
CUDA Optimizations
WS 2014-15 Intelligent Robotics Seminar

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

1

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

2

1

• Background information

2

• Optimizations

3

• Summary

Table of content

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

3

1

• Background information

2

• Optimizations

3

• Summary

Table of content

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

4

B
ac

kg
ro

u
n

d
 In

fo
rm

at
io

n

• Why GPUs?

• Your PC with GPU

• Understanding SM
and memory
hierarchies

• Understanding CUDA
kernel launch

• Questions?

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

5

B
ac

kg
ro

u
n

d
 In

fo
rm

at
io

n

• Why GPUs?

• Your PC with GPU

• Understanding SM
and memory
hierarchies

• Understanding CUDA
kernel launch

• Questions?

It’s all about real time

•Motion compliance < 1 ms

•Vision (30fps) < 33 ms

•Vision (60fps) < 16 ms

Neural Networks

•Neuron within a neural network computes its
own activation based on local information

•Learning algorithms continuously adapt the
strength of connections between neurons

pre-processing

•accelerates some of the pre-processing
required (e.g. vision processing)

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

6

Courtesy: Asus ROG
B

ac
kg

ro
u

n
d

 In
fo

rm
at

io
n

• Why GPUs?

• Your PC with GPU

• Understanding SM
and memory
hierarchies

• Understanding CUDA
kernel launch

• Questions?

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

7

Courtesy: Asus ROG

Courtesy: NVidia

B
ac

kg
ro

u
n

d
 In

fo
rm

at
io

n

• Why GPUs?

• Your PC with GPU

• Understanding SM
and memory
hierarchies

• Understanding CUDA
kernel launch

• Questions?

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

8

B
ac

kg
ro

u
n

d
 In

fo
rm

at
io

n

• Why GPUs?

• Your PC with GPU

• Understanding SM
and memory
hierarchies

• Understanding CUDA
kernel launch

• Questions?

Global memory (off chip DDR5 RAM)

Global memory (off chip DDR5 RAM)

• Off chip memory
• Constant and texture

memory also allocated here

• SM (streamed multi-
processor)

• Blocks of threads are
scheduled on SM (e.g.
group of 512 threads)

• Shared memory which can
be shared between threads
in block

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

9

B
ac

kg
ro

u
n

d
 In

fo
rm

at
io

n

• Why GPUs?

• Your PC with GPU

• Understanding SM
and memory
hierarchies

• Understanding CUDA
kernel launch

• Questions? CPU

RAM
(host memory)

Motherboard

PCIe Slot

Graphics card

DDR5 RAM (graphics memory)

GPU

SM SM SM SM

Chipset

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

10

Memory Location on/off
chip

Cached Access Scope Lifetime

Register On n/a R/W 1 thread Thread

Local Off † R/W 1 thread Thread

Shared On n/a R/W All threads in
block

Block

Global Off † R/W All threads + host Host allocation

Constant Off Yes R All threads + host Host allocation

Texture Off Yes R All threads + host Host allocation

† Cached only on devices of compute capability 2.x

B
ac

kg
ro

u
n

d
 In

fo
rm

at
io

n

• Why GPUs?

• Your PC with GPU

• Understanding SM
and memory
hierarchies

• Understanding CUDA
kernel launch

• Questions?

Fastest memory in rough order

On chip
• Registers

• Shared

Off chip

• Constant

• Texture

• Global

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

11

B
ac

kg
ro

u
n

d
 In

fo
rm

at
io

n

• Why GPUs?

• Your PC with GPU

• Understanding SM
and memory
hierarchies

• Understanding CUDA
kernel launch

• Questions?

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

12

B
ac

kg
ro

u
n

d
 In

fo
rm

at
io

n

• Why GPUs?

• Your PC with GPU

• Understanding SM
and memory
hierarchies

• Understanding CUDA
kernel launch

• Questions?

•Host memory (RAM)

•Registers

•Shared memory

•Global memory

Which of these is on-chip memory for GPU?

•Yes

•No

Can threads in different blocks access same shared memory?

•Host memory (RAM)

•Registers

•Global memory (GPU memory)

•Constant and texture memory

•Shared memory

Order memories based on speed

•Registers

•Global memory (GPU memory)

•Constant and texture memory

•Shared memory

Which of these memories are persistent?

