Sound Recognition

Jonas Papmeier

Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich Informatik, Arbeitsbereich TAMS Project Intelligent Robitics

22. April 2015

Gliederung

1 Introduction General Introduction Motivation Problem 2 Main General Approach Feature Extraction Classifying **3** Conclusion **Evaluation**/Results Discussion

General Introduction Motivation Problem

General Introduction Goal, applications

Goal

extracting information, attach "semantic" meaning to audio signal enabeling reasoning and decision-making [Sch13, p. 3f]

applications

- activity recognition
- monitoring/surveilance
- human-robot interaction

General Introduction Motivation Problem

General Introduction historical origin, related fields

related fields

- historical origion: speech recognition
- Computational auditory scene analysis
- Sound detection
- Sound source seperation

General Introduction Motivation Problem

Motivation Why is (general) sound useful despite other sensor modalities?

state indicators may:

- not be visual detectable
- be outside of field of view

example kitchen environment state indicators: alarms, bells, buzzers, water boiling [KMSW05]

General Introduction Motivation Problem

Definition of Problem: Sound Recognition Classification of Sound Events

given a sound event determine to which class within the set of classes the sound event belongs **Classification Problem**

General Approach Feature Extraction Classifying

General steps

- Feature Extraction/Reduction/Generation
- often1 Mel-frequency cepstral coefficients (MFCC)
- learning phase
- utilizes machine learning techniques from pattern recognition (HMM, SVM)
- use learned model to classify incomming sound events
- (evaluate performance on test data)

General Approach Feature Extraction Classifying

Simplified classification

Abbildung: simple classification problem: crosses class 1, circles class 2, given new data point

General Approach Feature Extraction Classifying

Example Approach Paper: Temporal ICA for Classification of Acoustic Events in a Kitchen Environment

Title: Temporal ICA for Classification of Acoustic Events in a Kitchen Environment Authors: Florian Kraft, Robert Malkin, Thomas Schaaf, Alex Waibel published: Interspeech Conference 2005 Scenario: Robot assists in kitchen, uses sound cues to identify states

General Approach Feature Extraction Classifying

Example Approach Used Classes/ Sounds to be identified

class	# training ex.	# test ex.	total # ex.	
	(dur. in sec)	(dur. in sec)	(dur. in sec)	
boiling	221 (662)	98 (319)	319 (981)	
bread_cutter	25 (40)	11 (27)	36 (67)	
cutting_vegetables	134 (89)	58 (41)	192 (130)	
door	114 (101)	50 (44)	164 (144)	
door_bell	50 (110)	22 (55)	72 (164)	
egg_timer_ring	11 (34)	6 (17)	17 (51)	
footsteps	240 (140)	104 (66)	344 (206)	
lighter	84 (42)	37 (20)	121 (61)	
match	141 (131)	62 (59)	203 (189)	
microwave_beep	110 (30)	49 (17)	159 (47)	
others	858 (1130)	369 (547)	1277 (1677)	
oven_switch	472 (133)	208 (60)	680 (194)	
oven_timer	12 (16)	6 (8)	18 (24)	
overboiling	186 (129)	81 (70)	267 (199)	
pan_stove	584 (308)	256 (132)	840 (439)	
pan_sizzling	107 (343)	46 (146)	153 (489)	
telephone	134 (920)	63 (393)	197 (1313)	
speech	125 (82)	55 (38)	180 (120)	
stove_error	18 (12)	8 (5)	26 (17)	
toaster	119 (92)	53 (46)	172 (138)	
water	421 (1129)	184 (464)	605 (1593)	
total	4166 (5670)	1826 (2573)	5992 (8243)	

Abbildung: Classes and their sample counts; [KMSW05, Table 1]

General Approach Feature Extraction Classifying

Features Feature Extraction and Selection/Reduction/Generation

- Raw audio has "too much" information
- Feature give compact form
- ideally contain just information relevant for discrimination of the classes
- extractet over short frames
- all features represented as feature vector

General Approach Feature Extraction Classifying

Features Approach in the Paper

- Independent Component Analysis (ICA)
- incorporates time-dependencies
- uses linear transformation of basic features over multiple frames
- represents a change over time of a spectral view

