query instance

I meta-features: e.g. reliability of classifiers

I summation of weights of a hypothesis
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Evaluation (1)

I the same data were used as for testing the classifiers with
depth respectively skeletal information individually

I k-NN classifier: best performance for the neighboring cue

I weighted k-NN classifier outperformed the standard one

I improved robustness
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Evaluation (1)
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Comparison of the individual inputs and their combination via
neighboring cues for the k-NN classifier, trained and tested on data from
users with similar figures.
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Comparison of the individual inputs and their combination via
neighboring cues for the weighted k-NN classifier, trained and tested on
data from users with similar figures.
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Evaluation (1)

- depth images skeletal data combined inputs

F1-score 0.027499 0.837523 0.805485

Table: Comparison of the individual inputs and their combination via
neighboring cues for the weighted 5-NN classifier, trained on data from
users with similar figures and tested on data from the same users, but in
a different environment.
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Online Learning

I goal: recognition of gestures under changed circumstances

I classifiers try to recognize query instances and are told the
correct label afterwards to update their model

I no online version for SVMs (they need to be retrained every
time new training are added) ⇒ k-NN classifiers

I different points when to learn showed no apparent effects
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Evaluation (2)

I 5-NN classifier

I trained on depth images from users with similar figures and
tested on depth images from the same users, but in a different
environment

I online learning after each misclassification

I training data and the test data of iteration 1 the same as for
previous tests

I similar tests in the remaining iterations, but with newly
sampled test data
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Evaluation (2)
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Evaluation (2)
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Multiple Inputs

I Hypotheses Verification

I additional weighting cues are enabled by online learning: the
experience of a classifier (the number of examples it has been
trained with)
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Adaptivity

I online Learning

I what examples to learn

I previously: all misclassified ones

I alternative: misclassified examples as soon as the fusion result
is wrong, too
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Evaluation (3)

I 5-NN classifier

I trained on data from users with similar figures and tested on
data from the same users, but in a different environment

I depth images and skeletal data combined via neighboring cue

I online learning after each misclassification

I training data and the test data of iteration 1 the same as for
previous tests

I similar tests in the remaining iterations, but with newly
sampled test data

Tobias Staron 39



University of Hamburg

MIN Faculty

Department of Informatics

Multiple Inputs & Adaptivity - Integrated System Adaptive Gesture Recognition System Integrating Multiple Inputs

Evaluation (3)

1 2 3 4 5 6 7 8 9 10
iteration

0.75

0.80

0.85

0.90

0.95

1.00

F
1
-s

co
re

learning after false classifier prediction
learning after false classifier and overall prediction

Tobias Staron 40



University of Hamburg

MIN Faculty

Department of Informatics

Multiple Inputs & Adaptivity - Integrated System Adaptive Gesture Recognition System Integrating Multiple Inputs

Evaluation (3)

1 2 3 4 5 6 7 8 9 10
iteration

0.00

0.05

0.10

0.15

0.20

0.25

tim
e 

(s
ec

)

learning after false classifier prediction
learning after false classifier and overall prediction

Tobias Staron 40



University of Hamburg

MIN Faculty

Department of Informatics

Multiple Inputs & Adaptivity - Integrated System Adaptive Gesture Recognition System Integrating Multiple Inputs

Evaluation (4) - Final Test

I weighted 5-NN classifier

I depth images and skeletal data combined via neighboring cue

I online learning after each misclassification when fusion result
false, too

I no preliminary training

I test data from users with similar figures (first ten and last ten
iterations), data from users with varying figures (iteration 11 -
20), original users, but in a different environment (iteration 21
- 30) and the users with the varying figures in that environment
(iteration 31 - 40)
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Evaluation (4) - Final Test
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Hypotheses

I use of multiple inputs lead to improved recognition results as
well as a more robust system

I system is able to adapt to changed circumstances due to online
learning

I preliminary training can be omitted because of online learning

⇒ adaptive gesture recognition system that makes use of multiple
inputs
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The End

Thanks for Your Attention!
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