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Multi-RCCL User’s Guide

John Lloyd and Vincent Hayward

Abstract

This manual is a tutorial-style document which describes the robot programming system Multi-
RCCL, Release 4.0. The primary sites for this system are McRCIM (McGill University) and the
Jet Propulsion Laboratory (JPL).

Copyright c1988, 1991 by John E. Lloyd and Vincent Hayward.

Permission to use, copy, modify, and distribute this document, and the RCCL/RCI software, is
granted for non-commercial and research purposes only, and providing that (1) no fee is charged
except the minimum necessary to cover copying and shipping expenses, and (2) all copyright no-
tices are preserved and the authors are fully acknowledged. All other rights are reserved. The com-
mercial sale of RCCL/RCI, its supporting documentation, or a system which contains RCCL/RCI
as a component, is prohibited unless permission is obtained from the authors.

Since RCCL/RCI is licensed free of charge, it is provided ”as is”, without any warranty, including
any implied warranty of merchantability or fitness for a particular use. The authors assume no re-
sponsibility for, and shall not be liable for, any special, indirect, or consequential damages, or any
damages whatsoever, arising out of or in connection with the use of the software.
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1

1. Introduction

Multi-RCCL is a C package for implementing task level robot control applications under UNIX. It
provides data types useful for robotics applications, such as vectors and spatial coordinate transfor-
mations, in combination with routines to specify robot arm motions. Movements can be requested
to target positions in either Cartesian or joint coordinates, and several arms can be operated from
the same program. Arm trajectories are created by a special background task which runs at a fixed
sample rate (usually 50 to 200 Hz., depending on the system). Application routines can be defined
which modify the trajectories based on real-time sensor inputs.

The output from the trajectory task consists of a set of joint-level position commands, which are
assumed to be implemented by some low level servo controller (such as the 1 Khz PID controllers
for the PUMA). RCCL cannot be used to implement algorithms at the joint servo level, although
people doing such work might find it interesting to place RCCL on top of such a system 1. Depend-
ing on the control rates required, it is sometimes possible to implement servo level algorithms in
RCI (the level beneath RCCL); those interested should consult the RCI User’s Guide.

1.1 History

RCCL (which stands for Robot Control C Library) was originally written at Purdue University in
1983 by Vincent Hayward ([Hayward and Paul 1986]). This might be called Release 1.0. A slightly
enhanced version (Release 2.0) was produced at McGill University in 1985 ([Lloyd 1985]). Sig-
nificant changes were undertaken between 1987 and 1988, when the multi-robot and multi-CPU
capabilities were added ([Lloyd, Parker, and McClain 1988]). This work was mainly undertaken
at McGill University and at the General Electric Advanced Technology Laboratory (New Jersey)
under contract to the Jet Propulsion Laboratory (JPL). The version delivered to JPL in the fall of
1988 was defined to be Release 3.0. The work done in creating the current Release 4.0 consisted
mostly of fixing bugs, improving the documentation, and doing a general “cleanup”. This was done
mostly during the fall of 1989.

Multi-RCCL is the “official” name applied to RCCL releases 3.0 and 4.0.

1.2 Required Background

It is always difficult to describe the necessary background for using a technically oriented sys-
tem like RCCL. One should certainly be familiar with the C programming language [Kernighan
and Ritchie 1978], and also with the UNIX operating system. A thorough understanding of the1RCCL could then be used to drive the servo level. This has in fact been done at the Jet Propulsion Laboratory.
Interfacing RCCL to a lower level system entails some code work and is beyond the scope of this manual, but is not
technically difficult. Consult the RCI User’s Guide and the RCCL/RCI Startup and Installation Guide for details on
what the low level interface looks like.

RCCL/RCI Release 4.2, December 12,1995



2 1. INTRODUCTION

robot control and programming techniques described by Paul in [Paul 1981] is also highly desir-
able. Paul’s book is particularly important, since RCCL is in many ways just an implementation of
the ideas described there (although one can probably omit chapters 6, 7, and 10 on first reading).
Some concepts relating to real-time programming might also be useful; for instance, it would be
good if the user were familiar with the terms “data access collision” and “re-entrant code”. There
are many books available on this subject; this author’s favorite is [Allworth 1981].

1.3 System Architecture

An RCCL program, when it runs, sets up a real-time background task that generates the trajectories
necessary to satisfy the motion requests specified by the main part of the program. The background
task, which we will generally refer to as the trajectory generator, executes independently of the
main program at a periodic sample rate (50 Hz. is common), and is mostly invisible to the RCCL
programmer. However, there are ways for an RCCL program to provide application routines that
are executed within the trajectory generator. Such routines are run in real-time, periodically, at the
same rate used by the trajectory generator, and can be used for applications involving control or
sensor feedback.

The main RCCL program, which executes like any other UNIX program, is often referred to
as the planning level, or planning task. The trajectory generator, plus any application routines run-
ning within it, is usually referred to as the control level. Communication between the planning and
control level is implemented using shared memory (see figure 1).

The trajectory generator is implemented using RCI (Real-time Control Interface), which is a fa-
cility for spawning high-priority real-time tasks from a UNIX program (see the RCI User’s Guide).
The code that implements the trajectory task is loaded into the RCCL program along with all the
other library routines. However, the task is not a UNIX process, and does not have access to the
UNIX system services. As a consequence, RCCL routines executing at the control level do not have
access to UNIX system services either. The restrictions which apply to control level functions are
summarized in section 5.3.

Some implementations of RCI permit control tasks to be run on auxiliary CPUs attached to the
same backplane as the UNIX CPU. If this is the case, then the trajectory generator can be split into
several control tasks, each one running on a separate CPU. Figure 2 shows this for a system with
one auxiliary CPU available. One trajectory task is created per CPU, and the computation is divided
up on a per-robot basis, i.e., any given robot is still controlled by only one trajectory task, but the
computation for several robots can be done concurrently by tasks on different CPUs. All the tasks
run in sync, at the same rate, and so to the planning level they look very much like one task. The
increase in available CPU power can be used in two ways: (1) to run the trajectory generator at a
faster rate, and (2) to permit the execution of more complex control level applications. Extra CPUs
can also be used to drive virtual manipulators, which are not attached to any physical robot (see
section 8.2).

To run a trajectory task on an auxiliary CPU, the system simply copies the necessary parts of
the RCCL program into that CPU and executes it using a small kernel that is provided by RCI (it
is assumed that the auxiliary CPUs are instruction compatible with the host CPU). This happens
automatically: as an RCCL program identifies the different robots it wants to control, the system

RCCL/RCI Release 4.2, December 12,1995



1.3. SYSTEM ARCHITECTURE 3

shared
memory

main RCCL
program

trajectory
generator

application
routines

Figure 1: The main RCCL program and the trajectory generator.

assigns each robot to a trajectory task, and (in the absence of explicit requests from the RCCL pro-
gram) tries to spread the total number of trajectory tasks out among as many CPUs as are available.
At present, multi-CPU capabilities exist only for MicroVAX systems.

Each trajectory task drives one or more robots. To exchange information with a robot, it uses a
communication driver (provided by RCI) to speak to an interface device provided for that robot on
the system backplane. Generally, this interface in connected to a low level servo controller, which
implements simple joint-level position (and possibly torque) commands. Robot state and sensor
information is read in from the servo controller at the beginning of every control cycle, and set-
points and commands are written out to it at some point during the control cycle. A more detailed
description of this sequence of operations is given in section 6.3.2.

Within an RCCL program, most of these details concerning trajectory generation are hidden
from the user. Communication with the trajectory generator is done through functions and a few
special data structures. The control level application functions that a program can set up fall into
the following classes:� transform functions – These are special functions which are specifically intended to modify
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Figure 2: RCCL system, connected to two robots, with trajectory tasks running
on two CPUs.

RCCL/RCI Release 4.2, December 12,1995



1.4. USING THE SYSTEM 5

spatial coordinate frames. They provide an easy way to integrate sensor information into a
program, and are used to implement things such as tracking (see section 5.1).� Monitor functions – these are general purpose functions that can be set up to do pretty much
anything (see section 6.3.1).

We repeat that the programmer should read section 5.3 before writing control level functions.

1.4 Using the System

Using RCCL to control a robot consists of setting up a few environment variables (section 9.4.1),
starting up the robot controller (and calibrating it if necessary; section 9.4.2), compiling an RCCL
program, and running it. Depending on the specific installation, it may also be necessary to turn the
robot arm power on after the program is started; the system will prompt the user to do so if this is
the case.

RCCL programs should be compiled with the special system command rcc, instead of the usual
UNIX command cc. This is a special “front-end” to the C compiler that takes care of a few things
necessary for the system to be able to create the control tasks. It is used almost identically to the cc
command, except that modules containing control level functions have to be specified in a particular
way (section 9.4.3).

1.5 A Simple Program Example

We will get things rolling immediately by presenting a simple RCCL program. The description of
things might not be clear on first reading, but everything presented here is described in much greater
detail later on. The program moves the robot to a suitable starting position, then moves in a straight
line to a nearby target point, and finally returns to the starting position.

The program looks like this:#include <rccl.h>#include "manex.560.h"main(){ TRSF_PTR p, t; /*1*/POS_PTR pos; /*2*/MANIP *mnp; /*3*/JNTS rcclpark; /*4*/char *robotName; /*5*/rcclSetOptions (RCCL_ERROR_EXIT); /*6*/robotName = getDefaultRobot(); /*7*/if (!getRobotPosition (rcclpark.v, "rcclpark", robotName)){ printf ("position 'rcclpark' not defined for robot\n");
RCCL/RCI Release 4.2, December 12,1995



6 1. INTRODUCTIONexit(-1);} /*8*/t = allocTransXyz ("T", UNDEF, -300.0, 0.0, 75.0);p = allocTransRot ("P", UNDEF, P_X, P_Y, P_Z, xunit, 180.0);pos = makePosition ("pos", T6, EQ, p, t, NULL); /*9*/mnp = rcclCreate (robotName, 0); /*10*/rcclStart();movej (mnp, &rcclpark); /*11*/setMod (mnp, 'c'); /*12*/move (mnp, pos); /*13*/stop (mnp, 1000.0);movej (mnp, &rcclpark); /*14*/stop (mnp, 1000.0);waitForCompleted (mnp); /*15*/rcclRelease (YES); /*16*/}
NOTE – this example has been coded for the PUMA 560 robot, and lives at$RCCL/demo.rccl/simple.560.c. An equivalent program for the PUMA 260 is contained insimple.260.c. To run this program, set up your RCCL environment as described in section

9.4.1, start up the robot and controller (section 9.4.2), compile the program using the rcc
command (section 9.4.3), and execute it.

Figure 3 shows the two motions which are performed after robot has moved to the starting po-
sition. Two coordinate frames are illustrated: the base frame of the robot’s T6 transform2, situated
in its shoulder, and the T6 coordinate frame itself, situated in the last link.

The include file <rccl.h> contains C structure type definitions and external entry points the
same way the include file <stdio.h> does. It provides the necessary definitions for the RCCL
functions, structures, and variables. The file "manex.560.h" contains declarations specific to the
PUMA 560 demo programs used in this manual.

The program will make use of two 4 � 4 homogeneous transforms described by the TRSF data
type. The variables p and t are declared as pointers to these transforms, using the pointer typeTRSF_PTR (/*1*/) (which is equivalent to TRSF*). The program will describe the target for one
of its motions using a position equation, which is described by a data type POS. pos is declared as
a pointer to the position equation using the type POS_PTR (/*2*/) (which is equivalent to POS*).
Within the program, the robot is described by a MANIP structure, pointed to by mnp (/*3*/) (the
equivalent type MANIP_PTR is also available). The first step is to move the robot to a known initial
position; this position is described by a set of joint angles stored in the variablercclpark, which is aJNTS data type (/*4*/) (these data types are not generally allocated by system routines, so we have2This is the 4 � 4 transformation from the robot’s base frame to a coordinate frame located in its last link. It will
be described in detail later.
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Figure 3: Moving to position “pos” using Cartesian interpolated motion, and
moving back using joint interpolated motion.

to provide our own; that is why rcclpark is the actual structure rather than a pointer). Finally, a
string describing the name of the robot to be controlled is stored in the variablerobotName (/*5*/).

The first command is a call to rcclSetOptions() to set the optionRCCL_ERROR_EXIT (/*6*/).
When this option is set, most RCCL primitives will simply print out diagnostic messages and abort
the program upon encountering a run-time error. This saves the programmer from having to explic-
itly check each primitive’s return value for an error condition (typically indicated by NULL or -1,
depending on whether the primitive normally returns a pointer or not), and is useful for top level
applications or code development.

