Genetic Algorithms for Vision and Pattern Recognition

Faiz Ul Wahab

Objective

 To solve for optimization of computer vision problems using genetic algorithms

Timeline

- Problem: Computer Vision
- Genetic Algorithms(GA)
- Solution by Genetic Algorithms
- Results and Discussions
- Questions?

Registration of Images

 Registration Problem is one of the fundamental problems in computer vision

Registration of Images to Images

Registration of Images to 3D Models

Applications

- Augmented Reality
- Image Guided Surgery
- Rendering real objects in gaming environments

Registration of Images to 3D Models[1]

Goal: make textured 3D models

How to do that?

- Sampling: Slice the 3D model
- Define cost function
- Solve for the optimization

Define Cost Function

- 18 parameters
- K(3x2)
- R(3x2)
- T(3x2)

Cost Function

$$C(P_1, P_2) = \frac{1}{|P|} \sum_{\mathbf{X} \in P} (I_1(P_1 \mathbf{X}) - I_2(P_2 \mathbf{X}))^2$$

- P_1, P_2 are the projection matrices
- *P* is the number of points in 3D model
- $I_i(PX)$ is the color of point X on the image

Why genetic algorithms?

- Unpredictable shape of cost function
- Local minima failure by using:
 - Newton method
 - Levenberg-Marquardt(LM)
 - BGFS variable metric method

Genetic Algorithms[2][3]

Review

Theory Of Evolution

- Organisms evolve to fit into the environment
- Only the best individuals are kept by nature

Oh seriously...

 From a set of random solutions only the best ones are picked

Purpose of Genetic Algorithms

"Genetic Algorithms are good at taking *large, potentially huge* <u>search spaces</u> and <u>navigating</u> them, looking for <u>optimal</u> <u>combinations of things</u>, solutions you might not otherwise find in a lifetime."

Example Problem I

Finding the maximum (minimum) of some function (within a defined range).

Problem?

- Numbers from 1..100
- Find the set of numbers that give a sum of 313

• Any ideas??

Genetics - Promo

- A gene is hereditary unit of inheritance
- Multiple genes are stringed together to form chromosomes
- A gene, if expressed in an organism in called a trait
- Offsprings inherit traits from their parents
- A gene may get **mutated** during mating process

How is the process done?

• Genetic algorithm (GA) introduces

 the principle of evolution genetics into search among possible solutions to given problem

• To simulate the process in natural systems

How: by the creation within a machine a population of individuals

Genetic Algorithms: Process

Parameters of GA

- Fitness Function
- Mechanism of selection
- Crossover
- Mutation

Fitness Function

- Evaluates how good an individual is
- Computes this for each individual in a population

- Fitness function is application dependent
- Examples: Mean squared error, Classification rate

Mechanism of Selection

- Parent/Survivor Selection
 - Roulette Wheel Selection
 - Tournament Selection
 - Rank Selection
 - Elitist Selection

Roulette Wheel Selection

- Main idea: better individuals get higher chance
- Individuals are assigned a probability of being selected based on their fitness.

$$p_i = f_i / \Sigma f_j$$

- p_i probability that individual i will be selected
- f_i is the fitness of individual I
- Σf_j represents the sum of all the fitness(s) of the individuals with the population

Roulette Wheel: Mechanism

Tournament Selection

• Binary tournament

Two individuals are randomly chosen; the fitter of the two is selected as a parent

• Larger tournaments

n individuals are randomly chosen; the fittest one is selected as a parent

Other Methods

Rank Selection

 Each individual in the population is assigned a numerical rank based on fitness, and selection is based on this ranking.

Elitism

 Reserve k slots in the next generation for the highest scoring/fittest chormosomes of the current generation

Crossover

- Generating offspring from two selected parents
 - Single point crossover
 - Two point crossover (Multi point crossover)
 - Uniform crossover

One Point Crossover

- Choose a random point on the two parents
- Split parents at this crossover point
- Create children by exchanging tails

One Point Crossover

- Choose a random point on the two parents
- Split parents at this crossover point
- Create children by exchanging tails

Parent 1:	ΧΧΙΧΧΧΧΧ
Parent 2:	Y Y Y Y Y Y Y
Offspring 1:	ΧΧΥΥΥΥΥ
Offspring 2:	ΥΥΧΧΧΧΧ

Uniform Crossover

- A random mask is generated
- The mask determines which bits are copied from one parent and which from the other parent
- Bit density in mask determines how much material is taken from the other parent

 Mask:
 0110011000
 (Randomly generated)

 Parents:
 1010001110
 0011010010

Offspring: 0011001010 1010010110

Mutation

- Alter each gene independently with a probability p_m
- *p_m* is called the mutation rate

Summary – Reproduction cycle

- Select parents for producing the next generation
- For each consecutive pair apply crossover with probability p_c , otherwise copy parents
- For each offspring apply mutation (bit-flip with probability p_m)
- Replace the population with the resulting population of offsprings

How to solve cost?

$$C(P_1, P_2) = \frac{1}{|P|} \sum_{\mathbf{X} \in P} (I_1(P_1 \mathbf{X}) - I_2(P_2 \mathbf{X}))^2$$

- *P*₁, *P*₂ are the projection matrices
- *P* is the number of points in 3D model
- *I*(*PX*) is the color of point X on the image

Initial Settings for GA[1]

- Initial estimation of projection matrices by manual registration
- This acts as initial population of the genetic algorithm

Pipeline for Images to 3D Models

Results

Results

Discussions: Preservation

Discussions: Selections Criteria

Discussions: Mutations

Discussions: Crossover

Discussions: P(Mutation)

Discussions: P(CrossOver)

Summary

- Genetic Algorithms useful for solving optimization problems
- Four elements:
 - Fitness Function
 - Mechanism of Selection
 - Crossover Mechanism and Frequency
 - Mutation Mechanism and Frequency
- Important! Problem representation for GA

Bibliography

- Janko, Z., Chetverikov, D., Ekart, A., Using Genetic Algorithms in Computer Vision: Registering Images to 3D Surface Model, Acta Cybernetica, 2007.
- 2. Eiben, A., Smith, J., *Introduction to Evolutionary Computing*, Springer, 2008.
- http://www.cs.cmu.edu/afs/cs/project/theo-20/www/mlbook/ch9.pdf

Questions