Intelligent Robotics – 17.04.2014

"Where Am I?" - An Introduction towards Localization, Mapping and Navigation in Modern Robotic Systems

Presentation by

Sebastian Starke

University of Hamburg Department of Computer Science

Overview

Contents

- Introduction & General Knowledge
- Sensors
- Basic Concepts
- Algorithms

- Robots find themselves asking this question frequently!
- Localization is one of the most fundamental problems in robotics of all time! (...and will probably always be!)
- Localization sounds pretty easy... but it completely isn't!

So, why is Localization important?

- Knowing the actual location *(and being able to navigate)* is essentially important for **autonomous robots**!
- If a robot does not know where he is, it might be hard to determine **what to do next**!
- Robots have to **react adaptively** to their environment, which of course can dynamically change! *(imagine your dog fluffy or a small child)*

Let's split it up into 3 keywords:

(which are of course always in a correlation to each other)

Localization

Navigation

Mapping

Localization...

• ... is basically the act of *finding one's location* within a map. *(those are mostly in 2D, but can also be in 3D!)*

"Location", "Pose" or *"Position"* actually means the
 X and Y coordinates connected with the heading direction (*orientation*) of the robot within the map!

 $l = (x, y, \theta)$

Localization...

Global Localization

 \rightarrow The robot is not told its initial position

 \rightarrow It has to solve a much more difficult localization problem

Local Localization

 \rightarrow One the robot has localized itself against a map, but it has to keep track of its actual position.

Navigation...

• ...describes the act of *moving through* a *known* or *unknown environment*.

Note: This also affects the part of localization!

Mapping...

 ...is the problem, to *generate a map* from a completely unknown or less known map or to keep updating a given map.

What if we don't have a map?

We have both to...

<u>build the map</u> AND <u>to do localization</u>

... <u>at once</u>!

(This idea is generally known as SLAM) ("Simultaneous Localization and Mapping"... later more!)

- Using sensors is essentially needed to grant information to the robot!
- Sensors always underly a certain noise (mostly normal-distributed) which can also differ in some environment! (f.e. Ultrasonic-sensors)
- Almost always > 1 sensor is used what leads to towards sensor-fusion! (In general, this is done by the Kalman-Filter, later more...)

Odometry-sensors

- → Magnetic compass (absolute heading)
- → Gyroscope (change of heading)
- → Acceleration sensors (acceleration)
- → Tachometer (speed, distance)

<u>Distance-sensors</u>	<u>Sound-sensors</u>	<u>Cameras</u>
→ Infrared	→ Microphone	$\rightarrow 2D$
→ Laserscanner		\rightarrow 3D

<u>List of various sensors for robotic systems:</u> http://www.robotshop.com/en/sensors.html

• GPS (Global Positioning System)

 \rightarrow exact up to some metres

One Improvement: Differential GPS

- → A fixed GPS-station on the world (location known) is able to calculate the error by using GPS
- → If the robot (location unknown) calculates the distance to the satellite knowing the approximate error, it can be much more exact! (up to centimetres)

- One more improvement of GPS is RTK (*Realtime Kinematic Satellite Navigation*)
 - → Technique, used to enhance the precision of satellite-based positioning systems even more!
 - \rightarrow Uses measurements of the signal's carrier wave rather than the information content of the signal.
- **RTK+GPS = CPGPS** (Carrier-Phase-GPS)

Odometry Sensors

┿

Indoors?

We might use IR-sensors or 2D-Laserscanners since we are mostly concerned with obstacles!

<u>Out</u>doors?

We might use GPS / CPGPS or even a Compass-sensor to localize ourself!

Note: GPS does <u>not</u> work properly inside buildings!

Use the right sensors for the right applications! • Noise induces a limitation of the consistency given by sensor readings! • Not handling these errors causes them to accumulate rapidly! • Sensor-Fusion is extremely important!