The next thing the program does (at /*7*/) is get the name of the robot it is going to control and
the initial position it will move it to. getDefaultRobot() returns the name of the system default
robot, which is stored in the file $RCCL/conf/defaultRobot. With this name, the program then
uses getRobotPosition() to look up the joint angles corresponding to the name "rcclpark".
This routine checks the file $RCCL/conf/<robotName>.pos for the named set of angles and re-
turns 1 if found and 0 otherwise (not finding the position is not considered to be an error per se,
so the function’s return value is checked explicitly). The joint angles are read into the v field of
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8 1. INTRODUCTIONrcclpark, which is just an array of floats describing the joint values.

Next, the program allocates and instantiates the 4�4 transforms (/*8*/). The transform pointed
to by t is used to specify a target position relative to the end effector coordinates of the "rcclpark"
position. It is created with a call to allocTransXyz(), which allocates a TRSF data type, gives it the
name "T", sets it to have a translational component of �300:0, 0.0, and 75.0, and returns a pointer
to it. The rotational component is set to the identity matrix. The routine’s second argument allows
the programmer to specify the memory pool from which the transform is allocated; this is normally
left undefined (by specifying UNDEF), as is done here.

The transform p is set equal to the value of the manipulator’s T6 transform at the initial position.
Although it is possible to determine this value directly by reading it back when the robot arrives at
the initial position (which will be done in later examples), we here set it explicitly. The transform is
created using allocTransRot(), is given the name "P", and is built of translational component ofP_X, P_Y, and P_Z (defined in manex.560.h) along the corresponding axes and a rotational com-
ponent equal to a rotation of 180.0 degrees about the x axis. (xunit is a built-in variable of typeVECT whose value describes the unit vector (1; 0; 0). Since transform "P" is referenced to the same
base frame as T6 (i.e., the robot shoulder), this rotation causes the z axis of the frame following"P" to point downward (see the figure).)

The two transforms are now used in a call to makePosition() (/*9*/), which constructs a
kinematic position equation (as described in [Paul 1981]) and returns a pointer to it. makePosi-tion() accepts a variable number of arguments, the first being the name of the position. The re-
maining arguments, up to the special argument EQ, are transforms making up the left hand side of
the position equation. The arguments after EQ are transforms making up the right hand side. The
argument list is terminated by NULL. The manipulator T6 transform is indicated by the special ar-
gument T6. The call to makePosition() in this example declares the following equation:T6 = B T
If we interpret this as a target for a robot motion, we can say that the robot should be moved until
its T6 transform satisfies the equation. In this case, T6 will be set equal to B (the value of T6 at the
park position) multiplied by the transform T.

The next group of functions initialize and turn on the trajectory generator (/*10*/). rcclCre-ate() allocates the structures necessary to control a particular robot. It takes two arguments: a
string describing the name of a robot to be controlled and a bit mask specifying which CPUs may
be used to run that robot’s trajectory generator. This last argument is relevant only for RCCL/RCI
systems with multi-CPU capability and may left undefined (as is done here) by specifying 0. rc-clCreate() returns a pointer to a MANIP data structure which is used by the rest of the program
to reference and control the robot in question. rcclStart() starts the trajectory generator task
running; motion requests will not have any effect unless this is done.

The program is now ready to move the robot. The first motion request is made with movej(),
which requests that the manipulator move to the joint angles contained in rcclpark (/*11*/).

RCCL allows motion targets to be specified using either joint coordinates (as is done here withmovej()) or Cartesian coordinates (as will be done next, with move()). Furthermore, if the mo-
tion target is specified in Cartesian coordinates, the system offers a choice as to how the path to
that target is computed. By default, RCCL computes the path to the target using joint interpolated
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1.5. A SIMPLE PROGRAM EXAMPLE 9

motions. This can be changed to Cartesian straight line motion by calling setMod (mnp, 'c')
(/*12*/). In this mode, the manipulator TOOL frame (equivalent in this program to T6) is moved
along a straight line in Cartesian coordinates to the target position. The difficulty with Cartesian
mode is that sometimes a straight line path from A to B cannot be followed, typically because it
would place the robot in an impossible position. What we usually do (and have done here) is to use
joint mode for our initial motion; local Cartesian motions are then less likely to fail.

The next call (to move()) tells the robot to move to a target point defined by solving the position
equation pos for T6 (/*13*/). The following call to stop() instructs the robot to stop there for 1
second (specified as 1000 milliseconds) before continuing.

Finally, we request a move back to the initial position with another call to movej() (/*14*/)
(moves requested with movej() are always computed in joint mode, regardless of the interpolation
mode selected by setMod()).

Motion requests are not synchronized with the actual motion of the arm. Instead, they simply
place a motion request packet on a queue, where they wait to be serviced by the trajectory generator
as soon as possible. After the calls to movej() and move() in the program have returned, the robot
has probably not even completed the first movej() request. To synchronize the main program with
the motion of the arm, different methods are available. The simplest of these, used in the example
here, is to wait for the manipulator to finish servicing all of its motion requests and come to rest.
This is accomplished by the macro waitForCompleted(mnp) (/*15*/).

The last call in the program, rcclRelease() (/*16*/), turns the trajectory generator off. It
takes a binary argument which, if true, specifies that the robot arm power should be turned off as
well.
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10 2. BASIC DATA TYPES

2. Basic Data Types

We shall now describe in detail some of the RCCL data structures, in particular vectors, transforma-
tions, differential motions, and forces. We shall also indicate how they can be used in manipulator
programs.

2.1 The Data Type Functions

Each RCCL data type is generally associated with a cluster of functions for modifying instances of
that type, or converting it to another type. (It is in these cases that RCCL would most greatly benefit
from being implemented in a more “object oriented” language, such as C++; if anyone decides to
do this, the authors would be interested in knowing.)

The data type functions follow a parameter passing convention where (1) a pointer to the type
being modified is passed in as the leftmost argument, and (2) the function returns the value of this
pointer (in the same style as the the string manipulation functions described in string(3).) This
permits calls to be nested in the following way:trans2 = rotToTrsf (xyzToTrsf (trans1, 1.0,2.0,3.0), zunit, 90.0);
which, in one line, sets the translational components of a transform to 1.0, 2.0, and 3.0, and then
sets the rotational component to describe a turn of 90� about z.

Structure arguments are passed by reference to save execution time.

Most of the special data types are defined in the file <robotTypes.h>, which is included auto-
matically by <rccl.h>.

2.2 Some Basic Definitions

The include file <rccl.h> references <cdefs.h>, which defines a few very basic things used by
most of the system:#define NULL 0#define NULLF (int(*)())0#define YES 1#define NO 0#define UNDEF (-1)#define MIN(x,y) ((x) < (y) ? (x) : (y))#define MAX(x,y) ((x) > (y) ? (x) : (y))#define ABS(x) ((x) < 0 ? -(x) : (x))
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2.3. NUMBERS 11#define NINT(x) ((int)(((x)<0) ? ((x)-0.5)) : ((x)+0.5))#define ARRAY_SIZE(a) (sizeof(a)/sizeof(a[0]))NULL and NULLF are used for identifying null pointers, YES and NO are “user friendly” booleans,UNDEF is used to indicate that some (normally non-negative) quantity is undefined, MAX(), MIN(),ABS(), and NINT() are obvious, and ARRAY_SIZE() is used for automatically determining the num-
ber of elements in an array.

There are some other things in <cdefs.h>, but they won’t be referred to in this manual.

2.3 Numbers

The file <rccl.h> also references <robotMath.h>, which defines several numeric constants:PIPIB2PIT2DEGTORADRADTODEG
These are, respectively, �, �=2, 2�, �=180, and 180=�.

2.4 Units

Distances in RCCL are expressed in millimeters. Rotational units are expressed in either degrees or
radians; there is some occasional inconsistency, which is historical in origin but can be a bit bother-
some. Rotations are always expressed internally in radians, and functions which accept (or output)
degrees convert to (or from) the radian representation at the highest level.

Force is expressed in Newtons and torque is expressed in Newton-millimeters.

Time is expressed in milliseconds.

2.5 Vectors

Spatial 3-vectors are described by the type VECT:typedef struct {float x, y, z;} VECT, *VECT_PTR;
A pointer to a vector variable can either be defined as VECT *pk or VECT_PTR pk, depending

on the programmer’s taste and coding style. This paradigm will be followed with the other data
types.

Vectors are assigned and manipulated by the following functions:
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12 2. BASIC DATA TYPESfloat dotVect (v1, v2)VECT_PTR v1, v2;VECT_PTR crossVect (vr, v1, v2)VECT_PTR vr, v1, v2;VECT_PTR unitVect (vr, v1)VECT_PTR vr, v1;
The function dotVect() returns the dot product of two vectors. The function crossVect() com-
putes the cross product of v1 with v2, and returns the result in vr. The function unitVect() com-
putes a unit vector parallel to v1 and returns this in vr.

For convenience, RCCL pre-defines the three VECT_PTR types xunit, yunit, and zunit, and
sets them to point to unit vectors along the x, y, and z axes.

2.6 Transformations

A 4 � 4 homogeneous transformation is represented by the structure TRSF:typedef struct {VECT n, o, a, p;} TRSF, *TRSF_PTR;
The entries in the structure are simply the columns of the matrix which comprise the normal, ori-
entation, approach, and position vectors (n, o, a, and p). The last row of the transform is assumed
to be [0; 0; 0; 1], so these types contain enough information to do only three dimensional coordinate
transformations, not scaling or perspective operations.

Transforms are assigned and manipulated by numerous functions. The most basic include:TRSF_PTR copyTrsfXyz (tr, t1)TRSF_PTR tr, t1;TRSF_PTR copyTrsfNoa (tr, t1)TRSF_PTR tr, t1;TRSF_PTR multTrsf (tr, t1, t2)TRSF_PTR tr, t1, t2;TRSF_PTR multRiTrsf (tr, t1, t2)TRSF_PTR tr, t1, t2;TRSF_PTR multLiTrsf (tr, t1, t2)TRSF_PTR tr, t1, t2;TRSF_PTR invertTrsf (tr, t1)
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2.6. TRANSFORMATIONS 13TRSF_PTR tr, t1;TRSF_PTR identTrsf (tr)TRSF_PTR tr;
The functions copyTrsfXyz() and copyTrsfNoa() perform a selective copy of the translational
(resp. rotational) part, leaving untouched the rotational (resp. translational) part. The functionmult-Trsf()multiplies t1 by t2 and leaves the result in tr. multRiTrsf()multiplies t1 by the inverse
of t2 and leaves the result in tr. The function multLiTrsf() multiplies the inverse of t1 by t2
and leaves the result in tr. The function invertTrsf() takes the inverse of t1 and leaves it in tr.
The function identTrsf() converts tr to an identity transform.

Again, all of these routines return a pointer to their result argument.

The following additional functions are available to selectively set various components of a trans-
formation:TRSF_PTR xyzToTrsf (tr, px, py, pz)TRSF_PTR tr;float px, py, pz;TRSF_PTR vaoToTrsf (tr, ax, ay, az, ox, oy, oz)TRSF_PTR tr;float ax, ay, az, ox, oy, oz;TRSF_PTR rotToTrsf (tr, k, h)TRSF_PTR tr;VECT_PTR k;float h;TRSF_PTR eulToTrsf (tr, phi, the, psi)TRSF_PTR tr;float phi, the, psi;TRSF_PTR rpyToTrsf (tr, roll, pitch, yaw)TRSF_PTR tr;float roll, pitch, yaw;
All these functions use a transformation pointer as left argument; as usual, this pointer is also re-
turned by the function.

The function xyzToTrsf() sets the terms of the p vector of tr and leaves the rotational part
untouched.

The function vaoToTrsf() sets the n, o, and a vectors of tr. Since the vectors n, o and a are
orthogonal, vaoToTrsf() takes only the components of o and a and builds the vector n itself. The
vectors whose components are input as arguments do not need to be orthogonal, since the rotational
part of the transform is built as follows: take the user’s supplied a vector, normalize it and use it as
the final a vector; take the user’s supplied o vector (which need not be orthogonal to a) and build a
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14 2. BASIC DATA TYPES

(possibly non-unit) vector n that is orthogonal to both o and a; reconstruct o to be orthogonal withn and a, normalize it, and finally, compute n from the cross product of o and a1.
The function rotToTrsf() sets the rotational part of tr to a rotation of h degrees about a (pos-

sibly non-unit) vector k.

The function eulToTrsf() sets the rotational part of tr to a rotation expressed with the three
Euler angles (in degrees).

Finally, the function rpyToTrsf() sets the rotational part of tr to a rotation expressed with the
three roll-pitch-yaw angles (in degrees).

