

Adaptive Gesture Recognition System Integrating Multiple Inputs

Adaptive Gesture Recognition System Integrating Multiple Inputs Master Thesis - Colloquium

Tobias Staron

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

May 19, 2015

Adaptive Gesture Recognition System Integrating Multiple Inputs

Table of contents

Introduction Set-Up Multiple Inputs & Adaptivity Conclusion

Adaptive Gesture Recognition System Integrating Multiple Inputs

Overview

Introduction

Introduction

Set-Up Multiple Inputs & Adaptivity Conclusion

Introduction - Gesture Recognition in General

Adaptive Gesture Recognition System Integrating Multiple Inputs

Overview

Introduction Gesture Recognition in General Motivation Set-Up Multiple Inputs & Adaptivity Conclusion

Gesture Recognition in General

- several applications (more natural interaction with robots, way of communication, sign language, ...)
- Gesture recognition "is the process by which the gestures made by the user are recognized by the receiver." (*Mitra & Acharya*, 2007 [3])
- static vs. dynamic gestures

Introduction - Motivation

Adaptive Gesture Recognition System Integrating Multiple Inputs

Overview

Introduction Gesture Recognition in Gener Motivation Set-Up Multiple Inputs & Adaptivity Conclusion

Previous Work

- ► TAMS Master Project "Intelligent Robotics" (2013-2014)
- vision-based system (Microsoft Kinect) for recognizing static gestures
- depth images and Support Vector Machines (SVMs)
- project paper (Paetzel & Staron, 2014 [4])

Problems in Gesture Recognition

- recognition results in general
- context-depended applications
- changed circumstances, e.g. new users / users with different figures, changed environments, changed camera properties (position, calibration, ...), light changes, ...
- \Rightarrow exploiting features of Robotics (a robot might have more than one sensor; possible interaction between user and robot)

Hypotheses

- ▶ use of multiple inputs ⇒ improved recognition results (& context-independent systems)
- use of multiple inputs \Rightarrow robustness
- ▶ possible interaction between user and robot ⇒ ability of the system to adapt to changed circumstances
- ▶ possible interaction between user and robot ⇒ omitting of preliminary training
 - \Rightarrow development of an adaptive gesture recognition system that makes use of multiple inputs

Adaptive Gesture Recognition System Integrating Multiple Inputs

Overview

Set-Up

Introduction Set-Up Multiple Inputs & Adaptivity Conclusion

Introduction Set-Up Inputs Data Evaluation Criteria k-Nearest Neighbor (k-NN) Classifiers Multiple Inputs & Adaptivity Conclusion

Depth Images

Set-Up - Inputs

- gray value images
- information about distances to the camera
- preprocessing (noise reduction, foreground separation, histogram equalization, grid) (Biswas & Basu, 2011 [2])
- gray value binning in grid cells \Rightarrow 520 features

MIN Faculty Department of Informatics

Adaptive Gesture Recognition System Integrating Multiple Inputs

Exemplary Preprocessing of a Depth Image

RGB image of an exemplary gesture.

MIN Faculty Department of Informatics

Adaptive Gesture Recognition System Integrating Multiple Inputs

Exemplary Preprocessing of a Depth Image

The corresponding depth image prior to preprocessing.

MIN Faculty Department of Informatics

Adaptive Gesture Recognition System Integrating Multiple Inputs

Exemplary Preprocessing of a Depth Image

The depth image but with reduced noise.

MIN Faculty Department of Informatics

Adaptive Gesture Recognition System Integrating Multiple Inputs

Exemplary Preprocessing of a Depth Image

Only the foreground of the depth image.

MIN Faculty Department of Informatics

Adaptive Gesture Recognition System Integrating Multiple Inputs

Exemplary Preprocessing of a Depth Image

The foreground of the depth image after histogram equalization.

MIN Faculty Department of Informatics

Adaptive Gesture Recognition System Integrating Multiple Inputs

Exemplary Preprocessing of a Depth Image

The equalized foreground of the depth image with a grid put on it.