Basic Concepts

Navigation \rightarrow Localization \rightarrow Mapping ... is done in an iterative way!

- We will typically do the following:
 - 1 Move some distance (this will induce some error!)
 2 Take some sensor measurements (get some noisy data)
 3 Process/Fuse these sensor data (reduce the noise)
 4 Localize ourselves against the map (using the data)
 5 If we are building a map as well → update it
 6 Set a new course if necessary and repeat

Basic Concepts

There are two fundamental strategies helping us to localize ourselves...

Probabilistic Methods

 → Play some very important
 role over all! (f.e. Bayesian-Belief-Networks for multiple
 sensor readings)

Prior Knowledge

→ This is mostly needed, the more accurate, the better!
(f.e. sensor-noise, start-pos, ...)

<u>Probabilistic Methods</u>

 \rightarrow concerned with the "uncertainty" of events occurring!

- Assume X is some event, so P(X) is its probability to happen (between "0" and "1", normal-distributed)
- In context of localization:
 - → The most likely location is the one with the greatest likelihood!

Prior Knowledge

 \rightarrow provides us infomation about the system and environment!

- Probabilistic approaches are always concerned with Prior Knowledge!
- It is always important to have **good** and **meaningful** priors!

The Algorithms for Localization are often being combined!

 $\rightarrow \mathbf{Extended}\textbf{-}\mathbf{Kalman}\textbf{-}\mathbf{Filter}\textbf{-}\mathbf{SLAM}$

 \rightarrow Particle-Filter-SLAM

 $\rightarrow Markov\text{-}Chain\text{-}Monte\text{-}Carlo\text{-}SLAM$

 \rightarrow ...

Kalman-Filters

- Describe a class of several filters dealing with mathematical equations (linear, extended, unscented, ...)
- Mostly **pre-applied** to other algorithms by doing **sensor-fusion** from normal distributed error measurements
- Use knowledge of the probabilistic sensor errors and dynamics, the known noise and the system!
- **GOAL:** Recursively remove the noise from the sensor data!

Kalman-Filters (example: linear)

The *(linear)* Kalman-Filter estimates the state of a noisy linear dynamic system

 \rightarrow Given a linear dynamical system:

$$x(k+1) = F(k)x(k) + G(k)u(k) + v(k)$$

$$y(k) = H(k)x(k) + w(k)$$

...in which:

x(k) is the n-dimensional state vector (unknown)

u(k) is the m-dimensional input vector (known)

y(k) is the p-dimensional output vector (known, measured)

F(k), G(k), H(k) are appropriately dimensioned system matrices (known)

v(k), w(k) are zero-mean, white Gaussian noise with (known)

covariance matrices Q(k), R(k)

Kalman-Filters

The great things about Kalman-Filters

Noise smoothing

Good state estimation

Recursive (low computational cost!!!)

Markov-Localization

Robot-pose $l = (x, y, \theta)$

- Solution is born out of probability theory.
- Tracks the robot's belief "states" of positions by each step

 - "Prediction Phase" \rightarrow Where the robot thinks he is

 - "Update-Phase" \rightarrow The probabilities of all states get updated
- Has a configuration space that is a finite discrete number of possible robot poses in the map. Note: There can be hundred to millions of possible positions!

Sebastian Starke

Markov-Localization

Sebastian Starke

Markov-Localization

→ Video for Markov-Localization using Bayesian Belief Networks: https://www.youtube.com/watch?v=XFoGDvTOR28

Markov-Localization

The Markov-Localization encounters problems in dynamic environments, but works well in static environments!

On large maps:

Quite high computational costs to update the cells, since at each iteration the probability of each state within the entire space is updated!

Particle-Filters

• Monte-Carlo-Localization (MCL) (Subgroup of Markov-Localization)

Robot-pose $l = ((x, y, \theta), p)$

- \rightarrow *Start:* uniformly distributed particles over the map
- → With each step, particles with a smaller likelihood than others are replaced by new ones in accumulated areas
- → Over the iterations, the particles converge against the area(s) where the robot's likelihood to be is the greatest!