The next set of functions are exactly analogous to the previous ones, except that the transform
argument is post-multiplied by another transform defined by the other parameters of the function.
As usual, a pointer to the result transform is returned as the value of the function.TRSF_PTR multTrsfXyz (tr, px, py, pz)TRSF_PTR tr;float px, py, pz;TRSF_PTR multTrsfVao (tr, ax, ay, az, ox, oy, oz)TRSF_PTR tr;float ax, ay, az, ox, oy, oz;TRSF_PTR multTrsfRot (tr, k, h)TRSF_PTR tr;VECT_PTR k;float h;TRSF_PTR multTrsfEul (tr, phi, the, psi)TRSF_PTR tr;float phi, the, psi;TRSF_PTR multTrsfRpy (tr, roll, pitch, yaw)TRSF_PTR tr;float roll, pitch, yaw;

It may sometimes be desirable to convert the rotational component of a TRSF data type back into
Euler angles, roll-pitch-yaw angles, or rotation angle/axis parameters. The functions to do this are:trsfToEul (phi, the, psi, t1)float *phi, *the, *psi;TRSF_PTR t1;trsfToRpy (roll, pitch, yaw, t1)float *roll, *pitch, *yaw;TRSF_PTR t1;1Check the reference manual for the corresponding equations.
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2.7. ALLOCATING TRANSFORMATIONS 15trsfToRot (k, h, t1)VECT_PTR k;float *k;TRSF_PTR t1;
The Euler or roll-pitch-yaw angle representations for a rotation are not necessarily unique. The

rotation angle/axis representation is unique since the returned value of h is defined to lie in the range0 � h < 180�. Note also that scalar values are returned through pointers, in a manner analogous
to the UNIX routine scanf().

2.7 Allocating Transformations

Structures of the TRSF data type described in the previous section may be defined or allocated in
any of the ways normally available for creating C objects (static or automatic declaration, use ofmalloc(), etc.). However, if one wishes to create a transform which is shared between the planning
and control levels, then it must not be a static or automatic variable, nor can it be malloc()ed;
instead, it must be allocated via a set of special RCCL primitives. Transforms allocated in this way
can be bound to real-time functions, and can also be used to form position equations as described
later.

The basic primitives for creating and deleting transforms areTRSF_PTR allocTrans (name, pool)char *name;int pool;freeTrans (t)TRSF_PTR t;allocTrans() allocates a transformation, gives it the indicated name, sets its value to the identity,
and returns a pointer to it. The variable pool allows the programmer to specify which memory pool
the transform should be allocated from. Under the current implementation, the pool number corre-
sponds to a CPU number; i.e., specifying pool number 2 would mean that the transform is allocated
from memory on CPU 2. Obviously, this is relevant only on multi-CPU versions of RCCL/RCI.
Typically, the pool argument is left undefined (UNDEF) and the system chooses the allocation pool.
It also is not necessary to give the transform a name; if no name is desired, then that argument may
be specified as NULL. Names are useful sometimes when one wishes to obtain a pointer to the trans-
form from the control level.

The function freeTrans() returns a transform to the pool from which it was allocated.

If a programmer wishes to make a compile-time declaration of a transform, as infunction(){ TRSF base;
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16 2. BASIC DATA TYPES......}
or the declarationstatic TRSF base;
then the following should be noted:� First, transforms created this way cannot be accessed by the control level. They must not be

used in a position data structure (created by the function makePosition(), described later).� Structure data types are passed by reference, so literally declared transformations need to be
prefixed with the & (address) operator when passed to a function.� It is up to the programmer to initialize transforms declared in this way (for instance, by usingidentTrsf()).

In addition to allocTrans(), there is a group of other functions which allocate a new transform
and at the same time initialize it to desired values:TRSF_PTR allocTransXyz (name, pool, px, py, pz)char *name;int pool;float px, py, pz;TRSF_PTR allocTransRot (name, pool, px, py, pz, k, h)char *name;int pool;float px, py, pz, h;VECT_PTR k;TRSF_PTR allocTransPao (name, pool, px,py,pz,ax,ay,az,ox,oy,oz)char *name;int pool;float px, py, pz, ax, ay, az, ox, oy, oz;TRSF_PTR allocTransEul (name, pool, px, py, pz, phi, the, psi)char *name;int pool;float px, py, pz, phi, the, psi;TRSF_PTR allocTransRpy (name, pool, px, py, pz, roll, pitch, yaw)
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2.7. ALLOCATING TRANSFORMATIONS 17char *name;int pool;float px, py, pz, roll, pitch, yaw;
All of these functions return a pointer to the created transform. The first two arguments are identical
to the first two arguments of allocTrans(). The next three arguments specify the translational
component, the p vector. The remaining arguments, if any, define the rotational component, and
are the same as those for the corresponding xxxToTrsf() routines (except for allocTransPao(),
which maps onto vaoToTrsf() instead of paoToTrsf()).

For example, the code fragmentTRSF_PTR t1, t2, t3; /* declare transform pointers */...t1 = xyzToTrsf (eulToTrsf (allocTrans ("T1", UNDEF),10.0, 20.0, 30.0),1.0, 2.0, 3.0);t2 = allocTransEul ("T2", UNDEF, 1.0, 2.0, 3.0, 10.0, 20.0, 30.0);t3 = allocTransXyz ("T3", UNDEF, 1.0, 2.0, 3.0);eulToTrsf (t3, 10.0, 20.0, 30.0);
produces three identical transforms.

Finally, there are functions for printing the value of a transform:printTrsf (fmt, tr);char *fmt;TRSF_PTR tr;fprintTrsf (fp, fmt, tr);FILE *fp;char *fmt;TRSF_PTR tr;rciPrintTrsf (fmt, tr);char *fmt;TRSF_PTR tr;
All of these accept a pointer to a transform and a format string describing how the transform should
be printed. Typical format strings are "%m\n", which prints the transform in matrix form followed
by a newline, "%r\n%p\n", which prints the transform in terms of the roll-pitch-yaw angles and the
translational component followed by an newline, and "%q\n%p\n", which prints the transform in
terms of a quaternion and the translational component (again, followed by a newline). Preceding
one of the format characters with a 'L' causes one of the labels
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18 2. BASIC DATA TYPESQTRNRPYXYZEUL
to be printed in front of the quaternion, roll-pitch-yaw, translational, or euler angle representation.
Non-format characters which appear in the format string are printed literally (hence the new lines
in the above examples).

For example, the code fragmentTRSF_PTR t1, t2, t3;t1 = allocTransEul ("T1", UNDEF, 10., 20., 30., 11., 12., 13.);printTrsf ("T1 %m\n", t1);t2 = allocTrans ("T2", UNDEF);rotToTrsf(t2, yunit, 90.);multTrsfXyz(t2, 10., 20., 30.);putchar ('\n');printTrsf ("T2 %Lr\n %Lp\n", t2);t3 = allocTrans ("T3", UNDEF);putchar ('\n');printTrsf ("T3 %m\n", multTrsf (t3, t1, t2));putchar ('\n');printTrsf ("T3 %q\n %p\n", t3);
will produce the outputT1 0.89264 -0.40191 0.20409 10.000.40267 0.91448 0.03967 20.00-0.20258 0.04677 0.97815 30.00T2 RPY: 0.000 90.000 -0.000XYZ: 30.00 20.00 -10.00T3 -0.20409 -0.40191 0.89264 26.70-0.03967 0.91448 0.40267 49.97-0.97815 0.04677 -0.20258 15.08T3 0.61396 -0.14492 0.76177 0.1475026.70 49.97 15.08

Much more detailed information on the format string syntax can be found in the manual page
for printTrsf().
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2.8. DIFFERENTIAL MOTIONS AND FORCES 19

The functions fprintTrsf() and rciPrintTrsf() are identical to printTrsf() except that
the first allows a file stream to specified for output and the latter can be called from the control level
(with the output going to the same place as for rciPrintf()).

2.8 Differential Motions and Forces

NOTE: The background to this material is described in [Paul 1981]; this section can probably be
omitted on first reading.

A differential motion is expressed in terms of a differential translation vector and differential
rotation vector. A generalized force is expressed in terms of a linear force vector and a moment
vector. The corresponding structures are:typedef struct {VECT t, r;} DIFF, *DIFF_PTR;typedef struct {VECT f, m;} FORCE, *FORCE_PTR;
Since velocity is simply a differential displacement divided by a differential time change, the DIFF
data type can also be used to represent velocities.

The functions associated with these data types are:TRSF_PTR diffToTrsf (tr, d1)TRSF_PTR tr;DIFF_PTR d1;DIFF_PTR trsfToDiff (dr, t1)DIFF_PTR dr;TRSF_PTR t1;DIFF_PTR transDiff (dr, d1, t)DIFF_PTR dr, d1;TRSF_PTR t;FORCE_PTR transForce (fr, f1, t)FORCE_PTR fr, f1;TRSF_PTR t;
The function diffToTrsf() converts a DIFF type into the corresponding transform; the rota-

tional displacement described by DIFF is assumed to be small enough so the conversion is reason-
ably well behaved. The function trsfToDiff() converts a transform into a DIFF type (again, the
rotational displacement is assumed to be small).
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The function transDiff() transforms a differential motion expressed with respect to one frame
into the same differential motion expressed with respect to another frame. Suppose the original
frame P1 is described by a homogeneous transform P1 and the destination frame P2 is described
by another transform P2. The transform argument t is then defined to link these so thatP2 = P1 T:
The input differential motion d1 is described with respect to P1 and the output dr is described with
respect to P2.

The function transForce() perform the analogous transformation on FORCE types.

To print out the values of DIFF or FORCE structures, the RCI utility routine printVf() can be
used. This is a general purpose function used for printing a vector (or array) of floats. It is declared
as follows:printVf (fmt, v, n)char *fmt;float *v;int n;
where fmt is a format string, v is a pointer to the vector, and n is the number of elements in the
vector. The format string accepts the usual constructs used by printf() for outputting floating
point numbers (such as "%f" and "%g"), except that the number of output fields is set equal to the
number of elements in the vector. The DIFF and FORCE structures can usually be printed by this
routine, if the number of elements is set to 62.

For example, the following sequence of program statementsDIFF Dp1, Dp2;FORCE Fp1, Fp2;TRSF *t;t = allocTransPao ("T", UNDEF, 10.,5.,0.,1.,0.,0.,0.,0.,1.);printTrsf ("%m\n", t);Dp2.t.x = 1.0;Dp2.t.y = 0.0;Dp2.t.z = 0.5;Dp2.r.x = 0.0;Dp2.r.y = 0.1;Dp2.r.z = 0.0;printVf ("DP2: %6.2f\n", (float*)&Dp2, 6);printVf ("DP1: %6.2f\n", (float*)transDiff (&Dp1, &Dp2, t), 6);2It is possible (though unlikely) that the internal representation of these data types on some machines will not be
equivalent to an array of floats, in which case this will not work. Casting the address of the structure to a float pointer
can also fail, but again this is improbable on most systems likely to run RCCL.
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2.9. DISPLACEMENTS 21Fp2.f.x = 10.0;Fp2.f.y = 0.0;Fp2.f.z = 0.0;Fp2.m.x = 0.0;Fp2.m.y = 100.0;Fp2.m.z = 0.0;printVf ("FP2: %6.2f\n", (float*)&Fp2, 6);printVf ("FP1: %6.2f\n", (float*)transForce(&Fp1, &Fp2, t), 6);
will yield the following output:0.00000 0.00000 1.00000 10.001.00000 0.00000 0.00000 5.000.00000 1.00000 0.00000 0.00DP2: 1.00 0.00 0.50 0.00 0.10 0.00DP1: 0.00 -0.50 1.00 0.10 0.00 0.00FP2: 10.00 0.00 0.00 0.00 100.00 0.00FP1: 0.00 0.00 10.00 100.00 50.00 0.00

Much more detailed information on printVf() can be found in the manual pages.

For printing values to a file, or doing diagnostic printing from the control level, the functionsfprintVf() and rciPrintVf() can be used; these are identical to printVf() except that the first
allows a file stream to specified for output, and the latter can be called from the control level (with
the output going to the same place as for rciPrintf()).

2.9 Displacements

Any displacement in Cartesian coordinates can be represented as a translation followed by a single
rotation about some axis. RCCL provides a data type for representing displacements this way:typedef struct {VECT p;float a;VECT u;} DSPL, *DSPL_PTR;
The p field describes the translation, the a field describes the rotation angle (in radians), and theu field is a unit vector parallel to the axis of rotation. The rotational representation is potentially
ambiguous: if the a and u fields describe a and u, then �a and �u represent the same thing. To
resolve this, the range of a is restricted to 0 � a � �. (The rotation representation is the same as
that used by rotToTrsf().)

The DSPL data type contains all the information described by a TRSF data type, and vice-versa.
It is sometimes the preferred representation because the associated parameters are easy to scale: all
one needs to do is multiply the translation vector p and the rotation angle a by some factor.

