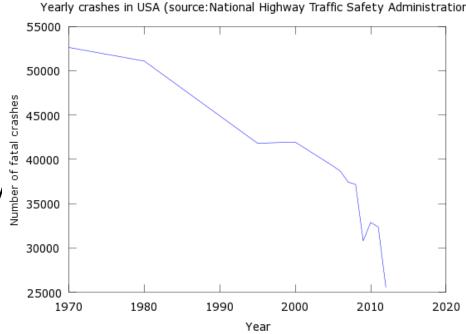


Intelligent cars

by Vidwath Raj

University of Hamburg 25.11.2013 1

Outline



- Introduction
- What is an intelligent car?
- Collision avoidance by ABS and Steering
- Multi-target threat assessment
- Algorithm
- An Example: Mercedes Benz
- Summary
- References

Introduction

- Ever since automobiles were introduced to the mass market, safety has been an issue.
- In 1959 Volvo introduced the first three-point seat belt
- In the 1980s the first driver support system was introduced on a large scale
- The first ACC system was introduced in 1999 by Mercedes
- In 2002 Nissan introduced the first lane-keeping assist system
- Crash rate is decreased significantly with the advancement of technology

What is an intelligent car?

- An **Intelligent car** should be able to perceive environment, analyze, and act upon it suitably in legitimate real-time.
- Lane change warning
 - Alerts the driver when changing or entering a lane about any potential threats by optical or acoustic warnings
- Lane keeping/tracking
- Parking assistance
- Automatic braking and collision avoidance
- Traffic sign surveillance
- Adaptive cruise control
 - Adapts to the velocity and distance based on the pace of the car in front

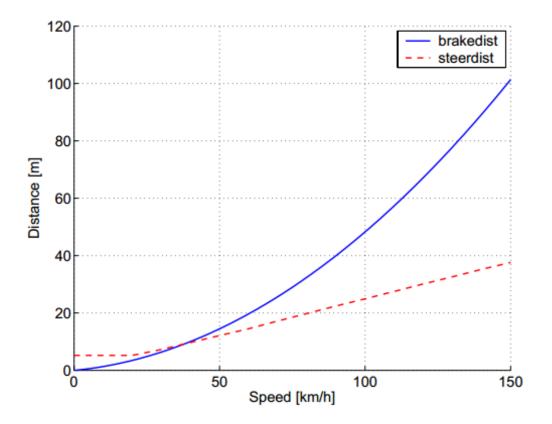
What is an intelligent car?

- Vehicle tracking
 - Adapts to the velocity , distance and direction based of the car in front
- Decision making
- Safety is the main reason behind the evolution of Intelligent cars
 - Passive safety include seatbelts, airbags etc.
 - Active safety include lane tracking, adaptive cruise control, collision avoidance etc.
- Intelligent car classification
 - Semi Autonomous
 - Autonomous

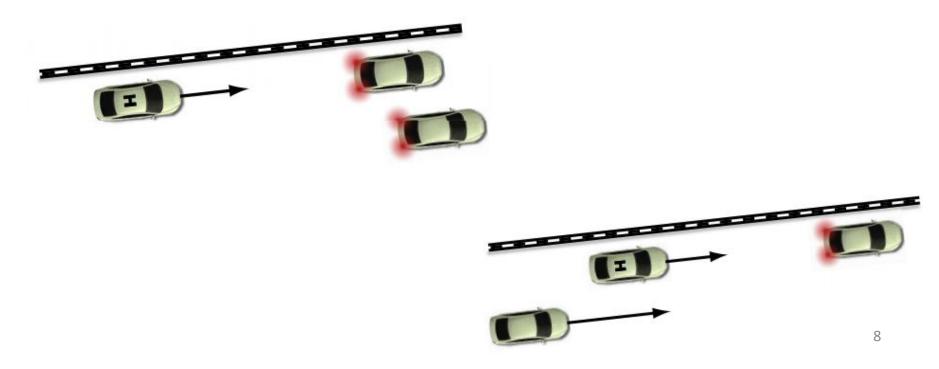
Collision Avoidance

- Collision can either be avoided by braking or by steering.
- **ABS** is typically achieved by sensors that monitor forward zone of the vehicle. Senses objects and warns before an impact and applies autonomous braking if the applied brake is insufficient

• ABS is usually applied when time-to-collide(TTC) becomes less than a predefined time.


```
TTC= -d/v
```

Where d= distance between the host and the obstacle And v=relative velocity between the host and the obstacle


Collision Avoidance ABS vs Steer

 In low speeds(40km/h), braking can be commenced later than steering. In high speeds, braking should be commenced before steering

Collision avoidance-Introducing multi target

- By processing multi targets simultaneously, better collision avoidance can be achieved. i.e., when steering is not an option because
 - Another vehicle is blocking the steering path
 - Another faster moving vehicle is entering the steering path
- In that case ABS in the vehicle could take these objects into consideration and commence braking much earlier

Threat assessment(single target)- When to commence an intervention?

