GPU for Scientific Computing



Contents

.Introduction
What is GPU

.GPU for Scientific Computing
-K-Means Clustering
-K-nearest Neighbours

. When to use GPU and when not
. Commercial Programming GPU Platforms
. References



What 1s GPU

Graphics Processing Units
Several Small Cores

Optimized for memory intensive workload, Geometric Calculations , and
fast rendering

High support for parallelization
Perfect as Stream Processor



K-Means Clustering

. Heuristics solution to the NP-Hard clustering problem

. The common method work as following:
.Create an initial seed clusters

-Iteratively assign each element to a cluster that minimizes your selected criteria
(cluster mean for K-means)

-Repeat till convergence reached (no new assignment or No of iteration reached)



(@)
(&
—
D
o’
=
O
)
-
qe)
(¢b)
=
X




K-Means Clustering

Metric calculation per point is independent .

A GPU Implementation involves
.Copy the whole data for processing once (it never changes)

-Iterate over points in parallel and calculate the clustering metric per point
. Copy the data back to the main memory and use CPU to create the new clusters
.Copy the clusters info back to the GPU memory

-Repeat till convergence



K-Means Clustering

Performance ve, Number Of Points

g T T T T T l l
K-weans GPU ————
k-meanz CPU +
5 |- -
4 -
5
-
il
z
I 3 - —
2
4
=
]
&
2 j- —
1 = —
o I I I I I I !
0 S0y 10000 150000 200000 200000 200000 50000 400000



K-Nearest Neighbours

.k closest training examples in the feature space

. Majority vote for classification, values average of regression

. Distance measurement can be Euclidean distance




K-Nearest Neighbours

Generate probability image by pixel classification of new mammograms
Training feature space 200M data point 4 minutes per image

Clustering the Training feature space reduced it to 50M 1.65 minute per
Image

GPU implementation for KNN along with NVIDIA Quadro FX 1700M
with 32 GPU Cores

On Average 12 Seconds only per image



When to use GPU and when not

Researchers tend to optimize their GPU implementation much more than a
CPU one

Cache bandwidth for a CPU i1s much better than for a GPU

This may lead to un-utilized GPU waiting for reusable data to be fetched
from memory

A multipass algorithms will need accumulating results which is not easy in
GPU right now.

Better at calculation intensive tasks



Commercial GPU Programming Platforms

» CUDA » OpenCL

Only NVIDIA hardware

Comes as one development
package from NVIDIA

Better Math library built-in
Better Marketing strategy

NVIDIA hardware IS more
expensive

Multiple higher language wrapper
available

Better developer support by
NVIDIA

The ultimate standard

Wider range of processor
architectures support

Supplied by multiple vendors
Harder to debug

Multiple higher language wrapper
available



References

{Data Visualization and Mining using the GPU} Sudipto Guha, Shankar Krishnan
,Suresh Venkatasubramanian

Debunking the 100X GPU vs. CPU Myth: An Evaluation of Throughput
Computing on CPU and GPU : Victor W Lee et al

GPU Acceleration of Iterative Clustering : Jesse D. Hall ,John C. Hart

Understanding the Efficiency of GPU Algorithms for Matrix-Matrix
Multiplication : K. Fatahalian, J. Sugerman, and P. Hanrahan

k-nearest neighbour search: fast GPU-based implementations and

application to high-dimensional feature matching : Garcia and E. Debreuve and
F. Nielsen and M. Barlaud

Intra-operative Real-Time 3-D Information Display System based on
Integral Videography : Hongen Liao et al

On detecting abnormalities in digital mammography: Waleed et al.



References

http://streamcomputing.eu/blog/2011-06-22/opencl-vs-cuda-
misconceptions/


http://en.wikipedia.org/wiki/Graphics_processing_unit
http://www.nvidia.com/content/global/global.php
http://wiki.tiker.net/CudaVsOpenCL

Questions?