Note: Computational costs might also be quite high if there are hundreds or thousands of particles!

Particle-Filters

Particle-Filters

- Adaptive-Monte-Carlo-Localization (AMCL)
 - → Limited minimum and maximum number of particles *Note: NEVER less and NEVER more*!
 - → This reduces the potential computational cost dramatically! *(great advantage to other algorithms)*

By the way: This one is used in ROS :-) See the video below! https://www.youtube.com/watch?v=F6T3dtXviNY

SLAM ("Simultaneous Localization **and** Mapping")

- Important, because there might be several reasons for which a map does not have to exist already! (or is only barely started)
- We need a technique, that is able to automatically explore and/or to update a new *(unknown or less known)* environment!
- The "*Chicken And Egg"* problem occurs!

The "Chicken and Egg"-problem occurs:

To apply our sensor measurements on our map, we have to know our localization, but... What if our map is incomplete or barely started?

How can we localize ourself?

SLAM ("Simultaneous Localization and Mapping")

• 1st characteristic question (Mapping-Part):

- → What does the world around me look like?
- → Sense from various positions; integrate measurements to produce map; assume good knowledge of position
- 2nd characteristic question (Localization-Part):
 - \rightarrow Where am I?
 - → relate sensor readings to a world model; compute location relative to this model; assume a good world model!

SLAM ("Simultaneous Localization and Mapping")

- At each state: the robot (red) takes sensor-measurements
- The greyscale gives a likelihood for a cell to be either occupied (black) or empty (lightgrey)
- We might start with P(X)=0.5for each cell in the beginning
- GOAL: Predict the right labels

SLAM ("Simultaneous Localization and Mapping")

ICP (Iterative-Closest-Points)-Algorithm

- Tries to minimize the difference between two point clouds
- Often used to reconstruct 2D or 3D surfaces from different scans Finds the best matching maps!

Loop-Closure (Topological Maps)

Imagine, the robot explored his environment and collected a lot of data by the paths he went $\rightarrow A$ question might occur:

Have I already been here before?

Loop-Closure connects paths that are very likely to belong together while trying to minimize the error of the generated map!

SLAM ("Simultaneous Localization and Mapping")

Outlook

One last inspiring video of what is possible in research by using only a

- Laptop-Camera
- A Biologically Inspired SLAM System

https://www.youtube.com/watch?v=-0XSUi69Yvs

Outlook

Literature

- Robot Localization and Kalman Filters (Rudy Negenborn, Thesis, Utrecht University, 2003)
- Introduction to Autonomous Mobile Robots, R. Siegwart and I. Nourbakhsh, The MIT Press, Cambridge, Massachusetts 02142, ISBN: 0-262-19502-X, 2004
- Approaches to Mobile Robot Localization in Indoor Environments (*Patric Jensfelt, Thesis, Royal Institute of Technology, 2001*)
- Markov Localization for Mobile Robots in Dynamic Environments (Fox, Burgard, Thrun, 1999)
- Lokalisierung auf Basis kontinuierlicher und diskreter Drehwinkelveränderungen zwischen Landmarken in semistrukturierten Umgebungen *(Immo Colonius, Diplomarbeit, Universität Bremen, 2009)*
- http://kogs-www.informatik.uni-hamburg.de/~neumann/HBD-SS-2008/KBSI-Lecture11.pdf
- http://users.isr.ist.utl.pt/~mir/cadeiras/robmovel/Markov-Localization.pdf
- http://forums.trossenrobotics.com/
- http://cogrob.ensta-paristech.fr/loopclosure.html
- http://www.cs.cmu.edu/~motionplanning/lecture/Chap8-Kalman-Mapping_howie.pdf

End Of Presentation

Thank you for your attention!

Any Questions?

Sebastian Starke