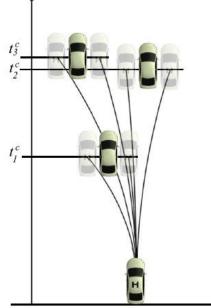
- An intervention is called only when the collision is unavoidable(almost) to minimize the number of incorrect of false interventions
- One way to achieve this is by calculating Brake Threat Number(BTN) and Steering Threat Number(STN)

 $BTN = \frac{a_{long,req}}{a_{long,max}}$ and $STN = \frac{a_{lat,req}}{a_{lat,max}}$

- where , $a_{long,req}$ =required deceleration to avoid collision $a_{long,max}$ =maximum available deceleration $a_{lat,req}$ =required lateral acceleration to avoid collision $a_{lat,max}$ =maximum available lateral acceleration
- When BTN or STN equals 1. The auto-brake system may intervene

Threat assessment-multi target

 In case of multi targets an algorithm is used to get an "optimal" maneuver, which can be formulated by


where *m* is a real function m(t) which defines the maneuver, *M* is the set of conflict free maneuvers and C_m is the "cost" function.

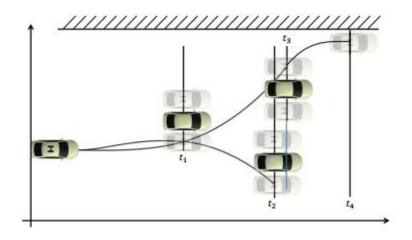
- Optimal maneuver will be of cost zero. i.e., to go straight forward
- Since an object can be passed either by left or right, we have
 2 maneuvers per object
- The result is a kind of search tree, with each branch ending when either all objects are cleared, or when no escape path is found, i.e., when the path is blocked.
- Input to the algorithm is state of all objects. Eg, position, velocity, TTC
- Algorithm ends if an optimal path or no escape path is found

- 1. If there are no objects or barriers, then abort the algorithm and return the cost zero.
- 2. For each object i, compute the maneuver/time pairs p^R_i= (m^R_i, TTC_i) and p^L_i= (m^L_i, TTC_i). Form sets M^R={p^R_i, i=1...} and M^L={p^L_i, i=1...}
- For each barrier j, compute the maneuver/time pairs p^R_j= (m^B_j, TTC_j). Form set M^B={p^B_i, i=1...}.
- 4. Form the common set of maneuvers $M = M^R U M^L U M^B$.

- 5. Add a maneuver/time pair $p_0 = (m_0, t_0)$ to the set M where m_0 is the cheapest possible maneuver not considering any objects or barriers and $t_0 = \infty$.
- 6. Remove all conflicting maneuver/time pairs i.e., if a pair (m, t)∈M lead to a conflict with an object i with TTC_i < t or any of the barriers, then remove the pair from M.
- 7. If the maneuver p_0 is still in the set M, i.e., if p_0 is conflict free, then abort the algorithm and return the cost $C_m(p_0)$. Typically $C_m(p_0) = 0$.

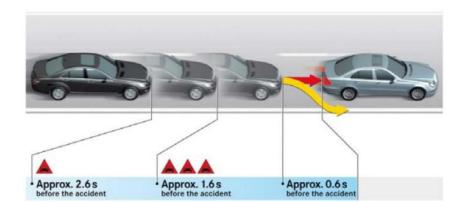
- 8. If the M is empty, then there are no escape paths, return the cost ∞.
- 9. For all remaining maneuver/time pairs p^k = (m^k, t^k) in the set M, repeat:
 - a) Predict the state of all objects at time t_k, i.e., compute x^{tk}_i = P_{obj}(x⁰_i,m^k, t^k).
 b) Predict the state of all barriers at time t_k, i.e., compute y^{tk}_j = P_{barrier}(y⁰_j,m^k, t^k).
 c) Predict the host vehicle state at time t^k, i.e., compute z^{tk} = P_{host}(z⁰,m^k, t^k).
 d) Remove all objects with TTC < t^k.

