Jendrik Meyer

2014-11-10

Usage of Voxels in Imagery Methods

Proseminar

Roboter & Aktivmedien

Contents

- Introduction
- Definitions
- Paper
- Problems
- Solutions
- Questions
- Discussion

Introduction

Definitions

Paper

Problems

Solutions

Questions

Introduction

Usage of Voxels in Imagery Methods

Capturing an object and visually represent it in smallest parts

Introduction

Definitions

Paper

Problems

Solutions

Questions

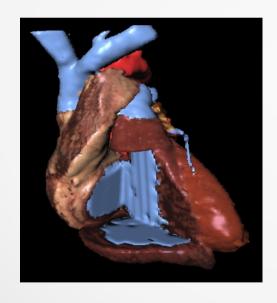
Voxel and images

- We see voxels all the time
- Everybody knows and uses Imagery Methods in everyday situations

Introduction

Definitions

Paper


Problems

Solutions

Questions

Magnetic resonance spectroscopy

- Usage of voxels in MRS
- MRS works with RF- Pulses (Radio Frequency- Pulses)

Introduction

Definitions

Paper

Problems

Solutions

Questions

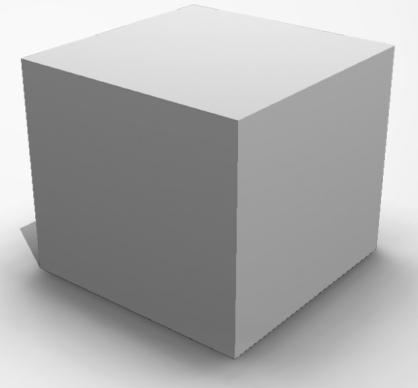
Definition Imagery Methods

- Generates an image of metrics from a real object
- Used in medical fields, entertainment, military, science...

Introduction **D**

Definitions

Paper

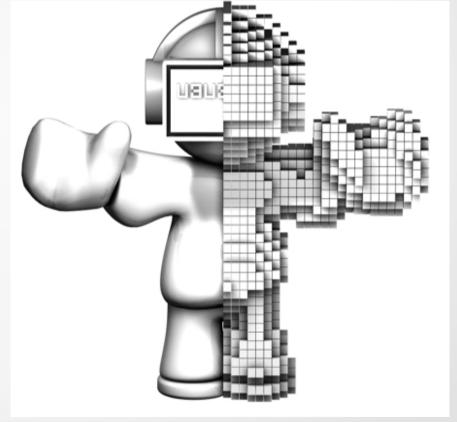

Problems

Solutions

Questions

Definition Voxel

- A Voxel is a 3D <u>Vo</u>lumetric pixel
- Used in animated movies and computergames
- Not based on polygons



Definition Voxel

"A voxel is the three-dimensional equivalent of a pixel - A box, rather than a point, in space that has a volume.

Imagine taking an object and then decomposing into cubes, all of the same size. Or, if you'd prefer, building an object out of LEGOs or in Minecraft, much like a cubist painting."

From "Hacking the Kinect"

Definition Voxel

Introduction

Definitions

Paper

Problems

Solutions

Questions

Paper

Localized Single-Voxel Magnetic Resonance Spectroscopy, Water Suppression, and Novel Approaches for Ultrashort Echo-Time Measurements

Release: 2014

Autors: Hongxia Lei, Lijing Xin, Rolf Gruetter and Vladimir Mlynarik

 Instituts: University of Geneva Center for Biomedical Imaging (CIBM)

> University of Lausanne Laboratory of Functional and Metabolic Imaging (LIFMET)

Introduction

Definitions

Paper

Problems

Solutions

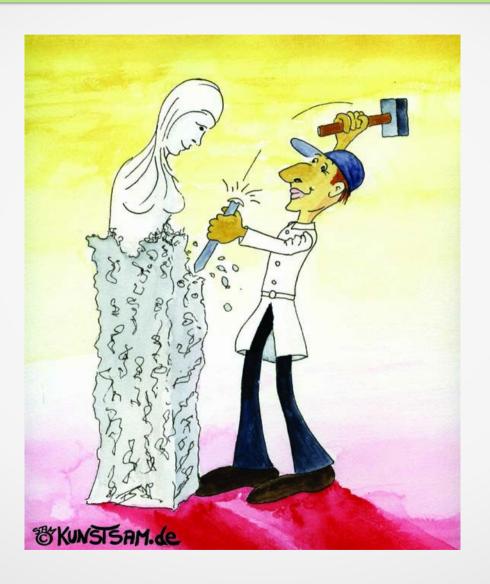
Questions

Statement of the problems

- How to get the Volume Of Interest (VOD) of an organ inside a body?
- How to handle water, lipids, bones etc.?
- Pros and cons of different localization schemes

Introduction

Definitions


Paper

Problems

Solutions

Questions

Solution approaches

Introduction

Definitions

Paper

Problems

Solutions

Questions

Solution approaches

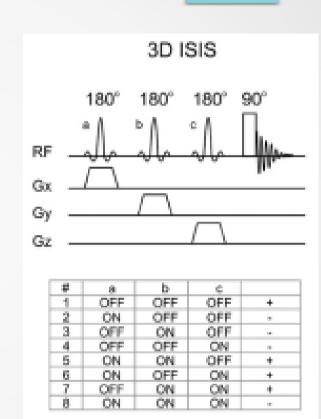
- Different procedures with the same hardware
- Slice-Selective 90° / 180° Pulses
- Methods to minimize confounding factors:
 - CHESS, STEAM, WEFT, MEGA, WATERGATE, SPECIAL
- OVS elimininates signals outside the VOI with RFsuppression

Introduction

Definitions

Paper

Problems


Solutions

Questions

ISIS localisation

For locating a VOI **two** scans are **required**:

- 1. The free induction decay (FID) is obtained with all the spins in the volume having the same phase
- 2. The FID is acquired in the same way except that spins in the target slice are first inverted using a slice- selective 180° pulse
- When the two FIDs are subtracted, only signals from the target slice remains
- ISIS localisation requires a minimum number of eight scans for the volume localization

Compared Solutions

- Localization schemes have different demands to work best
- It is possibel to get 3D images with MRS
- Higher levels of RF- Pulses give better images

Introduction Definitions Paper Problems <u>Solutions</u> Questions Discussion 15

Round of questions

Introduction Definitions Paper Problems Solutions <u>Questions</u> Discussion 16

Discussion

The Kinect can handle voxel – Can robots use voxel for visual perception in a real environment?

Introduction

Definitions

Paper

Problems

Solutions

Questions