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Introduction & General Knowledge

Where Am I?

● Robots find themselves asking this question frequently!

● Localization is one of the most fundamental problems in robotics
of all time! (...and will probably always be!)

● Localization sounds pretty easy... - but it completely isn't!
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Introduction & General Knowledge

One simple example... on flat ground:
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Introduction & General Knowledge

One simple example... on slippery ground:



  

Sebastian Starke 7

Introduction & General Knowledge

So, why is Localization important?

● Knowing the actual location (and being able to navigate) is
essentially important for autonomous robots!

● If a robot does not know where he is, it might be hard to
determine what to do next!

● Robots have to react adaptively to their environment,
which of course can dynamically change! (imagine your dog
fluffy or a small child)
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Introduction & General Knowledge

Let's split it up into 3 keywords:
(which are of course always in a correlation to each other)

Localization

Navigation

Mapping
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Introduction & General Knowledge

Localization...

● ...is basically the act of finding one's location within a map.
(those are mostly in 2D, but can also be in 3D!)

● „Location“, „Pose“ or „Position“ actually means the
X and Y coordinates connected with the heading direction
(orientation) of the robot within the map!

l=( x , y ,θ)
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Introduction & General Knowledge

Localization...

Global Localization
→ The robot is not told its initial position

→ It has to solve a much more difficult localization problem

Local Localization
→ One the robot has localized itself against a map,

but it has to keep track of its actual position.
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Introduction & General Knowledge

Navigation...

● ...describes the act of moving through a known or unknown
environment.

Note: This also affects the part of localization!
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Introduction & General Knowledge

Mapping...

● ...is the problem, to generate a map from a completely
unknown or less known map or to keep updating
a given map.
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Introduction & General Knowledge

What do these maps look like?

Metrical    Feature-Based         Topological
(„grid-based pixel maps“)       (landmark locations)              (nodes and connections)



  

Sebastian Starke 14

Introduction & General Knowledge

What if we don't have a map?

We have both to...
 

build the map
AND 

to do localization

… at once!

(This idea is generally known as SLAM)
(„Simultaneous Localization and Mapping“... later more!)
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Sensors

● Using sensors is essentially needed to grant information to
the robot!

● Sensors always underly a certain noise (mostly normal-distributed)
which can also differ in some environment! (f.e. Ultrasonic-sensors)

● Almost always > 1 sensor is used what leads to towards
sensor-fusion!
(In general, this is done by the Kalman-Filter, later more...)
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Sensors

Odometry-sensors
→ Magnetic compass (absolute heading)
→ Gyroscope (change of heading)
→ Acceleration sensors (acceleration)
→ Tachometer (speed, distance)

Distance-sensors Sound-sensors Cameras
→ Infrared → Microphone → 2D
→ Laserscanner               → 3D

List of various sensors for robotic systems:
http://www.robotshop.com/en/sensors.html
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Sensors

● GPS (Global Positioning System)
→ exact up to some metres

● One Improvement: Differential GPS
→ A fixed GPS-station on the world (location known)

  is able to calculate the error by using GPS
→ If the robot (location unknown) calculates the distance

  to the satellite knowing the approximate error,
  it can be much more exact! (up to centimetres)
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Sensors

● One more improvement of GPS is RTK (Realtime
Kinematic Satellite Navigation)
→ Technique, used to enhance the precision of 

satellite-based positioning systems even more!
→ Uses measurements of the signal's carrier wave

rather than the information content of the signal.

● RTK+GPS = CPGPS (Carrier-Phase-GPS)
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Sensors

Odometry Sensors
            +

Indoors? Outdoors?

We might use IR-sensors We might use GPS /
or 2D-Laserscanners since CPGPS or even a 
we are mostly concerned Compass-sensor to
with obstacles!                        localize ourself!

Note: GPS does not work properly inside buildings!
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Sensors

Use the right sensors for the right applications!
●

Noise induces a limitation of the consistency
given by sensor readings!

●

Not handling these errors causes them to
accumulate rapidly!