General Approach Feature Extraction Classifying

Features Feature Vector to calculate ICA over 1 and 7 frames

Abbildung: left: ICA over 1 Frame, vertical Mel bins, horizontal time [KMSW05, Figure 1]; right: ICA over 7 frames [KMSW05, Figure 2]

General Approach Feature Extraction Classifying

HMM Hidden Markov Model as an example for a statistical classifier

- dynamic approach -> able to model time series
- based on statistical theory
- most frequently used [Sch13, p. 118]

 Introduction Main Conclusion
 General Approach Feature Extraction Classifying

 HMM The Model

- finite-state automaton
- transitions occur with probability
- states are hidden (current state probability depends only on previous state)
- but produce "observations" with probability (depends only on current state)

General Approach Feature Extraction Classifying

HMM Simple biased coin example

Abbildung: Simple HMM for biased coin; circle represents state, rectangle represents observation, arrows represent conditional probabilities

Example for generated sequence: 00001000111111111110000011101111111

General Approach Feature Extraction Classifying

HMM Mapping to Sound Events

- hidden states are some form of physical process
- observation is the current feature vector
- step in series of feature vectors is a time step -> transition can occur
- each class is modelled by own HMM

 Introduction Main Conclusion
 General Approach Feature Extraction Classifying

 HMM How to learn?

- Goal: create HMM for each class
- Training data as series of feature vectors given with classlabel
- Problem: How to find transition and observation probability?
- -> create HMM which will produce the series of feature vectors with high probability
- (Baum-Welch Forward-Backward Algorithm)

General Approach Feature Extraction Classifying

HMM How to classifie/recognize?

- Goal: Find correct class for new series of feature vectors from sensor input
- Choose HMM with highest probability to create this observation
- Problem: How to find probability to create observation given class (HMM)
- summation over all possible state sequences

Evaluation/Results Discussion

Evaluation

Error/precision rates

a)				_					b)
System	2-state	3-state	4-state		System	2-state	3-state	4-state	
BASE	20.2%	14.4%	16.1%]	BASE	79.3%	83.5%	82.2%	
ICA1	12.2%	11.5%	11.5%		ICA1	81.2%	82.5%	82.2%	
ICA3	11.9%	10.8%	11.7%		ICA3	81.8%	82.1%	82.6%	
ICA5	11.8%	11.5%	11.1%		ICA5	83.1%	81.7%	84.4%	
ICA7	10.7%	9.4%	10.5%		ICA7	84.0%	85.5%	84.8%	
ICA9	11.8%	10.4%	11.3%		ICA9	83.5%	84.7%	85.7%	

Abbildung: a) Errors for different HMM's and Features [KMSW05, Table 4]; b) Precision for different HMM's and Features [KMSW05, Table 5]

Integration of temporal Features lead to a better performance

Evaluation / Results Discussion

Typical Problems

- Features are important, typically used MFCC may not be suitable (for general audio)
- closed set of classes and training data was used
- labeled training data is needed, training can be expensive (human resources and computational resources)
- Number of HMM states could be adressed and optimized
- open question: how to use the created knowledge?

Dufaux, Alain ; Besacier, Laurent ; Ansorge, Michael ; Pellandini, Fausto:

Automatic sound detection and recognition for noisy environment.

In: *Proc. of the X European Signal Processing Conference* Citeseer, 2000

Geiger, Jürgen T. ; Lakhal, Mohamed A. ; Schuller, Björn ; Rigoll, Gerhard:

Learning New Acoustic Events in an HMM-Based System Using MAP Adaptation.

In: INTERSPEECH, ISCA, 2011, S. 293-296

Kraft, Florian ; Malkin, Robert ; Schaaf, Thomas ; Waibel, Alex:

Temporal ICA for classification of acoustic events i a kitchen environment.

In: INTERSPEECH, ISCA, 2005, S. 2689–2692

Ntalampiras, Stavros ; Potamitis, Ilyas ; Fakotakis, Nikos: Exploiting Temporal Feature Integration for Generalized Sound Recognition.

In: EURASIP J. Adv. Sig. Proc. 2009 (2009)

Schuller, Bjrn W.:

Intelligent Audio Analysis.

Springer Publishing Company, Incorporated, 2013. – ISBN 3642368050, 9783642368059