The following functions are available for manipulating DSPL data types:
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22 2. BASIC DATA TYPESDSPL_PTR trsfToDspl (dr, t1)DSPL_PTR dr;TRSF_PTR t1;TRSF_PTR dsplToTrsf (tr, d1)TRSF_PTR tr;DSPL_PTR d1;DSPL_PTR scaleDspl (dr, s, d1)DSPL_PTR dr;float s;DSPL_PTR d1;TRSF_PTR extrapTrsfByDspl (tr, s, d1)TRSF_PTR tr;float s;DSPL_PTR d1;DSPL_PTR unitDspl (dr, d1)DSPL_PTR dr, d1;
The functions trsfToDspl()and dsplToTrsf()convert between TRSF and DSPL representations.
The function scaleDspl() scales the values of d1 by s and puts the result in dr. The functionextrapTrsfByDspl() is a combination of scaleDspl() and dsplToTrsf(): it scales the values
of d1 by s and then converts the result into the transform tr. The function unitDspl()normalizes
the values of the a and u fields of d1 and places the result in dr.

Because its parameters scale easily, DSPL data types are useful for representing velocities. A
general Cartesian velocity described by the vectors v and ! can be represented with a DSPL data
type by setting the p field to v, the a field to j!j, and the u field to !=j!j. The function scaleD-spl() can then be used to determine the net displacement achieved by this velocity over some time
interval t. The equivalent transform representation of the same displacement can be computed withextrapTrsfByDspl():DSPL vel;TRSF delta;float time;... variables are set ...extrapTrsfByDspl (&delta, time, &vel);
2.10 Quaternions

RCCL has another data type for describing quaternions which are useful for representing rotations.
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2.10. QUATERNIONS 23typedef struct {float c;VECT v;} QTRN, *QTRN_PTR;
A rotation can be represented as a single rotation � about a unit vector v. A quaternion is a four tu-
ple; when normalized to have unit length, it represents a rotation such that the first value is equal tocos(�=2) and the last three values form a vector equal to sin(�=2)v. Since multiplication of quater-
nions is equivalent to successive rotation operations and quaternion multiplication is faster that ho-
mogeneous transform multiplication, the use of quaternions can sometimes be desirable.

Quaternions used by RCCL are assumed to be unit quaternions. They are assigned and manip-
ulated by the following functions:QTRN_PTR multQtrn (qr, q1, q2)QTRN_PTR qr, q1, q2;QTRN_PTR multRiQtrn (qr, q1, q2)QTRN_PTR qr, q1, q2;QTRN_PTR multLiQtrn (qr, q1, q2)QTRN_PTR qr, q1, q2;QTRN_PTR invertQtrn (qr, q1)QTRN_PTR qr, q1;float normQtrn (qr)QTRN_PTR qr;QTRN_PTR unitQtrn (qr)QTRN_PTR qr;
The function multQtrn() multiplies q1 by q2 and leaves the result in qr. multRiQtrn() multi-
plies q1 by the inverse of q2 and leaves the result in qr. The function multLiQtrn() multiplies
the inverse of q1 by q2 and leaves the result in qr. The function invertQtrn() takes the inverse
of q1 and leaves it in qr. The function normQtrn() returns the magnitude of the quaternion (which
should normally be 1). The function unitQtrn() normalizes the quaternion qr.

The following additional functions are used to convert between quaternions and other data types:TRSF_PTR qtrnToTrsf (tr, q1)TRSF_PTR tr;QTRN_PTR q1;QTRN_PTR trsfToQtrn (qr, t1)QTRN_PTR qr;TRSF_PTR t1;
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24 2. BASIC DATA TYPESVECT_PTR qtrnToVect (vr, q1)VECT_PTR vr;QTRN_PTR q1;
The function qtrnToTrsf() sets the rotational component of the transform tr to the rotation de-
fined by the quaternion q1. The function trsfToQtrn() sets the quaternion qr to the rotation de-
fined by the rotational component of the transform tr. The function qtrnToVect() sets the vectorvr to the rotational velocity indicated by the quaternion q1 (where the magnitude of the rotation is
assumed to be small).

The printing of quaternion values can be done using printVf(), with the number of elements
in the “vector” being specified as 4.

2.11 Generic Vector Routines

There are several routines available for doing simple operations on arbitrarily sized vectors of floats
(i.e., arrays of floats). These routines are imported directly from RCI, and this description also ap-
pears in the RCI user’s guide.

To add, element by element, two equal sized vectors of floats, the routineaddVf (vr, v1, v2, size)
can be used, where vr is the result vector, v1 and v2 are the input vectors, and size is the number
of elements in the vector. The f at the end of the routine name indicates that the procedure handles
vectors of floats. An analogous routine, addVd, exists for vectors of doubles.

Similar routines do other arithmetic operations:subtractVf (vr, v1, v2, size)scaleVf (vr, a, v1, size)combineVf (vr, a, v1, b, v2, size)dotVf (v1, v2, size);normVf (v1, size);subtractVf()subtractsv1 fromv2, scaleVf()multipliesv1by the scalar a, combineVf()forms
the linear combination vr = a v1 + b v2;dotVf() returns a float equal to the dot product of v1 and v2, and normVf() returns a float equal
to the 2-norm of v1.

To copy vectors, we can use the routinecopyVf (vr, v1, size);
and to zero a vector, we can usezeroVf (vr, size);
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2.12. JOINT COORDINATES 25

Printing a vector can be done using printVf(), fprintVf(), or rciPrintVf(), described
above. Reading a vector in can be accomplished using either ofscanVf (vr, size);fscanVf (fp, vr, size);
which input a vector of size elements either from stdin or the stream fp, respectively.

2.12 Joint Coordinates

The data type JNTS is used to describe sets of joint coordinates for a particular manipulator. The
structure is presently defined astypedef struct {float v[NUM_JNTS];char type[NUM_JNTS];int num;} JNTS, *JNTS_PTR;
where NUM_JNTS is, at the time of this writing, 6. The field v contains the value of each joint coor-
dinate, with the field type describing its type ('R' for revolute joints and 'P' for prismatic ones).
The field num gives the total number of joints, where it is assumed that num is less than or equal toNUM_JNTS. The units are normally assumed to be radians for rotational joints and millimeters for
translational joints.

A set of basic routines for manipulating JNTS types is:JNTS_PTR addJnts (jr, j1, j2)JNTS_PTR jr, j1, j2;JNTS_PTR subtractJnts (jr, j1, j2)JNTS_PTR jr, j1, j2;JNTS_PTR scaleJnts (jr, a, j1)JNTS_PTR jr, j1;float a;JNTS_PTR combineJnts (jr, a, j1, b, j2)JNTS_PTR jr, j1, j2;float a, b;JNTS_PTR zeroJnts (jr)JNTS_PTR jr;
The function addJnts() adds the joint values j1 to j2 and places the result in jr. The functionsubtractJnts() subtracts the joint values j2 from j1 and places the result in jr. The function
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26 2. BASIC DATA TYPESscaleJnts()multiples the joint values j1 by a and places the result in result in jr. The functioncombineJnts() computes jr = a j1+ b j2
and places the result in jr. zeroJnts() zeros the values of jr.

The above routines do not change either thetype or numfield of their result arguments (although
this may change). Since the contents of type and num fields are robot specific, there must be a way
to initialize them for a particular manipulator. Two routines are available to do this:initJntsByName (jr, name)JNTS_PTR jr;char *name;initJntsByManip (jr, mnp)JNTS_PTR jr;MANIP_PTR mnp;initJntsByName() instantiates num and type for the manipulator with the indicated name. This
routine can be called only from the planning level. initJntsByManip() instantiates num and type
for a robot described by a MANIP structure (MANIP is the RCCL data type used to reference and
control a robot from within a program, and will be introduced in section 4.1).

The printing of joint values can be done using printVf(), with the number of elements in the
“vector” being specified by the num field. If one wants to first convert the angle values to degrees,
the following piece of code will do the job, assuming that all joints are revolute:JNTS jnts; /* initialized somewhere */{ JNTS deg;scaleJnts (&deg, RADTODEG, &jnts);printVf ("%8.3f\n", deg.v, jnts.num);}
Notice that in the call the printVf() the joint angles are referenced by the v field of the structure,
since this routine expects an array of floats.

A more complicated version that considers whether or not the joints are prismatic isJNTS jnts; /* initialized somewhere */int j;for (j=0; j<jnts.num; j++){ if (jnts.type[j] == 'r'){ printf ("%8.3f ", RADTODEG*jnts.v[j]);}else{ printf ("%8.3f ", jnts.v[j]);}}
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2.12. JOINT COORDINATES 27putchar ('\n');
Caveat: The addition of the type and num fields to the JNTS data structure is new,
and not all RCCL code has been updated to use them. Prior to their introduction, the
number of joints was assumed to be described by the constant NUM_JNTS.
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28 3. DESCRIBING POSITIONS IN SPACE

3. Describing Positions in Space

Describing a manipulator task typically requires specifying positions to be reached in space (the
where) as well as specifying aspects of the trajectory (the how). RCCL describes target positions
using either Cartesian position equations or sets of joint angles. This chapter describes the former.

3.1 Position Equations

Position equations remove the need for absolute reference coordinates; they are also one represen-
tation of the more general concept of transformation graphs. The position relationships of a set of
coordinate frames Fi, i = 1; : : : ; n, can be expressed in terms of transformation products. Let the
transformation matrix Ti describe the position of the frame Fi+1 relative to the frame Fi, with Tn
describing the transformation from frame Fn to F1. This is represented by the equationT1 T2 : : : Tn = I
where I is the identity matrix. A closed path of transformations from frame F1 back to frame F1,
via the frames Fi, i = 2; : : : ; n, describes the position of F1 with respect to itself. The situation can
be illustrated using a directed closed graph, as shown in figure 4, where the vertices are frames and
the arcs are transforms.

T1 T2

Tn

F1 F2 Fn

Figure 4: A directed closed transform graph.

Given a set of frames, containing two frames A and B, we can always find more than one path
connecting A to B. Denoting the frames on one path by Fi, i = 0; : : : ; n, and the frames on the
other path by Gi, i = 0; : : : ;m, we show such a graph in figure 5.

The corresponding transformation equation is:T0 T1 T2 : : : Tn = R0 R2 : : : Rm
Closed transformation graphs can be expressed in terms of a set of transformation equations.
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T0 T1 T2 Tn

R0 R1 R2 Rm

A B

F1 F2 Fn

G1 G2 Gm

Figure 5: Transform graph containing two distinct paths between frames A and
B.

RCCL uses transformation equations as one means of describing positions the manipulator has
to reach. These positions always include the special manipulator transform T6, which we will de-
scribe next.

Assume that we have a manipulator with 6 links, labeled from 1 to 6, and a base link, labeled
0. Each of the manipulator links is assigned a frame Ai, and the transform matrix Ai describes its
position with respect to the previous link’s frame as a function of the joint variable. The position
of link 1 is described with respect to the base. The transformation productT6 = A1 : : : A6
describes the position of the last link with respect to the base. Current convention is to define the
transformations Ai according to the procedure specified by Denavit and Hartenberg [Lee 1982].
This generally will not place the last frame, A6, directly at the end effector. Instead, to “reach” the
end effector frame, it is usually necessary to provide an additional tool transform.

3.2 Using Position Equations to Describe Motion Targets

Let us now set up a position equation which describes a situation where the manipulator is to grasp
an object lying on a table. First we must assign frames to each of the elements involved:� Frame B is assigned to the manipulator base.� Frame M is located in the last link of the manipulator.� A tool is attached to link 6 and the frame T is assigned to its tip.� Frame W describes the position of the work table.
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30 3. DESCRIBING POSITIONS IN SPACE� The position of an object lying on the table is described by frame O.� A grasp position is described by the frame G.

Suppose that the manipulator is moving so as to grasp the object. The associated frames can be
grouped together into the graph shown in figure 6.

W O

GB

M T

Figure 6: Example frames for a manipulator grasp task.

To obtain a transformation equation from this graph, the arcs are oriented and labeled with trans-
forms. The choice is arbitrary but a reasonable selection is shown in figure 7, where END, BASE,
GRASP, and OBJ are predetermined transforms, and T6 connects the manipulator base to link 6.
The transform DRIVE, which will be discussed in more detail below, relates the current position
of the tool tip to its final desired position. A diagram of where all these frames might actually be
located in the workspace is given in figure 8.

W O

GB

M T
T6 END DRIVE

BASE OBJ GRASP

Figure 7: Example frames, plus transforms, for a manipulator grasp task.