•Yes

•No

Except for constant and texture memory, all other memories are R/W







1

2
3
4

5







Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

13

Table of content

1

• Background information

2

• Optimizations

3

• Summary

M
em

o
ry

 o
p

ti
m

iz
at

io
n

s • Data Transfer Between
Host and Device

• Pinned Memory

• Asynchronous and
Overlapping Transfers
with Computation

• Unified Virtual
Addressing

• Device Memory Spaces

• Coalesced Access to
Global Memory

• Shared Memory

• Local Memory

• Texture Memory

• Constant Memory

• Registers

Ex
ec

u
ti

o
n

 C
o

n
fi

gu
ra

ti
o

n
 o

p
ti

m
iz

at
io

n
s • Occupancy

• Concurrent Kernel
Execution

• Hiding Register
Dependencies

• Thread and Block
Heuristics

• Effects of Shared
Memory

In
st

ru
ct

io
n

 o
p

ti
m

iz
at

io
n • Arithmetic Instructions

• Memory Instructions

C
o

n
tr

o
l f

lo
w • Branching and

Divergence

• Branch Predication

• Loop Counters Signed
vs. Unsigned

• Synchronizing
Divergent Threads in a
Loop

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

14

Categorized optimization strategies

M
em

o
ry

 o
p

ti
m

iz
at

io
n

s • Data Transfer Between
Host and Device

• Pinned Memory

• Asynchronous and
Overlapping Transfers
with Computation

• Unified Virtual
Addressing

• Device Memory Spaces

• Coalesced Access to
Global Memory

• Shared Memory

• Local Memory

• Texture Memory

• Constant Memory

• Registers

Ex
ec

u
ti

o
n

 C
o

n
fi

gu
ra

ti
o

n
 o

p
ti

m
iz

at
io

n
s • Occupancy

• Concurrent Kernel
Execution

• Hiding Register
Dependencies

• Thread and Block
Heuristics

• Effects of Shared
Memory

In
st

ru
ct

io
n

 o
p

ti
m

iz
at

io
n • Arithmetic Instructions

• Memory Instructions

C
o

n
tr

o
l f

lo
w • Branching and

Divergence

• Branch Predication

• Loop Counters Signed
vs. Unsigned

• Synchronizing
Divergent Threads in a
Loop

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

15

Categorized optimization strategies

M
e

m
o

ry
 o

p
ti

m
iz

at
io

n
s • Data Transfer

Between Host and
Device

• Pinned Memory

• Asynchronous and
Overlapping
Transfers with
Computation

• Unified Virtual
Addressing

• Device Memory
Spaces

• Coalesced Access
to Global Memory

• Shared Memory

• Local Memory

• Texture Memory

• Constant Memory

• Registers

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

16

• maximize the use of the hardware by maximizing bandwidth

Goal for Memory optimizations

• using as much fast memory and as little slow-access memory
as possible

maximizing bandwidth

• discuss the various kinds of memory on the host and device
and how best to set up data items to use the memory
effectively

What follows next

• 177.6 GB/s > 8 GB/s

• Its fine even if we run kernels on the GPU that do not demonstrate any speedup

Why data transfer between host and device must be minimized

M
e

m
o

ry
 o

p
ti

m
iz

at
io

n
s • Data Transfer

Between Host and
Device

• Pinned Memory

• Asynchronous and
Overlapping
Transfers with
Computation

• Unified Virtual
Addressing

• Device Memory
Spaces

• Coalesced Access
to Global Memory

• Shared Memory

• Local Memory

• Texture Memory

• Constant Memory

• Registers

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

17

CPU
(host)

RAM
(host memory)

Motherboard

PCIe Slot

Graphics card

DDR5 RAM (graphics memory)

GPU

SM SM SM SM

Chipset

177.6 GB/s

8 GB/s

• Page-locked or pinned memory transfers attain the highest bandwidth between
the host and the device

• can reduce overall system performance (since it is scarce resource)

• Pinning memory is heavy weight operation

pinned memory improves transfer between host and device

M
e

m
o

ry
 o

p
ti

m
iz

at
io

n
s • Data Transfer

Between Host and
Device

• Pinned Memory

• Asynchronous and
Overlapping
Transfers with
Computation

• Unified Virtual
Addressing

• Device Memory
Spaces

• Coalesced Access
to Global Memory

• Shared Memory

• Local Memory

• Texture Memory

• Constant Memory

• Registers

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

18

CPU
(host)