Adaptive Gesture Recognition System Integrating Multiple Inputs

Skeletal Information

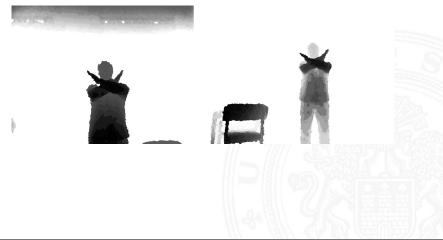
- OpenNI tracker
- position and orientation of several joints of the human skeleton
- ► a coordinate frame for each joint ⇒ transformations into target frame
- 8 joints \Rightarrow 56 features

Set-Up - Data

Introduction Set-Up Inputs Data Evaluation Criteria k-Nearest Neighbor (k-NN) Classifiers Multiple Inputs & Adaptivity Conclusion

Collecting Training and Test Data

- 12 gestures
- ▶ 10 test users ⇒ different groups (users with similar/differing figures)
- different poses and positions (to the left or right)
- but no different distances to the camera
- different environments
- camera calibration and illumination remained unchanged


Set-Up - Data

MIN Faculty Department of Informatics

Adaptive Gesture Recognition System Integrating Multiple Inputs

Different Environments

Overview

Set-Up

Evaluation Criteria

k-Nearest Neighbor (k-NN) Classifiers

Evaluation Criteria

- precision: proportion of test instances classified correctly
- recall: proportion of instances that should have been classified as a certain gesture that have actually got the respective label
- F_1 -score = $(2 \cdot precision \cdot recall)/(precision + recall)$
- average classification and (initial) training time
- nr. of training instances

Set-Up - k-Nearest Neighbor (k-NN) Classifiers

Adaptive Gesture Recognition System Integrating Multiple Inputs

Overview

Introduction Set-Up

Inputs

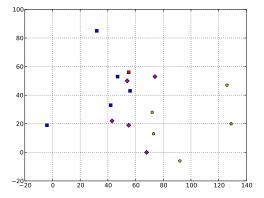
Data

Evaluation Criteria

k-Nearest Neighbor (k-NN) Classifiers

Multiple Inputs & Adaptivity Conclusion

k-Nearest Neighbor (k-NN) Classifier


- supervised learning method
- arbitrary number of dimensions
- no explicit training (computations during classification)
- label that occurred most among the k-nearest neighbors of a query instances is chosen
- distance measure (e.g. Euclidean distance)

Adaptive Gesture Recognition System Integrating Multiple Inputs

Exemplary Dataset in the 2-Dimensional Space

Three classes, represented by blue squares, magenta diamonds and yellow

<ロ > < 回 > < 回 > < 三 > < 三 > シのへで

Weighted k-NN Classifier

- If a training example matches the query instance, its label will be chosen ⇒ Generalization
- the nearer one of its k-nearest neighbors lies by the query instance, the higher the probability that its label is the result

Training of Classifiers

- classifiers for each kind of input, for each group of users and for each environment
- the same amount of training (and test) data for each classifier

Multiple Inputs & Adaptivity

MIN Faculty Department of Informatics

Adaptive Gesture Recognition System Integrating Multiple Inputs

Overview

Introduction Set-Up Multiple Inputs & Adaptivity Conclusion

Multiple Inputs & Adaptivity - Combining Multiple Inputs

Adaptive Gesture Recognition System Integrating Multiple Inputs

Overview

Introduction Set-Up Multiple Inputs & Adaptivity Combining Multiple Inputs Adaptivity

Integrated System

Conclusion

Sensor Fusion

- Iow-level sensor fusion: fusion at signal level, one classifier
- high-level sensor fusion: fusion at a more symbolic level, one classifier per input, classification results are fused
- Iow-level sensor fusion does not allow for variations regarding the chosen inputs (e.g. adding or removing of sensors) without omitting previous data / retraining everything
- \blacktriangleright \Rightarrow high-level sensor fusion was chosen

Multiple Inputs & Adaptivity - Combining Multiple Inputs

Adaptive Gesture Recognition System Integrating Multiple Inputs

Hypotheses Verification

- ▶ inspired by Aldoma et al. (Aldoma et al., 2013 [1])
- high-level sensor fusion approach
- one classifier per kind of input
- each classifier can generate an unspecified number of hypotheses
- each hypothesis is weighted
- hypothesis with the highest weight is chosen as recognition result

