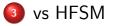
Behaviour Trees Seminar


Pascal Folleher Universität Hamburg

27.10.2014

Outline

4 Handling Complexity in the Halo 2 Al

Pascal Folleher

Behaviour Trees

Motivation

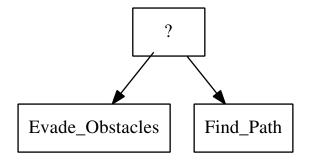
- Behaviour Trees are reusable
- =>BTs scale well
- BTs are easily authored

Behaviour Trees

- Directed tree
- Nodes are either *composites* or *leaves*
- Root is *ticked* every time step

Behaviour Trees 2

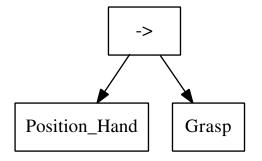
- Ticks traverse down towards leaves
- Results traverse up towards the root
- Possible results: Success, Failure, Running

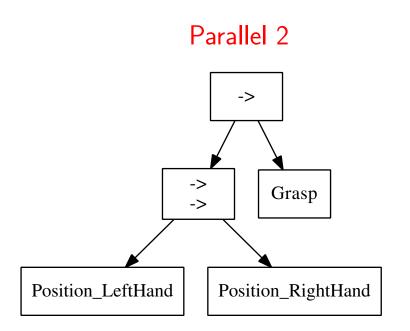

Composites

- Selector
- Sequence
- Parallel
- Decorator

Selector

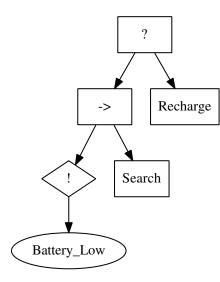
- Behaves similar to logical OR
- Returns Success (Running) if any child returns Success
- Returns Failure if all children return Failure


Selector 2

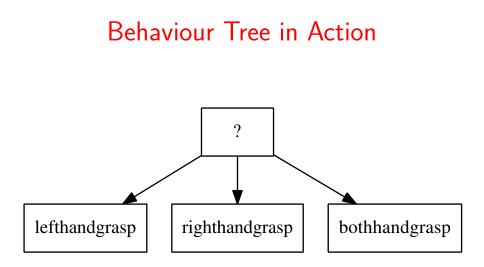

- Behaves similar to logical AND
- Returns Success if all children return Success
- Returns Failure (Running) otherwise

Sequence 2

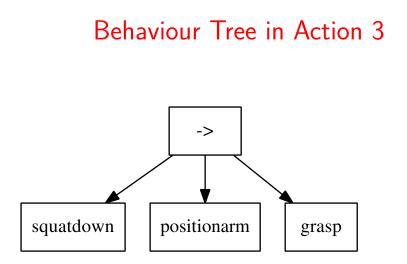
Parallel


- Allows parallel execution of behaviours
- Returns Success if >= S children succeed
- Returns Failure if >= F children succeed
- Returns Running in any other case

- Can only have **ONE** child
- Manipulate return value of child
- e.g. Inverter, Counter, Timer ...


Decorator 2

Pascal Folleher



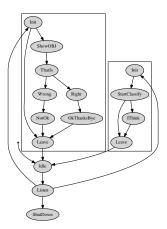
- Actions
- Conditions
- Leave can be another BT

Behaviour Tree in Action 2

First Experiment (0:00 - 1:15) http://www.youtube.com/watch?v=kEd2YxysBtI

\sim Decorator

- used to synchronize actions with other agents
- one agent broadcasts intended bevahiour
- other agents can respond if interested


Parametrized Behaviour Trees

- Subtrees can be parametrized
- SmartEvents contain parametrized Behaviour Tree
- Agents involved in SmartEvent will execute the BT once, then restart personal BT

HFSM

- Large FSM can be hard to handle
- HSFM allows to use FSM as nodes...
- ... but still has the same problems

HFSM Example

Implicit vs Explicit State Transitions

BT state transition similar to procedure call
(H)FSM state transition similar to GoTo

General Ideas

- Behaviour Trees are shared between characters
- Characters have a memory pool (e.g. Grenade Cooldown)
- Bitvectors represent characters world-knowledge and can lock behaviours

Impulses & Stimuli

- Impulses reference other parts of BT
- Stimuli are inserted into BT when certain events happen
- Because of priority sorting stimuli only interrupt certain behaviours

- Orders group Firing Positions
- Orders are assigned to Squads
- Trigger (e.g. Squadleader died) may assign new Orders

- Styles can be assigned to Orders
- Styles can block certain behaviours (e.g. aggressive style prevents fleeing behaviour)

The End

Thank you for your attention. Any questions?

Behaviour Trees

Michele Colledanchise and Petter Ögren.

How behavior trees modularize robustness and safety in hybrid systems. In Intelligent Robots and Systems (IROS), 2014 IEEE/RSJ International Conference on. IEEE, 2014.

Damian Isla.

Handling Complexity in the Halo 2 AI.

In Game Developers Conference, Mar 2005.

A. Johansson and P. Dell'Acqua.

Emotional behavior trees.

In Computational Intelligence and Games (CIG), 2012 IEEE Conference on, pages 355–362, Sept 2012.

Evolving behaviour trees for the commercial game defcon.

In Proceedings of the 2010 International Conference on Applications of Evolutionary Computation - Volume Part I, EvoApplicatons'10, pages 100–110, Berlin, Heidelberg, 2010. Springer-Verlag.

A. Marzinotto, M. Colledanchise, C. Smith, and P. Ogren.

Towards a unified behavior trees framework for robot control.

In Robotics and Automation (ICRA), 2014 IEEE International Conference on, pages 5420-5427, May 2014.

Petter Ogren.

Increasing Modularity of UAV Control Systems using Computer Game Behavior Trees.

Guidance, Navigation, and Control and Co-located Conferences. American Institute of Aeronautics and Astronautics, Aug 2012.