RAM
(host memory)

Motherboard

PCIe Slot

Graphics card

DDR5 RAM (graphics memory)

GPU

SM SM SM SM

Chipset

Allocate pinned
memory on host

•A] You have very limited host memory (RAM)

•B] The image processing algorithm running on GPU has many steps to be performed on
image

•C] Your application demands to have processed image always available with host CPU

Lets assume that you are doing some processing on an image.

In which scenarios will you use pinned memory?

M
e

m
o

ry
 o

p
ti

m
iz

at
io

n
s • Data Transfer

Between Host and
Device

• Pinned Memory

• Asynchronous and
Overlapping
Transfers with
Computation

• Unified Virtual
Addressing

• Device Memory
Spaces

• Coalesced Access
to Global Memory

• Shared Memory

• Local Memory

• Texture Memory

• Constant Memory

• Registers

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

19







Staged concurrent copy and execute

M
e

m
o

ry
 o

p
ti

m
iz

at
io

n
s • Data Transfer

Between Host and
Device

• Pinned Memory

• Asynchronous and
Overlapping
Transfers with
Computation

• Unified Virtual
Addressing

• Device Memory
Spaces

• Coalesced Access
to Global Memory

• Shared Memory

• Local Memory

• Texture Memory

• Constant Memory

• Registers

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

20

Sequential

Concurrent async copy with execute (4 concurrent streams)

Copy

Execute

Copy

Execute

M
e

m
o

ry
 o

p
ti

m
iz

at
io

n
s • Data Transfer

Between Host and
Device

• Pinned Memory

• Asynchronous and
Overlapping
Transfers with
Computation

• Unified Virtual
Addressing

• Device Memory
Spaces

• Coalesced Access
to Global Memory

• Shared Memory

• Local Memory

• Texture Memory

• Constant Memory

• Registers

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

21

M
e

m
o

ry
 o

p
ti

m
iz

at
io

n
s • Data Transfer

Between Host and
Device

• Pinned Memory

• Asynchronous and
Overlapping
Transfers with
Computation

• Unified Virtual
Addressing

• Device Memory
Spaces

• Coalesced Access
to Global Memory

• Shared Memory

• Local Memory

• Texture Memory

• Constant Memory

• Registers

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

22

M
e

m
o

ry
 o

p
ti

m
iz

at
io

n
s • Data Transfer

Between Host and
Device

• Pinned Memory

• Asynchronous and
Overlapping
Transfers with
Computation

• Unified Virtual
Addressing

• Device Memory
Spaces

• Coalesced Access
to Global Memory

• Shared Memory

• Local Memory

• Texture Memory

• Constant Memory

• Registers

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

23

•Internally manages the address spaces and do necessary memory transfers

•Coding simplicity and rapid prototyping

•Future compatibility

Unified Virtual
Addressing

M
e

m
o

ry
 o

p
ti

m
iz

at
io

n
s • Data Transfer

Between Host and
Device

• Pinned Memory

• Asynchronous and
Overlapping
Transfers with
Computation

• Unified Virtual
Addressing

• Device Memory
Spaces

• Coalesced Access
to Global Memory

• Shared Memory

• Local Memory

• Texture Memory

• Constant Memory

• Registers

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

24

Fastest memory in rough order

On chip
• Registers

• Shared

Off chip

• Constant

• Texture

• Global

M
e

m
o

ry
 o

p
ti

m
iz

at
io

n
s • Data Transfer

Between Host and
Device

• Pinned Memory

• Asynchronous and
Overlapping
Transfers with
Computation

• Unified Virtual
Addressing

• Device Memory
Spaces

• Coalesced Access
to Global Memory

• Shared Memory

• Local Memory

• Texture Memory

• Constant Memory

• Registers

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

25

•Memory loads and store by threads in warps are coalesced

•RAM are designed for batch access and we can take advantage of that in programming