In making the manipulator travel to its destination, it is necessary to vary T6 from its starting
value to the one defined by the position equation, which amounts to changing the value of DRIVE
from its initial value to the identity matrix. DRIVE is therefore time-varying, and when appropriate
will be denoted asDRIVE(t). If we define the time at the beginning of the motion to be 0 and the
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M

T

W

B

T6

DRIVE

END

OBJ

O
GRASP

BASEG

Figure 8: Example frames for grasp task superimposed on a diagram of the
workspace.

time at the end of the motion to be �, then the kinematic situation is described at the beginning of
the motion by BASE T6(0) END = OBJ GRASP DRIVE(0)
and at the end of the motion byBASE T6(�) END = OBJ GRASP (1)

By definition,DRIVE(�) = I.
The two common methods of achieving this are joint interpolation and Cartesian interpolation.

Joint interpolation involves solving for the target value of T6 (i.e., the value with DRIVE = I),
solving for the corresponding joint values, and then interpolating to these from the initial joint val-
ues. This produces a “straight line” motion in joint coordinates. The transform DRIVE changes
implicitly during this process, but not in a way that is necessarily obvious. On the other hand, Carte-
sian interpolated motion is achieved by explicitly modifying DRIVE so that it traces a straight line
in Cartesian coordinates, and then solving for T6 and the associated joint values during each control

RCCL/RCI Release 4.2, December 12,1995



32 3. DESCRIBING POSITIONS IN SPACE

cycle. This produces a “straight line” in Cartesian coordinates. Rotations are handled by interpola-
tion about one or two principal axes, as described in [Paul 1981], Chapter 5. Both forms of motion
interpolation are supported by RCCL.

Transform equations can be rewritten, solved for any of the terms, or replaced by equivalent
ones. For example, equation 1 can be rewritten asBASE T6 = OBJ GRASP END�1
or as T6 = BASE�1 OBJ GRASP END�1

Internally, when RCCL is told to move the manipulator to a given target position, it converts
the corresponding equation into the canonical formT6 TOOL = COORD (2)

where TOOL and COORD can be composed of arbitrary numbers of sub-transforms. For equation
1, we would have TOOL = ENDCOORD = BASE�1 OBJ GRASP
This internal representation tells the trajectory generator where to place the DRIVE transform for
Cartesian motions. It is inserted after the tool component:T6 TOOL = COORD DRIVE

More detailed information on how RCCL generates trajectories can be found in the paper Tra-
jectory Generation in Multi-RCCL, which is part of the document set.

3.3 Frame and Transform Names

B

T6
T6 TOOL

C

TOOL P

C

Figure 9: Transform graph where some frames have the same name as one of their
incident transforms.
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It is often possible to equate the name of a transform and the frame it maps to without causing confu-
sion. For instance, in figure 9, framesT6, TOOL, and C are given the same names as the transforms
T6, TOOL, and C. It is also often possible to dispense with frame names entirely.

When describing program examples, transforms may be referred to either mathematically (e.g.,
T1) or by the name of their corresponding variable within the program (e.g., t1). A frame will often
be named after one of its incident transforms (e.g., T1).

By historical continuity, RCCL uses the name T6 (and T6) to denote the base-to-last-link trans-
form product (and associated frame) for any manipulator, regardless of whether or not it actually
has 6 links.

3.4 Defining Position Equations

Within an RCCL program, position equations like the ones described above can be defined with the
primitivemakePosition(). This takes a variable number of arguments which define the equation’s
name, left hand side, and right hand side. The function definition looks likePOS *makePosition (name, lhs [, lhs] ..., EQ,rhs [, rhs] ..., [, TL, tl] , NULL)char *name;TRSF_PTR lhs ..., rhs ..., tl;
The first argument is a string naming the position. This name is optional, and can be declared asNULL if desired; its main purpose is to provide a key for referencing the equation from some other
part of the program (section (5.5.4)). The remaining arguments are pointers to the transforms which
comprise the equation. All the specified transforms must have been allocated using one of the al-locTrans() routines; this ensures that the control level can access them when necessary. To create
a position equation, simply list as arguments all the transforms forming the left-hand and right-hand
sides, separate them with the predefined variable EQ, and terminate the argument list with NULL. For
instance, consider the simple position equationA B = C D;
which is equivalent to the graph shown in figure 10.

Assuming that the necessary transforms have been allocated, and pointers to them are contained
in the variables a, b, c, d, this can be created with the following call:POS_PTR p;p = makePosition ("loop", a, b, EQ, c, d, NULL);
The function allocates a data structure representing the kinematic loop, gives it a string name "loop",
and returns a pointer to it. The transforms which lie on the left-hand side of the equation are as-
sumed to be directed clockwise, while the transforms on the right-hand side are directed counter-
clockwise. An arbitrary number of transform arguments may be specified to makePosition(), al-
though a “safety limit” of 100 is imposed at the time of this writing.
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A B

C D

Figure 10: A sample position loop.

What can we now do with this position equation? The principal thing we can do is solve for
any one of its component transforms in terms of the values of the other transforms. We can also
multiply together any set of transforms which constitutes a sub-chain of the equation. The routines
to do these operations are described in section 3.5.

It should be noted that it is not necessary for the component transforms of a position equation
to be set to any particular value when the position is defined. This only needs to be done before the
position is actually used within the program. The equation structure itself contains only pointers to
the component transforms; these pointers are used to look up the actual values “on the fly” when
the equation is referenced.

The above position equation ("loop") cannot be used to specify the target of a manipulator
motion because it does not contain the transform T6. To include T6 in an equation definition, the
predefined variable T6 should be inserted at the appropriate point into the argument list to make-Position(). Moreover, if we want to specify a TOOL frame that is different from the T6 frame,
then the predefined variable TL should be placed at the end of the argument list (before the NULL)
and followed by a pointer tl to a transform denoting this TOOL frame. The transform referenced
by tl must be one of the equation’s component transforms. Sometimes, the TOOL component of
a position equation is composed of more than one transform. If this is the case, tl should be the
transform adjacent to the TOOL frame itself. The system will then define the total TOOL compo-
nent to be the product of all the transforms lying between T6 (exclusive) and tl (inclusive), in the
same direction as T6.

When a TOOL frame is specified with TL, we can omit the NULL at the end of the argument list.

For example, suppose we wish to create the position equation in 1. Assume that the transforms
BASE, TOOL, OBJ, and GRASP have been allocated, and pointers to them are stored in the vari-
ables base, tool, obj, and grasp. The equation can then be defined byPOS_PTR p;p = makePosition ("P", base, T6, tool, EQ, obj, grasp, TL, tool);

If an equation definition contains T6 but does not contain a TL specification, then the TOOL
frame will be set equal to the T6 frame (i.e., TOOL = I in (2)); the same thing can be accom-
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plished by using a TL specification and setting tl to either T6 or NULL. A TL specification will be
ignored if the equation does not contain a T6 transform.

To illustrate the different ways of setting up the canonical components, consider the components
COORD and TOOL that correspond to the following calls to makePosition():makePosition ("P0", T6, EQ, h, NULL); /* produces ... */TOOL = ICOORD = HmakePosition ("P1", T6, EQ, h, TL, T6); /* produces ... */TOOL = ICOORD = HmakePosition ("P2", T6, t, EQ, h, TL, t); /* produces ... */TOOL = TCOORD = HmakePosition ("P3", T6, a, EQ, h, g, TL, T6); /* produces ... */TOOL = ICOORD = HG A�1makePosition ("P4", T6, t1, t2, EQ, h, g, TL, t2); /* produces ... */TOOL = T1 T2COORD = H G

When a position is no longer needed, it can be deallocated with the callfreePosition(p)POS_PTR p;
Care must be taken that the corresponding position is no longer in use. The equation’s component
transforms are not freed; they must be freed individually using freeTrans().
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3.5 Computing with Position Equations

The most basic use of position equations in RCCL is to use them directly in move() as the target
specifications for motion requests. This will be discussed extensively in the following chapters. It
is also possible to do direct computations with them. The following primitives allow a programmer
to solve for a particular transform or sub-chain within an equation:TRSF_PTR solveTrans (tr, p, t1, tx)TRSF_PTR tr, t1, tx;POS *p;TRSF_PTR *solveChain (tr, p, t1, t2, tx)TRSF_PTR tr, t1, t2, tx;POS *p;TRSF_PTR *solveInvChain (tr, p, t1, t2, tx)TRSF_PTR tr, t1, t2, tx;POS *p;solveTrans() takes position equation p and solves it for the transform t1 (which must be an el-
ement of p). If p contains a T6 transform, but it is not the transform being solved for, then the
argument tx is used to provide a specific value for T6. Otherwise, tx can be specified as NULL.solveTrans() returns a pointer to its result argument.

For example, suppose we have the position equationZ T6 E = A B C (3)

representing the kinematic graph in figure 11.

Z T6 E

CBA

Figure 11: A sample position loop containing the manipulator transform T6.

This can be declared with the makePosition() callp = makePosition ("p", z, T6, e, EQ, a, b, c, TL, e);
If at some later time we wish to solve for A, we can call
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3.5. COMPUTING WITH POSITION EQUATIONS 37solveTrans (r, p, a, tx);
which will compute A = Z TX E C�1 B�1
and place the result into r. The original value of a is left unchanged.solveChain()and solveInvChain()are used to evaluate sub-sections of a position equation.solveChain() goes clockwise around the kinematic loop described by p and multiplies to-
gether all transforms found between t1 and t2, inclusive (recall that the clockwise-directed trans-
forms are those that appear on the left-hand side of the equation). If one of the transforms is directed
counterclockwise, then its inverse value is used in the multiplication. Again, values for the trans-
form T6 are supplied, if necessary, by the argument tx. For example, in (3), the callssolveChain (r, p, a, c, tx);solveInvChain (r, p, T6, c, tx);
would compute R = A�1 Z TX E C
and R = TX�1 Z�1 A B C�1
respectively.solveInvChain()does the same thing as solveChain(), except it goes around the loop coun-
terclockwise.

Kinematic equation loops comprise a restricted case of transformation graphs. Multi-branch
graphs can be useful in modeling situations where several time varying coordinate frames are inter-
related. They can be implemented using the primitives described above, and/or the basic transform
multiplication routines.

As a simple example, consider the following: suppose two manipulators are working together
on a task, with manipulator 1 occasionally putting down an object that manipulator 2 has to pick
up. Assume that the relative location of the two robots is described by the transform BASE2, which
maps from the base frame of the first robot to the base frame of the second (see figure 12). Assume
also that the first robot is being guided by real-time sensors, so it is not known in advance exactly
where the object will be put down. Let the “put down” spot be described by the position equation
by T6 E1 = PLACE (4)

where E1 is a tool transform and PLACE locates the object’s grasp point relative to the manipula-
tor’s base. When the object is actually put down, we can solve for all the components of (4) exactly.
Now, let the “pick up” spot for the second robot be described byT6 E2 = PICK (5)

Picking the object up requires moving the second robot’s TOOL frame to the same spatial location
that was occupied by the first robot’s TOOL frame. This amounts to finding a value for the transform
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Figure 12: Kinematic diagram for a cooperative pick-and-place operation.

PICK. From figure 12, we can see that there is a third position equation,BASE2 PICK = PLACE; (6)

which can be used to solve for PICK.

Within a program, these three position equations could be defined as follows:TRSF_PTR pick, place, base2, e1, e2;POS_PTR pickPos, placePos, refPos;placePos = makePosition ("placePos", T6, e1, EQ, place, TL, e1);pickPos = makePosition ("pickPos", T6, e2, EQ, pick, TL, e2);refPos = makePosition ("refPos", base2, pick, EQ, place, NULL);placePos can be used as a target position for the first manipulator’s placing motion. Assume that
the value of the transform PLACE is modified by a sensor until the object is actually put down
(ways of doing this will be presented later). When the placement is finished, we can solve for PICK
using solveTrans (pick, refPos, pick, NULL);
and then pickPos can be used as a target position for the second manipulator’s pickup motion.

This particular example is simple enough that if a programmer were actually implementing it,
he/she would probably dispense with refPos altogether and simply call
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3.5. COMPUTING WITH POSITION EQUATIONS 39multLiTrsf (pick, base, place);
directly. Whether or not the creation of explicit position equations is advantageous depends heavily
on the complexity of the task. In particular, position equations provide a compact way to describe
general kinematic loops to another module (such as when they are used by the move() primitive to
describe a motion target to the trajectory generator).
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4. Controlling a Robot

This section describes the primitives available for doing actual robot control.

4.1 The Create and Delete Primitives

When an RCCL program wishes to control a robot, it must first create a MANIP structure for that
robot. This is done using the callMANIP_PTR rcclCreate (robotName, cpuMask)char *robotName;int cpuMask;
which looks up the named robot in the RCI system tables (the robot should be one configured into
RCI), allocates the necessary control data structures for it (including the MANIP structure), and as-
signs this robot to a trajectory task on one of the CPUs specified by the bitmask cpuMask, creating
that task if necessary. The last argument is important only if the RCCL/RCI site does in fact support
multiple CPUs. In either case, it is usually set to 0, which tells the system to automatically select a
CPU from those which are available.