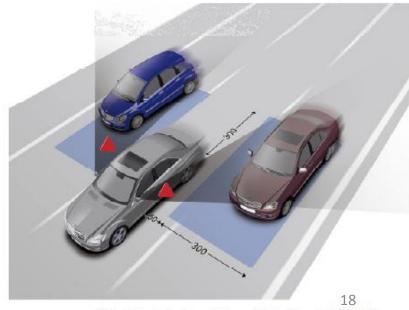
e) Call the algorithm again with the reduced set of objects and all predicted states x^{tk}_{i} , y^{tk}_{j} and z^{tk} . For each maneuver, the algorithm will generate new maneuvers for the second step in the sequence. The algorithm returns a cost, say C_k^{pred} associated with each predicted scenario.


f)Form $C_k = max(C_m(p_k), C_k^{pred})$

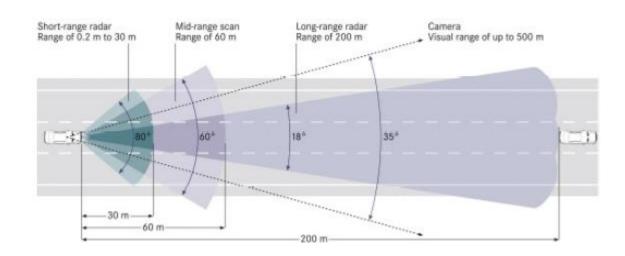
10. Return $\min_k(C_k)$.

Algorithm-complexity and enhancements


- Computational cost: If the number of obstacles is n, then the number of maneuvers can be approximately 2n³/3.
 - This means with 5 objects, around 80 maneuvers has to be computed.
 - Up to 10 objects is not a problem for current hardware
- One of the disadvantage is jerk.
- Smoothing Splines can be used to have smoother trajectory


- Mercedes-Benz uses two short-range radars (SRR) in the front and two in the rear bumper, one mid-range radar (MRR) and one long-range radar (LRR) to realize the following functions:
 - Brake Assist and Brake Assist PLUS
 - Uses 2 UWB SRR sensor working at 24GHz and 1 LRR working at 76.5GHz to monitor the front zone
 - Disadvantage is the system works only if the driver gives brake command stepping on the brake
 - DISTRONIC PLUS for Adaptive Cruise Control and Stop&Go
 - Operates speeds between 0 to 200km/h and therefore coping with the Stop&Go traffic policy
 - PRE-SAFE Brake

Example: Mercedes Benz


- Blind Spot Assist
 - Uses 2 SRR sensors housed on the side-rare of the vehicle to alert driver while changing the lane
- Lane Keeping Assist
 - A camera is used to detect road markings.
 - Image processing unit sends data to electronic control unit which analyses if the car is leaving the lane intentionally
 - Operates at speed 60-250km/h

Example: Mercedes Benz

- Mercedes Benz uses Ultra wideband Radars because of the advantages like,
 - Direct distance and speed measurement
 - Robust against weather influences and pollution
 - Unaffected by light
 - Measurement of stationary and moving objects on and in the vicinity of the road
 - Invisible integration behind electromagnetically transparent materials (for example bumpers).

Summary

- Safety
- At high speeds collision can be avoided by steering
- Multi target threat assessment is done to foresee steering maneuver is possible
- ABS is applied only if there is no escape path
- Smoothing splines are applied to the trajectory to minimize jerk
- Radars have advantage over Lidar and cameras in automotive industry

References

- A. Eidehall, "Multi-target threat assessment for automotive applications," in Proceedings of the IEEE Intelligent Transportation Systems (ITSC), Washington D.C., USA, September 2011, pp. 433 – 438
- David Madas, Mohsen Nosratiniaz, Mansour Keshavarzy, Peter Sundstrom, Rolland Philippseny, Andreas Eidehall, Karl-Magnus Dahlen, "On Path Planning Methods for Automotive Collision Avoidance" 2013 IEEE Intelligent Vehicles Symposium (IV) June 23-26, 2013, Gold Coast, Australia
- E. Coelingh, A. Eidehall, and M. Bengtsson, "Collision warning with full auto brake and pedestrian detection a practical example of automatic emergency braking," in *In proceedings of the IEEE Intelligent Transportation Systems, Funchal, Portugal, 2010, pp. 155–160.*
- Jonas Jason, "Collision Avoidance Theory with Application to Automotive Collision Mitigation", Department of Electrical Engineering Link[®] oping University, SE–581 83 Linkoping, Sweden Linkoping 2005
- http://www.nhtsa.gov/

Thanks and questions..?