•We will see what happens with coalesced access to global memory when

• 1] we change offset

• 2] we change stride

Coalesced Access to Global Memory

M
e

m
o

ry
 o

p
ti

m
iz

at
io

n
s • Data Transfer

Between Host and
Device

• Pinned Memory

• Asynchronous and
Overlapping
Transfers with
Computation

• Unified Virtual
Addressing

• Device Memory
Spaces

• Coalesced Access
to Global Memory

• Shared Memory

• Local Memory

• Texture Memory

• Constant Memory

• Registers

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

26

1] With different offset

M
e

m
o

ry
 o

p
ti

m
iz

at
io

n
s • Data Transfer

Between Host and
Device

• Pinned Memory

• Asynchronous and
Overlapping
Transfers with
Computation

• Unified Virtual
Addressing

• Device Memory
Spaces

• Coalesced Access
to Global Memory

• Shared Memory

• Local Memory

• Texture Memory

• Constant Memory

• Registers

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

27

1] With different offset

M
e

m
o

ry
 o

p
ti

m
iz

at
io

n
s • Data Transfer

Between Host and
Device

• Pinned Memory

• Asynchronous and
Overlapping
Transfers with
Computation

• Unified Virtual
Addressing

• Device Memory
Spaces

• Coalesced Access
to Global Memory

• Shared Memory

• Local Memory

• Texture Memory

• Constant Memory

• Registers

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

28

Assume we are working on an float image of size 500 X 500.

Will it be a problem? If yes what is the solution?

500

500

12

M
e

m
o

ry
 o

p
ti

m
iz

at
io

n
s • Data Transfer

Between Host and
Device

• Pinned Memory

• Asynchronous and
Overlapping
Transfers with
Computation

• Unified Virtual
Addressing

• Device Memory
Spaces

• Coalesced Access
to Global Memory

• Shared Memory

• Local Memory

• Texture Memory

• Constant Memory

• Registers

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

29

2] With different stride

M
e

m
o

ry
 o

p
ti

m
iz

at
io

n
s • Data Transfer

Between Host and
Device

• Pinned Memory

• Asynchronous and
Overlapping
Transfers with
Computation

• Unified Virtual
Addressing

• Device Memory
Spaces

• Coalesced Access
to Global Memory

• Shared Memory

• Local Memory

• Texture Memory

• Constant Memory

• Registers

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

30

2] With different stride

M
e

m
o

ry
 o

p
ti

m
iz

at
io

n
s • Data Transfer

Between Host and
Device

• Pinned Memory

• Asynchronous and
Overlapping
Transfers with
Computation

• Unified Virtual
Addressing

• Device Memory
Spaces

• Coalesced Access
to Global Memory

• Shared Memory

• Local Memory

• Texture Memory

• Constant Memory

• Registers

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

31

Assume we are working on an float image of size 512 X 512.

Will the below access pattern pose problem?

What is the stride number in this case?

image[0][threadid] =
some_value

Accesses from a warp

image[threadid][0] =
some_value

Accesses from a warp

M
e

m
o

ry
 o

p
ti

m
iz

at
io

n
s • Data Transfer

Between Host and
Device

• Pinned Memory

• Asynchronous and
Overlapping
Transfers with
Computation

• Unified Virtual
Addressing

• Device Memory
Spaces

• Coalesced Access
to Global Memory

• Shared Memory

• Local Memory

• Texture Memory

• Constant Memory

• Registers

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

32

How many memory global transactions will be
needed?

Total pixels to be calculated = 9
Transactions per pixel = 9
Hence total transactions = 9*9 = 81

Shared memoryGlobal memory

How many global
transactions with shared

memory?

25

M
e

m
o

ry
 o

p
ti

m
iz

at
io

n
s • Data Transfer

Between Host and
Device

• Pinned Memory

• Asynchronous and
Overlapping
Transfers with
Computation

• Unified Virtual
Addressing

• Device Memory
Spaces

• Coalesced Access
to Global Memory

• Shared Memory

• Local Memory

• Texture Memory

• Constant Memory

• Registers

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

33

•SM have limited register space

•Automatic variables are allocated on registers (e.g. local variables)

•If registers memory is not enough then the local memory is used. This is called register
spilling.

•Local memory resides on global memory and hence is slow

•After compilation nvcc compiler can report local memory usage. You must try to avoid it if
possible.