The MANIP pointer returned by rcclCreate() is the handle used for all subsequent control of
that robot. When the robot is no longer needed, its MANIP structure may be removed with the callrcclDelete(mnp).

4.2 The MANIP structure

Information about the robot can be obtained from the MANIP structure. The fields which normally
concern the programmer look like this:typedef struct {/* Cartesian level information */TRSF *t6;TRSF *t6o;TRSF *here;TRSF *tool;TRSF *rest;TRSF *lastTC;POS *park;POS *last;
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4.2. THE MANIP STRUCTURE 41/* Joint level information */JNTS *j6;JNTS *j6o;JNTS *jvel;int handPos;/* Robot information */RCI_RBT *rbt;HOW *how;JLS *jls;KYN *kyn;void *var;} MANIP, *MANIP_PTR;t6 contains the output value of the manipulator T6 transform computed by the trajectory generator
during the most recent control cycle.t6o contains the observed values of T6, as read back from the robot during the last control cycle.
For computational efficiency, this field is maintained only if the mode T6O_EVAL is selected for the
manipulator (see section 9.1.2).here contains the value of the t6 field at the point where the last motion ended (as in “at the end
of the last motion, T6 was here”). See section 4.4.1 for a discussion of just when a motion “ends”.tool contains the value of the current target position’s TOOL component, as computed by the
trajectory generator during the most recent control cycle.rest is a fixed read-only transform corresponding to the park position of the manipulator. The
actual definition of this is a little up in the air; at the moment, the system looks up the values of the
robot’s “park angles” in the its JLS structure (see section 6.1.1) and computes the corresponding
T6 transform value.lastTC is the target value of T6 towards which the manipulator was heading at the end of the last
motion (this differs from here because of transitioning between path segments; T6 usually comes
close to lastTC but does not achieve it; see section 4.4.1).park is a built-in position equation corresponding to the manipulator’s park position:T6 = REST
where REST is the transform contained in the rest field. This allows moves to the park position
to be simply specified with the following command:move (mnp, mnp->park);last is a built-in position equation which describes the last target the manipulator was moving
to: T6 = LASTTC
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where LASTTC is the transform contained in the lastTC field. It is particularly useful in conjunc-
tion with the distance() primitive to create relative motions (see below).j6 contains the output manipulator joint values computed by the trajectory generator during the
most recent control cycle (if you apply forward kinematics to these, you will get the values in thet6 field).j6o contains the actual observed values of the joint values, read back from the robot during the
last control cycle. For computational efficiency, this field is maintained only if the mode T6O_EVAL
is selected for the manipulator (see section 9.1.2).jvel contains the current output (computed) joint velocities.

The fields rbt, how, jls, kyn, and var point to memory areas describing the low level RCI in-
terface to the robot. In particular, they describe parameters and terms relating to a particular robot’s
physical characteristics. These fields are discussed in detail in section 6.1.1.

Other information can be obtained from the MANIP structure using special macros. The macroMANIP_CPU(mnp) returns the CPU number of the manipulator’s trajectory task. The macro MA-NIP_TASK(mnp) returns the RCI task descriptor for the manipulator’s trajectory task (you won’t
really need this, but check the RCI User’s Guide if you are curious).

4.3 Running the Trajectory Generator

It is necessary to turn on the trajectory generator task before the robots can actually be controlled.
The routine to do this isrcclStart()
The trajectory generator will then begin executing at a regular sample interval, the default value of
which is a parameter in the .rciparams file (see section 9.1.3). The sample interval can be read
back or changed from within the RCCL program using the primitivesrcclGetInterval()rcclSetInterval(interval)
It is illegal to call rcclSetInterval() (and rcclCreate() as well) while the trajectory generator
is running.

Turning the trajectory generator off is done with the routinercclRelease(powerOff)
The parameter powerOff is a boolean which, if true, causes the robot arm power to be turned off
as well (unless the option RCCL_LEAVE_POWER_ON is set).

To determine if the trajectory generator is running, the routinercclActive()
can be called; this returns true if the trajectory generator is running.
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4.4 Specifying Motions

4.4.1 The Basic Motion Mechanism

The basic primitives to request manipulator motions are:move (mnp, pos)MANIP *mnp;POS_PTR pos;movej (mnp, jnts)MANIP *mnp;JNTS_PTR jnts;move() tells the trajectory generator to move the manipulator mnp to the target specified by pos,
which must be a position equation returned by makePosition(). movej() tells the system to move
the manipulator to a target specified by a set of joint values.

These primitives do not wait until the manipulator has reached the specified target point. In-
stead, they simply queue up a motion request and return. The trajectory generator task services the
motion requests in FIFO fashion (figure 13). This decouples the activity of the planning level from
the control level, but also means that explicit synchronization primitives must be provided. The
simplest of these is the waitForCompleted() primitive described in the first example program;
others will be presented later.

The planning level can set parameters controlling various motion characteristics, such as the
desired velocity or the interpolation mode; these will be discussed below. Usually these parameters
are lumped in and queued with the motion requests themselves, so they take effect only with the next
motion request.

Each motion request serviced by the trajectory generator corresponds to a single motion path
segment. When finishing one path segment and starting another, it is generally necessary to provide
a smooth transition from the first path segment into the second. The purpose of the transition is
to prevent the manipulator from undergoing large impulses in acceleration or higher derivatives.
This is illustrated (with a one-dimensional example) in figure 14, which shows a two path segment
trajectory in which the manipulator is asked to move first from A to B, and then from B to C . The
idealized trajectory is a dotted line, and the real trajectory is a solid line. At the start of each path
segment there is a transition region which is symmetric about the nominal (or official) starting time
for the path segment. The time on each “side” of this transition is � control cycles, which makes
the total transition time 2� cycles; this is marked for the transition between path segments AB andBC. Outside of the transition zone, the manipulator “coasts” at a constant velocity. The total time
allocated for the path segment (from the midpoint of one transition to the midpoint of the next) is �
motion counts. The trajectory generator normally computes the values of � and � for each motion
“on the fly”, using the velocity and acceleration limits currently specified for the manipulator.

The existence of transition regions creates some ambiguity about when one motion segment
ends and another begins. By default, RCCL defines the official time at which this happens to be
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Figure 13: Motion queue and shared memory block linking the planning and con-
trol levels internally. The queue is for storing motion request packets, while the
shared memory block is for information that is transferred immediately.

the midpoint of the transition region1 (see figure 15). This is when the here transform and various
motion status flags are updated. On the other hand, the actual computations associated with a path
segment (including the execution of monitor and transform functions, which will be discussed later)
are started at the beginning of the transition interval (and the corresponding computations for the
previous path segment are halted). This is an artifact of the way RCCL computes trajectories. If
this slight inconsistency causes trouble, then the official motion change over time can be set to the
beginning of the transition interval as well (see section 9.1.2).

4.4.2 Stopping at Target Points

Because of the motion transitions, a manipulator will generally not pass directly through its target
point unless it is made to stop there; instead, it will tend to “undercut” the target point. This is the
difference between the lastTC and here fields (in the MANIP structure) which are updated at the
end of each motion: lastTC corresponds to the ideal target position (B, in figure 15), while here
corresponds to the point actually reached by T6.

In RCCL, stopping a robot is accomplished by essentially moving to the same target position
twice. The second “motion” ensures that the manipulator will actually come to rest at the target,
as illustrated in figure 16, which shows the manipulator stopping at B for a short time. This is the
same paradigm as that described in Richard Paul’s book [Paul 1981].1Except for “stop” motions, described in the next section, which are considered to end at the beginning of the tran-
sition to the next motion.
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Figure 14: Manipulator trajectories are created by blending together individual
path segment, as illustrated here in one dimension.

Motion requests to stop the manipulator are invoked by the stop() primitive,stop (mnp, time)MANIP *mnp;float time;
which stops the manipulator at the last target position for time milliseconds.

Note that stopping at a target position does not necessarily mean the manipulator will physically
come to rest, since if the target itself is moving in time, then the manipulator will continue to track
it. One the other hand, when all the motion requests for a manipulator have been executed, the
trajectory generator will normally bring it to an absolute stop at wherever it happens to be. In other
words, when a program waits for all requested motions to finish with the macrowaitForCompleted (mnp);
the manipulator will usually be brought to an absolute stop. This an intuitively reasonable thing
to do: “no motion has been specified, so don’t do anything”. On the other hand, it is sometimes
desirable in these circumstances to have the robot continue to track the last target position2. This
behavior can be selected by setting TRACKING_MODE (section 9.1.2) for the manipulator in question;
if this is done, waitForCompleted() will still block until all explicit motions have finished, but
the manipulator might not be brought to an absolute stop.

Although similar in effect to issuing another move to the last target position, stop requests are
slightly different from move requests in several ways. First, they ignore the setting of certain motion2This is what the original version of RCCL did.
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Figure 15: The “switchover” point for motions is generally taken to be the mid-
point of the transition region.

parameters. In particular, the effect of calls to setMod(), setConf(), distance(), and setDis-tance() (see below) is held over until the next move request. Second, the trajectory generator treats
stop requests differently in that no “drive” computation is performed for them. Last, a stop motion
is considered to be officially “over” when the transition to the next motion segment begins (instead
of at the transition region midpoint).

4.5 Setting Motion Parameters

4.5.1 Interpolation Mode

As described in section 3.2, RCCL implements two ways of moving between target positions: joint
interpolation, also known as joint mode, and Cartesian interpolation, or Cartesian mode. Because
a joint interpolated path always exists between two well defined end points, joint mode is usually
preferred for large motions. Cartesian mode, on the other hand, generates trajectories which are
easy to visualize and which are often suited to particular types of tasks.

Motions specified with move() are performed in either joint or Cartesian mode, depending on
which is currently selected. Selection of the interpolation mode is done on a per-manipulator basis
with the primitivesetMod (mnp, c)MANIP *mnp;char c;
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Figure 16: Stopping at a point is done using two path segments which have the
same target.c should be set equal to 'j' for joint mode and 'c' for Cartesian mode; Joint mode is the default. A

change introduced by setMod() takes effect with the next requested motion, and remains in effect
for all subsequent motions. As an illustration of its usage, consider the following:MANIP *mnp;POS_PTR p, p1, p2;int i, m;p1 = makePosition(...);p2 = makePosition(...);for (move(mnp, p2), i = 0; i < 10; ++i){ if (i % 2 != 0){ m = 'c';p = p1;}else{ m = 'j';p = p2;}setMod (mnp, m);move (mnp, p);}
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This will cause the arm to move from p2 to p1 (i odd) in Cartesian mode and from p1 to p2 (i
even) in joint mode. Of course, C experts will insist on coding the same thing like this:for (move(mnp, p2), i = 10; i--;){ setMod (mnp, (m = i % 2) ? 'c' : 'j');move (mnp, m ? p1 : p2);}

To read back the mode setting for a manipulator, the routinegetMod (mnp)
may be used. Since the mode setting has to propagate through the motion queue before actually
taking effect, the mode setting read back with getMod()may not be the one currently in use by the
trajectory generator. The routinegetActiveMod (mnp)
returns the interpolation mode in effect for the current motion.

Motions specified with movej() are always joint interpolated.

4.5.2 Setting Velocities and Motion Times

There are many ways to specify the desired manipulator velocity.

The simplest way to change the robot speed is to call the routinesetSpeed (mnp, scale)MANIP *mnp;float scale;
which simply scales the base velocity up or down (the default value for scale is, predictably, 1.0).
The same effect can be achieved by setting the speed parameter in the .rciparamsfile (see section
9.1.3); this speed parameter is combined with whatever the programmable speed scale happens to
be. The new speed setting will take effect with the next requested motion. The speed setting can
be read back using the routine getSpeed(mnp).

Setting a manipulator base velocity is slightly more complicated since it depends on the inter-
polation mode: when doing the straight line motion associated with Cartesian mode, one wishes
to specify velocities in terms of something like mm. per sec. for translation and degrees per sec.
for rotation. When moving in joint interpolated mode, the velocities need to be specified in units
particular to the joints themselves.

For controlling the Cartesian mode velocity, the following primitives are available:setCartVel (mnp, transVel, rotVel)MANIP *mnp;float transVel, rotVel;getCartVel (mnp, transVel, rotVel)
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4.5. SETTING MOTION PARAMETERS 49MANIP *mnp;float *transVel, *rotVel;getDefaultCartVel (mnp, transVel, rotVel)MANIP *mnp;float *transVel, *rotVel;setCartVel() sets the base Cartesian velocity to transVelmm. per second and rotVel degrees
per second. These represent limits: the arm will accelerate to the lowest of the two bounds and
then maintain that speed. For example, for a motion involving a 30 millimeter translation and a 30
degree rotation, the callsetCartVel (mnp, 30.0, 300.0);
will result in a 1 second motion caused by the translation constraint, overriding the 1=10 of a sec-
ond time needed to perform the rotation. If either of the arguments is specified as F_UNDEF, then
it is left unchanged; if either is specified as F_DEFAULT, then it is set to the system default value.getCartVel() and getDefaultCartVel()allow the currently selected values and the system de-
fault values to be read back. There is no getActiveCartVel()per se, since the base velocities and
scale factors are combined into a single net velocity before being sent to the trajectory generator;
for the equivalent function, see section 4.5.4.