●

Sensor-Fusion is extremely important!
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Basic Concepts

Navigation → Localization → Mapping 
...is done in an iterative way!

● We will typically do the following:

1 – Move some distance (this will induce some error!) 
2 – Take some sensor measurements (get some noisy data)
3 – Process/Fuse these sensor data (reduce the noise)
4 – Localize ourselves against the map (using the data)
5 – If we are building a map as well → update it
6 – Set a new course if necessary and repeat
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Basic Concepts
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Basic Concepts

There are two fundamental strategies
helping us to localize ourselves...

Probabilistic Methods Prior Knowledge
→ Play some very important → This is mostly needed, the

     role over all!  (f.e. Bayesian- more accurate, the better!
     Belief-Networks for multiple (f.e. sensor-noise, start-pos, ...)
     sensor readings)
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Basic Concepts

Probabilistic Methods
→ concerned with the „uncertainty“ of events occurring!

● Assume X is some event, so P(X) is its probability to
happen (between „0“ and „1“, normal-distributed)

● In context of localization:
→ The most likely location is the one with the greatest likelihood!
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Basic Concepts

Prior Knowledge
→ provides us infomation about the system and environment!

● Probabilistic approaches are always concerned with
Prior Knowledge!

● It is always important to have good and meaningful
priors!
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Algorithms

The Algorithms for Localization are often being combined!

Some SLAM-Examples:
→ Extended-Kalman-Filter-SLAM

→ Particle-Filter-SLAM
→ Markov-Chain-Monte-Carlo-SLAM

→ ...
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Algorithms

Kalman-Filters

● Describe a class of several filters dealing with
mathematical equations (linear, extended, unscented, ...)

● Mostly pre-applied to other algorithms by doing sensor-fusion
from normal distributed error measurements

● Use knowledge of the probabilistic sensor errors and dynamics,
the known noise and the system!

● GOAL: Recursively remove the noise from the sensor data!
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Algorithms

Kalman-Filters (example: linear)

The (linear) Kalman-Filter estimates the state of a noisy
linear dynamic system

→ Given a linear dynamical system:

...in which:

x (k+1)=F (k ) x (k )+G (k )u(k )+v (k )

y (k )=H (k ) x (k )+w (k )

x (k )  is the n-dimensional state vector (unknown)

u(k )  is the m-dimensional input vector (known)
y (k )  is the p-dimensional output vector (known, measured)
F (k ) ,G (k ) , H (k )  are appropriately dimensioned system matrices (known)
v(k ) , w(k )  are zero-mean, white Gaussian noise with (known)
                   covariance matrices Q (k ) , R(k )
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Algorithms

Kalman-Filters

The great things about Kalman-Filters

Noise smoothing

Good state estimation

Recursive (low computational cost!!!)
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Algorithms

Markov-Localization

Robot-pose 

● Solution is born out of probability theory.
● Tracks the robot's belief „states“ of positions by each step

● “Prediction Phase” → Where the robot thinks he is
● “Update-Phase” → The probabilities of all states get

                          updated

● Has a configuration space that is a finite discrete number of
possible robot poses in the map.
Note: There can be hundred to millions of possible positions!

l=(x , y ,θ)
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Algorithms

Markov-Localization
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Algorithms

Markov-Localization
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Algorithms

Markov-Localization

→ Video for Markov-Localization using Bayesian Belief Networks:

https://www.youtube.com/watch?v=XFoGDvTOR28
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Algorithms

Markov-Localization

The Markov-Localization encounters problems in dynamic
environments, but works well in static environments!

●

On large maps:
Quite high computational costs to update the cells, since at

each iteration the probability of each state within the
entire space is updated!
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Algorithms

Particle-Filters

● Monte-Carlo-Localization (MCL)
(Subgroup of Markov-Localization)

Robot-pose

→ Start: uniformly distributed particles over the map
→ With each step, particles with a smaller likelihood than others

  are replaced by new ones in accumulated areas
→ Over the iterations, the particles converge against the area(s)

  where the robot's likelihood to be is the greatest!