Multiple Inputs & Adaptivity - Combining Multiple Inputs

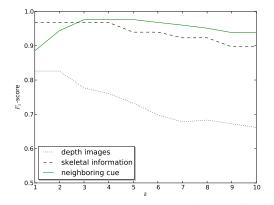
Adaptive Gesture Recognition System Integrating Multiple Inputs

Weighting Cues

- each hypothesis is weighted by an unspecified number of weighting cues
- neighboring cue (in case of k-NN classifiers): all labels occurring among k-nearest neighbors as hypotheses; weights depend on nr. of examples with respective labels / on their distance to the query instance
- meta-features: e.g. reliability of classifiers
- summation of weights of a hypothesis

Evaluation (1)

- the same data were used as for testing the classifiers with depth respectively skeletal information individually
- k-NN classifier: best performance for the neighboring cue
- weighted k-NN classifier outperformed the standard one
- improved robustness



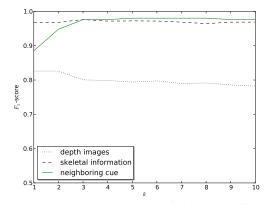
Multiple Inputs & Adaptivity - Combining Multiple Inputs

Adaptive Gesture Recognition System Integrating Multiple Inputs

Evaluation (1)

Comparison of the individual inputs and their combination via

イロト イヨト イヨト イヨト 今への


MIN Faculty Department of Informatics

Multiple Inputs & Adaptivity - Combining Multiple Inputs

Adaptive Gesture Recognition System Integrating Multiple Inputs

Evaluation (1)

Comparison of the individual inputs and their combination via

Multiple Inputs & Adaptivity - Combining Multiple Inputs

Adaptive Gesture Recognition System Integrating Multiple Inputs

Evaluation (1)

-	depth images	skeletal data	combined inputs
F ₁ -score	0.027499	0.837523	0.805485

Table: Comparison of the individual inputs and their combination via neighboring cues for the weighted 5-NN classifier, trained on data from users with similar figures and tested on data from the same users, but in a different environment.

Multiple Inputs & Adaptivity - Adaptivity

Adaptive Gesture Recognition System Integrating Multiple Inputs

Overview

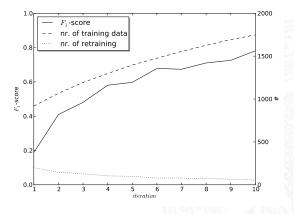
Introduction Set-Up Multiple Inputs & Adaptivity Combining Multiple Inputs Adaptivity Integrated System

Online Learning

- ▶ goal: recognition of gestures under changed circumstances
- classifiers try to recognize query instances and are told the correct label afterwards to update their model
- ► no online version for SVMs (they need to be retrained every time new training are added) ⇒ k-NN classifiers
- different points when to learn showed no apparent effects

Evaluation (2)

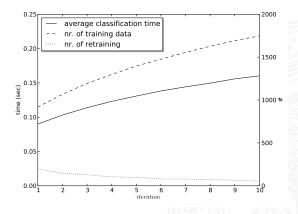
- 5-NN classifier
- trained on depth images from users with similar figures and tested on depth images from the same users, but in a different environment
- online learning after each misclassification
- training data and the test data of iteration 1 the same as for previous tests
- similar tests in the remaining iterations, but with newly sampled test data



Multiple Inputs & Adaptivity - Adaptivity

Adaptive Gesture Recognition System Integrating Multiple Inputs

Evaluation (2)



Multiple Inputs & Adaptivity - Adaptivity

Adaptive Gesture Recognition System Integrating Multiple Inputs

Evaluation (2)

Multiple Inputs & Adaptivity - Integrated System

Adaptive Gesture Recognition System Integrating Multiple Inputs

Overview

Introduction Set-Up Multiple Inputs & Adaptivity Combining Multiple Inputs Adaptivity Integrated System