For controlling the velocity of joint interpolated motions, the following primitives are available:setJointVel (mnp, jvel)MANIP *mnp;JNTS *jvel;getJointVel (mnp, jvel)MANIP *mnp;JNTS *jvel;getDefaultJointVel (mnp, jvel)MANIP *mnp;JNTS *jvel;setJvelScale (mnp, scale)MANIP *mnp;float scale;getJvelScale (mnp)MANIP *mnp;setJointVel() sets the base velocities for each joint to the values given by jvel. These will be
millimeters per second for prismatic joints and degrees per second for rotational joints. Again,
these represent limits: the arm will accelerate to the lowest of the bounds and then maintain that
speed. If any of the velocities are specified as F_UNDEF, then they are left unchanged; if any are
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specified as F_DEFAULT, then they are set to the system default value. getJointVel() and get-DefaultJointVel() allow the currently selected values and the system default values to be read
back. The overall joint velocities may be scaled using setJvelScale() and getJvelScale();
the joint velocity scale factor acts in addition to the scale factor specified with setSpeed(). There
is no getActiveJointVel() per se, since the base velocities and scale factors are combined into
a single net velocity before being sent to the trajectory generator; for the equivalent function, see
section 4.5.4.

4.5.3 Setting Acceleration

The acceleration limits for a manipulator control the length of the path segment transition times.
The higher the allowed accelerations, the shorter the transition times. Acceleration limits can be
specified with the following primitives:setAccelScale (mnp, scale)MANIP *mnp;float scale;float getAccelScale (mnp)MANIP *mnp;setCartAccel (mnp, transAcc, rotAcc)MANIP *mnp;float transAcc, rotAcc;getCartAccel (mnp, transAcc, rotAcc)MANIP *mnp;float *transAcc, *rotAcc;setJointAccel (mnp, jacc)MANIP *mnp;JNTS *jacc;getJointAccel (mnp, jacc)MANIP *mnp;JNTS *jacc;
These routines are analogous to setSpeed(),getSpeed(),setCartVel(),getCartVel(),setJointVel(),
and getJointVel(). setAccelScale() scales the acceleration limits for both Cartesian and joint
mode motions; the default scale value is 1.0. getSpeed() reads back the acceleration scale. set-CartAccel() sets the acceleration limits for Cartesian motions to transAccmm=sec2 and rotAccdeg=sec2, while setJointAccel() sets the limits for joint interpolated motions to the values given
by jacc (mm=sec2 for prismatic joints and deg=sec2 for rotary joints). Specifying any of the ac-
celerations as F_UNDEF causes the corresponding value to be unchanged; specifying F_DEFAULT
causes the system default value to be used. The routines getCartAccel() and getJointAccel()
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allow the current values to be read back. Changes created by any of these routines take effect with
the next requested motion.

4.5.4 More on Velocity and Acceleration Limits

Assume that s is the speed scale factor controlled by setSpeed(), sg is the “program global” speed
factor set in the .rciparams file (section 9.1.3), vbt and vbr are the “base” translational and rota-
tional velocities controlled by setCartVel(),vbj is the “base” joint velocity vector controlled withsetJointVel(), and sj is the joint velocity scale controlled by setJvelScale(). These terms are
combined into “net” velocities, described by vt, vr, and vj , as follows:vt = s sg vbtvr = s sg vbrvt = s sg sj vbj
These net velocities are bundled into each motion request. The trajectory generator uses them as
required to determine an appropriate value of � (section 4.4.1) for the motion.

The values of vt, vr, and vj which are in effect for the current manipulator motion can be read
back using the routinesgetActiveCartVel (mnp, transVel, rotVel)MANIP *mnp;float *transVel, *rotVel;getActiveJointVel (mnp, jvel)MANIP *mnp;JNTS *jvel;

Acceleration limits are handled similarly. Let � be the acceleration scale controlled by setAc-celScale(),abt and abr be the “base” translational and rotational accelerations controlled by set-CartAccel(), and abj be the “base” joint acceleration vector controlled with setJointAccel().
The “net” acceleration limits at, ar, and aj are computed as follows:at = � abtar = � abraj = � abj
These are bundled into each motion request and used by the trajectory generator to estimate an ap-
propriate transition time � . The values of at, ar, and aj in effect for the current manipulator motion
can be read back using the routinesgetActiveCartAccel (mnp, transAcc, rotAcc)MANIP *mnp;float *transAcc, *rotAcc;
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52 4. CONTROLLING A ROBOTgetActiveJointAccel (mnp, jacc)MANIP *mnp;JNTS *jacc;
Finally, there is another routine, getActiveMotionCounts(), which permits the program to

read back the values of � and � (the times for the incoming transition and motion duration, respec-
tively, in units of control cycles; see section 4.4.1), which are in effect for the current motion:getActiveMotionCounts (mnp, tau, sigma)MANIP *mnp;int *tau, *sigma;
4.6 Program Example: “box”

This is a simple program which repeatedly moves the robot around the edges of a square “box”
while demonstrating the effect of changing the speed and acceleration specifications.#include <rccl.h> /*1*/#include "manex.560.h"#define BOXSIZE 150.0main(){ TRSF_PTR e, b, c[4]; /*2*/POS_PTR corners[4], start;MANIP *mnp;char *robotName;int k, ia, iv; /*3*/static float accelValues[] = { F_DEFAULT, 4000.0, 20.0 };static char *accelDesc[] = { "default", "high", "low" };static float velValues[] = { F_DEFAULT, 400.0, 40.0 };static char *velDesc[] = { "default", "fast", "slow" };rcclSetOptions (RCCL_ERROR_EXIT); /*4*/robotName = getDefaultRobot(); /*5*/e = allocTransXyz ("E", UNDEF, 0.0, 0.0, TOOLZ); /*6*/b = allocTransRot ("B", UNDEF, B_X, B_Y, B_Z, xunit, 180.0);start = makePosition ("start", T6, e, EQ, b, TL, e); /*7*/c[0] = allocTransXyz (NULL, UNDEF, BOXSIZE/2, 0.0, -BOXSIZE/2);c[1] = allocTransXyz (NULL, UNDEF, -BOXSIZE/2, 0.0, -BOXSIZE/2);c[2] = allocTransXyz (NULL, UNDEF, -BOXSIZE/2, 0.0, BOXSIZE/2);c[3] = allocTransXyz (NULL, UNDEF, BOXSIZE/2, 0.0, BOXSIZE/2);for (k=0; k<4; k++) /*8*/
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4.6. PROGRAM EXAMPLE: “BOX” 53{ corners[k] = makePosition (NULL, T6, e, EQ, b, c[k], TL, e);}mnp = rcclCreate (robotName, 0); /*9*/rcclStart();move (mnp, start); /*10*/stop (mnp, 1000.0);waitForCompleted (mnp); /*11*/setMod (mnp, 'c'); /*12*/for (ia=0; ia<ARRAY_SIZE(accelValues); ia++) /*13*/{ for (iv=0; iv<ARRAY_SIZE(velValues); iv++){ float vel, accel;setCartAccel (mnp, accelValues[ia], F_UNDEF);setCartVel (mnp, velValues[iv], F_UNDEF);getCartAccel (mnp, &accel, (float*)NULL);getCartVel (mnp, &vel, (float*)NULL);printf ("%s vel (%g), %s acceleration (%g):\n",velDesc[iv], vel, accelDesc[ia], accel);moveSet (mnp, corners, ARRAY_SIZE(corners)); /*14*/waitForCompleted (mnp); /*15*/}}setMod (mnp, 'j'); /*16*/move (mnp, start);stop (mnp, 1000.0);waitForCompleted (mnp); /*17*/rcclRelease (YES);}moveSet (mnp, p, size)MANIP *mnp;POS_PTR *p;int size;{ int k;for (k=0; k<size; k++){ move (mnp, p[k]);}}
NOTE – this example has been coded for the PUMA 560 robot, and lives at$RCCL/demo.rccl/box.560.c. An equivalent program for the PUMA 260 is contained inbox.260.c
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As with simple.560, the program begins by including the standard file <rccl.h> (/*1*/) and
the manual example file "manex.560.h", and declaring pointers for the various transform and po-
sition structures (/*2*/).

The arrays accelValuesand velValues (/*3*/) store the different Cartesian acceleration and
velocity values that will be used. Note the explicit use of the floating point quantity F_DEFAULT.
The arrays accelDesc and velDesc contain string information that the program will print as it
executes.

As with the first example, the program sets the RCCL_ERROR_EXIT option to enable an auto-
matic program abort if the RCCL routines detect an error condition (/*4*/) (most RCCL and RCI
primitives respond to this option; the reference manual should be consulted to check whether or
not a particular one does). We repeat that while this option does not have to be set, it can be very
convenient. The name of the robot to be controlled is again taken to be the system default robot
(/*5*/).

Several transformations are created (/*6*/). e is a transform from the robot T6 frame to the
tool tip; in this case (as with most of the other examples) it is simply a translation along the z axis
of the T6 frame. Transform b locates the robot’s initial starting position in terms of a displacement
from the manipulator base frame to the tool frame. It is used in the position equation start, which
is defined as T6 TOOL = B
and is created with the call to makePosition() at (/*7*/). Four separate transforms c[k] are
created to locate each of the four corners of the box. Each corner is reached by a translation in thexz plane of the frame defined by b and is described by an equation of the formT6 TOOL = B C(k):
The corresponding position equations corners[k] are created at (/*8*/).

Note that the transforms b and e are named but all the other transforms and position equations
are unnamed. The naming of the first two transforms was done for illustrative purposes only; the
names will not actually be used in this program. Note also that four separate transforms and position
equations were created to represent each of the box’s corners. Again, this was mainly done for
illustrative purposes; for fixed targets, one has the option of creating only one position equation
and then moving to different points by changing the values of its component transforms between
move requests. Later examples will illustrate this.

After the transforms and position equations have been allocated, the program creates a MA-NIP structure for the robot using rcclCreate() and turns on the trajectory generator with rc-clStart() (/*9*/). It should be mentioned that while the examples in this manual will tend to
create their transform and position objects before the first call to rcclStart(), this is not neces-
sary; these can be created at any time, whether the trajectory generator is running or not.

The first action is to move the robot to the starting position (/*10*/). By default, this will be
done in joint mode, using the default speed settings. The robot stops at the start position for 1 second
before proceeding, and the program waits for this pause to finish before proceeding (/*11*/).

The program next switches to Cartesian interpolation mode (using setMod() (/*12*/)) and
goes into a loop (/*13*/) which causes the robot to trace out the edges of a box using several dif-
ferent velocity and acceleration values. The sizes of the arrays containing the values are computed
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automatically by the macro ARRAY_SIZE(). On each pass through the inner loop, new acceleration
and velocity parameters are set using setCartAccel()and setCartVel(). The rotational param-
eters are left unchanged by specifying F_UNDEF or NULL in the appropriate slot of each primitive.
To illustrate the usage of the “get” routines, the settings are read back using getCartAccel() andgetCartVel() and printed.

The move commands to trace around the outside of the box are generated by the subroutinemoveSet() (/*14*/); the program waits (at /*15*/) for the drawing of each box to finish before
doing it again with another set of acceleration and velocity values.moveSet()works by simply queuing up motion requests to a list of positions given as an input
array. An alternative way of doing this would be to use a single position equation and an input array
of target transform values. For instance, we could define a routine like this:moveTarget (mnp, tool, points, size)MANIP *mnp;TRSF_PTR tool, points[];int size;{ POS *p;TRSF *target, *tl;int k;target = allocTrans (NULL, UNDEF);tl = allocTrans (NULL, UNDEF);*tl = *tool;p = makePosition (mnp, T6, tl, EQ, target, TL, tl);for (k=0; k<size; k++){ *target = *points[k];move (mnp, p);}freePosition (p);freeTrans (tl);freeTrans (target);}
All that this routine requires the user do is specify a tool transform and an array of target points.
The input transforms do not need to be allocated with the allocTrans() primitives since they are
not actually part of the position equation which is used.