Local memory

M
e

m
o

ry
 o

p
ti

m
iz

at
io

n
s • Data Transfer

Between Host and
Device

• Pinned Memory

• Asynchronous and
Overlapping
Transfers with
Computation

• Unified Virtual
Addressing

• Device Memory
Spaces

• Coalesced Access
to Global Memory

• Shared Memory

• Local Memory

• Texture Memory

• Constant Memory

• Registers

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

34

•read-only texture memory space is cached

•texture cache is optimized for 2D spatial locality

•In some cases advantageous alternative to reading device memory from global or constant
memory

•Hardware provides other capabilities when textures are fetched using tex1D(), tex2D(), or
tex3D() rather than tex1Dfetch()

• Filtering

• Normalized texture coordinates

• Automatic handling of boundary cases

Texture memory

M
e

m
o

ry
 o

p
ti

m
iz

at
io

n
s • Data Transfer

Between Host and
Device

• Pinned Memory

• Asynchronous and
Overlapping
Transfers with
Computation

• Unified Virtual
Addressing

• Device Memory
Spaces

• Coalesced Access
to Global Memory

• Shared Memory

• Local Memory

• Texture Memory

• Constant Memory

• Registers

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

35

•There is a total of 64 KB constant memory on a device

•constant memory space is cached

•In some cases advantageous alternative to reading device memory from global or constant
memory

•the constant cache is best when threads in the same warp accesses only a few distinct
locations

•If all threads of a warp access the same location, then constant memory can be as fast as a
register access

Constant memory

M
e

m
o

ry
 o

p
ti

m
iz

at
io

n
s • Data Transfer

Between Host and
Device

• Pinned Memory

• Asynchronous and
Overlapping
Transfers with
Computation

• Unified Virtual
Addressing

• Device Memory
Spaces

• Coalesced Access
to Global Memory

• Shared Memory

• Local Memory

• Texture Memory

• Constant Memory

• Registers

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

36

•Registers is the fastest memory space

•CUDA provides capability to uses small constant arrays

•hardware instruction support for sharing registers between threads in warp

Registers

M
e

m
o

ry
 o

p
ti

m
iz

at
io

n
s • Data Transfer

Between Host and
Device

• Pinned Memory

• Asynchronous and
Overlapping
Transfers with
Computation

• Unified Virtual
Addressing

• Device Memory
Spaces

• Coalesced Access
to Global Memory

• Shared Memory

• Local Memory

• Texture Memory

• Constant Memory

• Registers

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

37

Shuffle instruction with constant srcLane broadcasts the value
in a register from one thread to all threads in a warp

M
e

m
o

ry
 o

p
ti

m
iz

at
io

n
s • Data Transfer

Between Host and
Device

• Pinned Memory

• Asynchronous and
Overlapping
Transfers with
Computation

• Unified Virtual
Addressing

• Device Memory
Spaces

• Coalesced Access
to Global Memory

• Shared Memory

• Local Memory

• Texture Memory

• Constant Memory

• Registers

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

38

Shuffle up and down instructions illustrated

advantage of the shuffle instruction for the moving average
filter algorithm

M
em

o
ry

 o
p

ti
m

iz
at

io
n

s • Data Transfer Between
Host and Device

• Pinned Memory

• Asynchronous and
Overlapping Transfers
with Computation

• Unified Virtual
Addressing

• Device Memory Spaces

• Coalesced Access to
Global Memory

• Shared Memory

• Local Memory

• Texture Memory

• Constant Memory

• Registers

Ex
ec

u
ti

o
n

 C
o

n
fi

gu
ra

ti
o

n
 o

p
ti

m
iz

at
io

n
s • Occupancy

• Concurrent Kernel
Execution

• Hiding Register
Dependencies

• Thread and Block
Heuristics

• Effects of Shared
Memory

In
st

ru
ct

io
n

 o
p

ti
m

iz
at

io
n • Arithmetic Instructions

• Memory Instructions

C
o

n
tr

o
l f

lo
w • Branching and

Divergence

• Branch Predication

• Loop Counters Signed
vs. Unsigned

• Synchronizing
Divergent Threads in a
Loop

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

39

Categorized optimization strategies

Questions?

Universität Hamburg WS 2014-15 Intelligent Robotics Seminar
Praveen Kulkarni

40

END

