

Wireless Sensor Networks (WSN)

Tanyar Pooyeh 2pooyeh@informatik.uni-hamburg.de Intelligent Robotics - winter semester 2013/14 – Nov 11, 2013

Outline

- Multi-hop Wireless Networks MANETs, VANETs, WSNs
- Routing in WSNs
- Opportunistic Routing Algorithms
- Proposed Opportunistic Routing: Partitioned Opportunistic Routing

Introduction to Multi-hop Wireless Network (MWN)

- Wireless network that uses two or more wireless hops to convey information.
- Group of nodes which are connected by wireless communication links.
- Broad Military and Civil applications support.
- ► Low cost of Deployment.

Multi-hop Wireless Network (MWN) Scenarios

Scenarios of MWNs:

- Mobile Ad-Hoc Network (MANET)
- Vehicular Ad-Hoc Network (VANET)
- Wireless Sensor Network (WSN)

Mobile Ad-Hoc Networks (MANETs)

- A set of mobile devices that are connected to each other by wireless links and are selfconfigurable.
- The nodes are mobile and can move freely and independently in any direction, resulting in frequent change of network topology and wireless links.
- The primary challenge is maintaining the routing information at each node to be used in routing issues.

Vehicular Ad-Hoc Networks (VANETs)

- ➢ Use of a transceiver for communication.
- Used to inform other vehicles of emergency situations and avoiding vehicle collisions.
- > Types of VANETs:
 - Vehicle to Vehicle (V2V)
 - Vehicle to Infrastructure (V2I)

Wireless Sensor Networks (WSN)

- A Wireless Sensor Network (WSN) is composed of a large number of distributed "sensor nodes" and one or more "base stations".
 - Sensor Nodes are in charge of gathering information
 - Base Station is responsible for storing and processing data
- Used in monitoring various physical or environmental conditions.
- Large scale networks; The key challenge: energy efficiency.

WSN Architecture

Components of a Sensor Node in WSN

- Processing Unit
- Sensing Unit
- > Transceiver
- ➢ Power Unit

Wireless Sensor Networks

Routing Protocols and Routing Challenges in WSNs

- Routing protocols are proposed to find a path from a source to destination.
- Main goal: Finding paths with minimum energy consumption.

Challenges due to distinct Characteristics:

- Global addressing scheme; High number of nodes results in high overhead of ID maintenance.
- Data Collection; Impossible use of GPS in sensor nodes (up to now).

Routing Challenges in Wireless Networks

Some Routing Algorithms Challenges are:

Broadcast nature of wireless medium

- Broadcast medium contention affects delay and throughput.
- >Unreliability of wireless links
 - Variation in wireless links might lead to loss of the path.
- > Mobility property of Wireless networks
 - Changes in network topology results complicated path maintenance.

Opportunistic Routing (OR) in WSNs

- The set of all possible paths that packets may traverse from a source to a destination.
- Neighbors can potentially receive the transmitted packet.
- Use of multiple potential paths to deliver packets to destination.
- Candidates coordinate for forwarding the packet.

OR Terminology

➤ Candidate Set (CS)

Set of nodes selected by network layer to forward a packet.

OR Terminology (Contd.)

- Expected Transmission Count (ETX)
 - The number of expected transmissions of a packet necessary for it to be received without error at its destination.
- Expected Any-Path Transmission (EAX)
 - An extension of ETX in OR
 - The number of transmissions needed to deliver a packet from a source node to destination through OR.

Opportunistic Routing

- Routing goal: Finding the shortest path with maximum throughput to destination.
- ➢ Using Candidate Set as next hop.
- Union of all possible paths from a source to destination.

Opportunistic Routing Performance

- Opportunistic routing performance depends on several issues:
 - Choosing forwarding candidates
 - Prioritization Problem

Extremely Opportunistic Routing (ExOR)

- > One of the earliest Opportunistic Routings.
- Selects one of the nodes in Candidate Set as the forwarding relay.
- Process continues until the packet is received by destination.

Least Cost Opportunistic Routing (LCOR)

- OR: Transmits packets to any node in Candidate Set.
- Q: How to assign the set of CS to minimize the cost of forwarding a packet to destination
- LCOR: finds the optimal Candidate Set; minimize expected number of transmission.

Some other Opportunistic Routing Algorithms

Minimum Transmission Selection (MTS)

- Optimal candidate set for every specific destination
- Moving backwards to select candidate set
- Geographic Random Forwarding (GeRaF)
 - The sender does not know about the next relay
 - Relaying node is the closest node to destination

Comparison of Opportunistic Routing Algorithms

Routing Algorithm	Papers	Approach	Outperformance reasons (Advantages)
ExOR	Biswas & Morris, 2005	 Uses one of the nodes in candidate set to make forwarding decision 	 More probability of reception for each transmission
		 Operates on batches of packets 	 Increase total network capacity Less average number of transmissions
LCOR	Henri Dubois- Ferriere, 2007	 Finds optimal candidate set Generalization of single-path routing 	 Minimize expected number of transmissions
MTS	Yanhua, et al., 2009	 Optimal candidate set for each destination 	 Uses the lowest cost node to destination Maximum number of candidates can be limited
<u>GeRaF</u>	Michele Zorzi, 2003	 Packets are routed in best-effort basis Uses a type of broadcast address 	 No needs of topology information Small latency

Drawbacks of some Opportunistic Routing Algorithms

LCOR:

Change of routing table and candidate set upon each node's movement.

MTS:

All nodes require to know about general network information.

The Most Important one; Scalability Problem

Partitioned Opportunistic Routing (POR)

- Each node uses local information and neighbors position
- Very low computational and communicational overhead

Overhead is caused by collection of information from all nodes in the network due to each movement.

POR Flowchart

POR Flowchart (Contd.)

Selecting Candidate Grid & Grid Prioritization

POR Implementation

Neighboring Nodes in Neighboring Grids (Initial Step)

POR Implementation (Contd.)

Neighboring Nodes in Neighboring Grids (Step two and three)

Selection of candidate node in candidate grid.

Selecting potential candidate nodes. In case the candidate node leaves the grid

Using different grid sizes to improve performance.

Summary

> Multi hop Wireless Networks (MWN)

- Wireless Sensor Networks (WSN)
 - Architecture
 - Routing Protocols and Challenges
- Opportunistic Routing in WSNs, Comparison and drawbacks (ExOR, LCOR, MTS, GeRaF)
- Partitioned Opportunistic Routing (POR)
 - How POR Works
 - Improvements on POR as future work

References

- Biswas, S., & Morris, R. (2005). ExOR: opportunistic multi-hop routing for wireless networks.
- Darehshoorzadeh, A., Cerdà-Alabern, L., & Pla, V. (2011). Modeling and comparison of candidate selection algorithms in opportunistic routing.
- Henri Dubois-Ferriere, M. G., Martin Vetterli. (2007). Least-Cost Opportunistic Routing.
- Michele Zorzi, R. R. R. (2003). Geographic Random Forwarding (GeRaF) for ad hoc and sensor networks: multihop performance.
- Yanhua, L., Wei, C., & Zhi-Li, Z. (2009, 12-15 Oct. 2009). Optimal forwarder list selection in opportunistic routing.

Questions ?