Note: Computational costs might also be quite high if there are
    hundreds or thousands of particles!

l=(( x , y ,θ) , p)
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Algorithms

Particle-Filters
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Algorithms

Particle-Filters

● Adaptive-Monte-Carlo-Localization (AMCL)

→ Limited minimum and maximum number of particles
  Note: NEVER less and NEVER more!

→ This reduces the potential computational cost 
     dramatically! (great advantage to other algorithms)

   

By the way: This one is used in ROS :-) See the video below!
https://www.youtube.com/watch?v=F6T3dtXviNY
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Algorithms

SLAM („Simultaneous Localization and Mapping“)

● Important, because there might be several reasons for which
a map does not have to exist already!
(or is only barely started)

● We need a technique, that is able to automatically explore
and/or to update a new (unknown or less known) environment!

● The “Chicken And Egg” problem occurs!
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Algorithms

The „Chicken and Egg“-problem occurs:

To apply our sensor measure- What if our map is
ments on our map, we have to incomplete or barely
know our localization, but... started?

  How can we localize ourself?
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Algorithms

SLAM („Simultaneous Localization and Mapping“)

● 1st characteristic question (Mapping-Part):
→ What does the world around me look like?
→ Sense from various positions; integrate measurements  

 to produce map; assume good knowledge of position

● 2nd characteristic question (Localization-Part):
→ Where am I?
→ relate sensor readings to a world model; compute

 location relative to this model; assume a good world model!
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Algorithms

SLAM („Simultaneous Localization and Mapping“)

● At each state: the robot (red)
takes sensor-measurements

● The greyscale gives a likelihood
for a cell to be either occupied
(black) or empty (lightgrey)

● We might start with P(X)=0.5
for each cell in the beginning

● GOAL: Predict the right labels
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Algorithms

SLAM („Simultaneous Localization and Mapping“)

ICP (Iterative-Closest-Points)-Algorithm
● Tries to minimize the difference between two point clouds
● Often used to reconstruct 2D or 3D surfaces from different scans

Finds the best matching maps!

Loop-Closure (Topological Maps)
Imagine, the robot explored his environment and collected a lot of 
data by the paths he went → A question might occur:

Have I already been here before?

Loop-Closure connects paths that are very likely to belong together 
while trying to minimize the error of the generated map!
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Algorithms

SLAM („Simultaneous Localization and Mapping“)
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Outlook

One last inspiring video of what is possible in research
by using only a

● Laptop-Camera
● A Biologically Inspired SLAM System

https://www.youtube.com/watch?v=-0XSUi69Yvs
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Outlook

Literature

- Robot Localization and Kalman Filters (Rudy Negenborn, Thesis, Utrecht University, 2003)

- Introduction to Autonomous Mobile Robots, R. Siegwart and I. Nourbakhsh, The MIT Press, Cambridge,

  Massachusetts 02142, ISBN: 0-262-19502-X, 2004

- Approaches to Mobile Robot Localization in Indoor Environments (Patric Jensfelt, Thesis,
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- Markov Localization for Mobile Robots in Dynamic Environments (Fox, Burgard, Thrun, 1999)

- Lokalisierung auf Basis kontinuierlicher und diskreter Drehwinkelveränderungen zwischen

  Landmarken in semistrukturierten Umgebungen (Immo Colonius, Diplomarbeit, Universität Bremen, 2009)

- http://kogs-www.informatik.uni-hamburg.de/~neumann/HBD-SS-2008/KBSI-Lecture11.pdf

- http://users.isr.ist.utl.pt/~mir/cadeiras/robmovel/Markov-Localization.pdf

- http://forums.trossenrobotics.com/

- http://cogrob.ensta-paristech.fr/loopclosure.html 

- http://www.cs.cmu.edu/~motionplanning/lecture/Chap8-Kalman-Mapping_howie.pdf 
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Thank you for your attention!

Any Questions?
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