Conclusion

Multiple Inputs

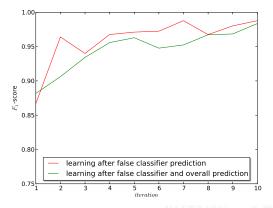
- Hypotheses Verification
- additional weighting cues are enabled by online learning: the experience of a classifier (the number of examples it has been trained with)

Adaptivity

- online Learning
- what examples to learn
- previously: all misclassified ones
- alternative: misclassified examples as soon as the fusion result is wrong, too

Evaluation (3)

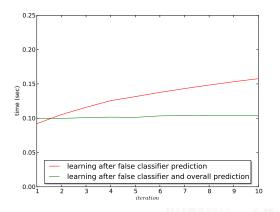
- 5-NN classifier
- trained on data from users with similar figures and tested on data from the same users, but in a different environment
- depth images and skeletal data combined via neighboring cue
- online learning after each misclassification
- training data and the test data of iteration 1 the same as for previous tests
- similar tests in the remaining iterations, but with newly sampled test data


MIN Faculty Department of Informatics

Multiple Inputs & Adaptivity - Integrated System

Adaptive Gesture Recognition System Integrating Multiple Inputs

Evaluation (3)


MIN Faculty Department of Informatics

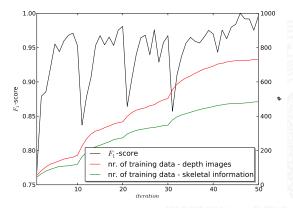
Multiple Inputs & Adaptivity - Integrated System

Adaptive Gesture Recognition System Integrating Multiple Inputs

Evaluation (3)

Evaluation (4) - Final Test

- weighted 5-NN classifier
- depth images and skeletal data combined via neighboring cue
- online learning after each misclassification when fusion result false, too
- no preliminary training
- test data from users with similar figures (first ten and last ten iterations), data from users with varying figures (iteration 11 20), original users, but in a different environment (iteration 21 30) and the users with the varying figures in that environment (iteration 31 40)


Multiple Inputs & Adaptivity - Integrated System

MIN Faculty Department of Informatics

Adaptive Gesture Recognition System Integrating Multiple Inputs

Evaluation (4) - Final Test

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

MIN Faculty Department of Informatics

Adaptive Gesture Recognition System Integrating Multiple Inputs

Overview

Conclusion

Introduction Set-Up Multiple Inputs & Adaptivity Conclusion

Conclusion - Summary

Adaptive Gesture Recognition System Integrating Multiple Inputs

Overview

Introduction Set-Up Multiple Inputs & Adaptivity Conclusion Summary References

Hypotheses

- use of multiple inputs lead to improved recognition results as well as a more robust system
- system is able to adapt to changed circumstances due to online learning
- preliminary training can be omitted because of online learning
- \Rightarrow adaptive gesture recognition system that makes use of multiple inputs

Conclusion - References

Adaptive Gesture Recognition System Integrating Multiple Inputs

Overview

Introduction Set-Up Multiple Inputs & Adaptivity Conclusion Summary

References

References I

- 1. Aitor Aldoma, Federico Tombari, Johann Prankl, Andreas Richtsfeld, Luigi Di Stefano, and Markus Vincze. Multimodal Cue Integration through Hypotheses Verification for RGB-D Object Recognition and 6DOF Pose Estimation. In *Robotics and Automation (ICRA), 2013 IEEE International Conference on*, pages 2104–2111. IEEE, May 2013.
- K. K. Biswas and Saurav Kumar Basu. Gesture Recognition using Microsoft Kinect[®]. In Automation, Robotics and Applications (ICARA), 2011 5th International Conference on., pages 100-103. December 2011.

References II

- 3. Sushmita Mitra and Tinku Acharya. Gesture Recognition: A Survey. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 37(3):311–324, 2007.
- 4. Maike Paetzel and Tobias Staron. Gesture Recognition. Project Paper, Technical Aspects of Multimodal Systems, Department of Informatics, MIN-Faculty, University of Hamburg, March 2014.

MIN Faculty Department of Informatics

Adaptive Gesture Recognition System Integrating Multiple Inputs

Conclusion -

Thanks for Your Attention!