The program example ends by changing back to joint interpolated motions (using setMod('j'))
and moving the robot back to the start position (/*16*/). We do not bother to reset the accelera-
tion or velocity parameters, since setCartVel()and setCartAccel()affect only Cartesian inter-
polated motions (the equivalent primitives for joint interpolated motions are setJointVel() andsetJointAccel()). If one wants to simply scale the robot’s speed regardless of the interpolation
mode, then setSpeed() can be used.

Note that before the program exits, it waits for the last motion to finish using waitForCom-pleted(mnp) (/*17*/); otherwise, the program would probably exit, and the robot would be stopped
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(abruptly!), before it actually reached its last position. The final call to rcclRelease() turns off
the trajectory generator, the argument YES indicating that the robot arm power should also be shut
of.

4.7 More Motion Parameters

4.7.1 Explicitly Setting Motion Times

The program can override the automatic computation of a motion’s transition and duration times (�
and �) with the primitivesetTime (mnp, accelTime, travelTime)MANIP *mnp;float accelTime, travelTime;accelTime and travelTime are both in milliseconds. accelTime is actually one half the total
acceleration time; i.e., it is equal to � multiplied by the control interval time (see figure 14). trav-elTime is equal to � multiplied by the control interval time. If either argument is specified asF_DEFAULT, then the corresponding time parameter is computed by the trajectory generator, as usual.setTime() affects only the next motion requested.

This function is very useful for motions involving time varying targets (which will be discussed
later). Depending on how the target is time varying, the system may not be able to compute the
correct segment time since this computation is based on the distance to the target position at the
beginning of the motion. In such cases the motion time can be specified explicitly. For example,
suppose we have a target position spiralwhich contains a functionally defined transform causing
it to track a spiral path. Then the code fragmentsetMod (mnp, 'c');setTime (mnp, 150.0, 2000.0);move (mnp, spiral);
would cause the manipulator to perform a spiraling motion for 2 seconds, beginning with a 0.15
second transition time.

If we want to specify the transition time explicitly, then a call likesetTime (mnp, 200.0, F_DEFAULT);
will do the trick; this forces the transition time to be 0.2 seconds but lets the trajectory generator
compute the segment duration as normal, using the currently defined velocities. It is sometimes nec-
essary to specify a transition time of zero. This can be useful for motions terminated on condition
where the reaction time is of primary importance.

A common thing to do is set the overall motion time and let the system determine the transition
time, as insetTime (mnp, F_DEFAULT, 1000.0);
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which specifies a total motion duration of 1 second.

Finally, we can specify a motion of indefinite duration by setting the travelTime to F_UNDEF:setTime (mnp, F_DEFAULT, F_UNDEF);
This is useful in cases where the motion of the arm is created by variable transforms within the
target position (section 5.1), and we don’t care about reaching the target per se.

4.7.2 Offsetting the Motion Target

It is possible to specify an offset to a motion’s target position. This is useful if several poses are
being planned in the vicinity of a particular target but we do not wish to create a separate position
equation for each pose. The primitivesdistance (mnp, fmt, v[, v] ...)MANIP *mnp;char *fmt;float v;setDistance (mnp, offset)MANIP *mnp;TRSF *offset;
both apply an offset to the target position of the next motion request (and the next motion request
only). distance() allows the offset to be specified as a set of translation values and roll-pitch-
yaw angles. It takes a format string listing the offset’s components, followed by a variable number
of arguments giving the associated values. In the format string, each component is described with
two letters. The first letter can be either d or r (for distance or rotation) and the second letter can
be either x, y, or z (for each of the principal axes). For instance, the specification string "dx rz"
indicates a two-component offset consisting of a translation along x and a rotation around z. This
string would be followed by two arguments giving the corresponding values. When computing the
total offset, translation values are incorporated first, followed by the rotations about the z, y, and x
axes (the same order used for roll-pitch-yaw angles).

As an example, the code fragmentdistance (mnp, "dz", -30.);move (mnp, p);move (mnp, p);distance (mnp, "dz", -30.);move (mnp, p);
implements a simple “approach, reach, depart” sort of sequence along the z direction of the tool.

The distance() function can be used in conjunction with the last position equation in theMANIP structure to execute successive relative motions:
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58 4. CONTROLLING A ROBOTmove (mnp, p);distance (mnp, "dx", 100.0);move (mnp, mnp->last);distance (mnp, "dy", 100.0);move (mnp, mnp->last);distance (mnp, "dx", -100.0);move (mnp, mnp->last);distance (mnp, "dy", -100.0);move (mnp, mnp->last);
This code fragment first moves the robot to the target specified by p, and then moves about a square
in the xy plane.

The components given to distance() are turned into a transformation which is applied to the
target position in the TOOL coordinate frame. For instance, if a target position is described byT6 E = C P
with E defining the TOOL frame, then a call to distance()would implicitly insert an offset trans-
form SHIFT as follows: T6 E = C P SHIFTsetDistance()behaves the same as distance(), but allows the program to specify the offset
transform directly; this provides a more “program oriented” interface.

Both setDistance() and distance() are canceled by a movej() request.

4.7.3 Changing the Robot Configuration

Most robot arms are capable of reaching a designated Cartesian position in several ways. A partic-
ular instance of these redundancies is known as the robot configuration. In particular, for PUMA
robots, there are three separate redundancies (right-handed/left-handed, elbow down/up, and wrist
flip/noflip), making a total of eight possible ways to achieve any particular position.

When a robot is moving about in Cartesian coordinates, it usually retains its configuration from
one pose to the next. The primitivesetConf (mnp, conf)MANIP *mnp;char *conf;
sets up an arm configuration change during the subsequent motion. This motion has to be performed
in joint mode, since a configuration change always involves moving through a degenerate arm po-
sition unreachable in Cartesian mode. Once the configuration change is obtained, the motions can
again be performed in Cartesian mode. setConf() takes a string argument indicating the config-
uration change. Different configurations are indicated by unique characters within the string. For
the PUMA arm, the configurations can be: shoulder right-handed/left-handed(r/l); elbow down/up
(d/u); wrist flip/noflip (f/n). For example, if the arm is in a left-handed, up, and noflip configuration
(lun), then to change the wrist configuration to flip, we can write
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4.7. MORE MOTION PARAMETERS 59/* the arm is currently "lun" */setMod (mnp, 'j'); /* go in joint mode if it wasn't */setConf (mnp, "luf"); /* specify flip */move (mnp, new); /* go "luf" */
The configuration string does not have to be complete; it is permissible to specify only those aspects
of the configuration which are to desired to be changed. For instance, in the example above, the callsetConf (mnp, "f") could have been used instead.setConf() is ignored by stop requests and handled only by the next move request. Also, ifsetConf() is followed by a movej() request, then the setConf() request will be “over-ruled” by
whatever configuration is implicit in the movej().

The current manipulator configuration can be read back withgetActiveConf (mnp, conf)MANIP *mnp;char *conf;
which reads the robot’s present configuration into the string conf.

Robot configurations can also be described by a bitmask; for instance, the kinematic routines
(section 6.2.1) use this representation. The configuration codes for the PUMA are defined in the
file <puma_kynvar.h>:PUMA_RIGHT_CONF -- right handed ('r')PUMA_DOWN_CONF -- elbow down ('d')PUMA_FLIP_CONF -- wrist flip ('f')setConf() returns a bitmask indicating which configuration bits were specified. getActive-Conf() returns a bitmask equivalent to the configuration string.

For a given robot, the routinesconfigToStr (str, mask, kyn)char *str;int mask;KYN *kyn;strToConfig (maskp, str, kyn)int *maskp;char *str;KYN *kyn;
convert between the string and bit representations for configuration. kyn is a pointer to the robot’sKYN structure, which is described in section 6.1.1. Details on these routines can be found in the
reference manual.
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The configuration representation used by RCCL should probably be improved. For instance,
there should be ways of indicating joint redundancies and singularities (configurations are unde-
fined at singularities). This may be done when RCCL is upgraded to handle redundant manipula-
tors.

4.8 Synchronization

As has been mentioned, motions are requested asynchronously to their execution; a motion request
is simply placed in a queue for servicing by the trajectory generator at the next possible opportu-
nity. This makes it necessary to provide ways to explicitly coordinate the planning level with the
trajectory generator.

The most straightforward thing we can do is simply wait for the trajectory generator to finish
handling all the motion requests in its queue. This can be done using the macro waitForCom-pleted() that was discussed earlier. The code constructionmove (mnp, p1);move (mnp, p2);move (mnp, p3);waitForCompleted (mnp);
will quickly queue three motion requests and then wait for them all to complete. waitForCom-pleted() actually blocks until the transition out of the last motion has finished, so the manipulator
is guaranteed to be stationary when it returns (unless TRACKING_MODE has been selected).

Alternatively, we might want to wait for an individual motion request to finish. To do this, we
need to have a handle on the motion request. Such a handle is returned by the motion primitives:
all calls to move(), movej(), or stop() return a motion ID, an integer, that can be used to query
information about the motion. In particular, the following primitives are useful:motionStatus (mid)int mid;float motionScale (mid)int mid;motionStartCode (mid)int mid;motionStopCode (mid)int mid;motionStatus() returns either M_PENDING,M_RUNNING,M_PAUSED,or M_FINISHEDdepending on
whether the indicated motion is queued, is executing, has been paused (see section pause), or has
completed.
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4.8. SYNCHRONIZATION 61motionScale() returns a scalar value indicating how far along the motion has progressed in
its execution. The scale value is 0.0 at the midpoint of the transition into the motion and 1.0 at
the midpoint of the transition out of the motion, unless the transition was canceled prematurely, in
which case the final scale value will be less than 1.0. Because the system starts computing the scale
value at the beginning of the transition into the motion, it will be slightly negative during the period
between the beginning and midpoint of the initial transition.

RCCL associates a code value with the start and completion of a motion. The default code value
is ON_NORMAL, which is defined in <rccl.h>. Other code values can be specified with the functionsstartMotion() and stopMotion() (see below).

The primitiveswaitForStart (mid)int mid;waitForStop (mid)int mid;
respectively poll the indicated motion’s status and block until the motion has started executing or
has finished executing. For instance, the following code patterns are equivalent:id = move (mnp, p0);waitForStop (id);id = move (mnp, p1);waitForStop (id);
or move (mnp, p0);waitForCompleted (mnp);move (mnp, p1);waitForCompleted (mnp);

To further demonstrate the use of these primitives, consider the following (somewhat contrived)
example: MANIP *mnp;FILE *fp;POS_PTR posA, posB, posC;int id0, id1;id0 = move (mnp, posA);id1 = move (mnp, posB);move (mnp, posC);waitForStop (id0);while (motionStatus (id1) == M_RUNNING)
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62 4. CONTROLLING A ROBOT{ fprintf (fp, "scale = %f\n", motionScale (id1));fprintTrsf (fp, "%m\n", mnp->t6);}
This program queues three motion requests, waits for the first one to complete, and then begins to
record the successive T6 values (along with the motion scale value) for the second motion in the
file fp.

As another example, consider the “approach, reach, depart” sequence described earlier. If we
want to coordinate the planning level of the program so that it does something (such as open a grip-
per at the approach point and close it at the reach point), then we can use a code segment that looks
something like this:int approachId, reachId;distance (mnp, "dz", -30.);approachId = move (mnp, p);reachId = move (mnp, p);distance (mnp, "dz", -30.);move(p);waitForStop (approachId);OPEN_HAND (mnp);waitForStop (reachId);CLOSE_HAND (mnp);
The motion IDs for the moves to the approach and reach positions are recorded in approachID
and reachId. The program waits until the manipulator arrives at the approach position, opens the
gripper, waits again for the manipulator to arrive at the reach position, and closes the gripper.

The above example introduces the macrosOPEN_HAND(mnp)MANIP *mnp;CLOSE_HAND(mnp)MANIP *mnp;
which open and close the gripper for the specified manipulator (this hand control interface is quite
rough and could use some improvement).

To wait for an arbitrary condition or delay for a specific period of time, the following primitives
are available:waitFor(exp)waitWhile(exp)delay(msec)float msec;
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The first two are macros: waitFor(exp) waits for the indicated expression to return true, andwaitWhile(exp) waits for the indicated expression to return false. delay() puts the program to
sleep for the indicated number of milliseconds; it can be called only from the planning level.

4.8.1 Canceling and Controlling Motions

The functionsstopMotion (mid, code)int mid, code;startMotion (mid, code)int mid, code;setMotionHold (mnp)MANIP *mnp;
may be used to control individual motion requests.stopMotion() cancels the indicated motion and sets its motion stop value to code.startMotion() gives the indicated motion permission to begin and gives it a start value equal
to code. This may seem a bit obscure, since normally all motions are queued with permission to
begin and are given a start value of ON_NORMAL. However, calling setMotionHold(mnp) before
a motion request is issued will remove its permission to begin, so that when it reaches the head
of motion queue, and thus would otherwise be ready to run, it will not do so until permission is
granted by a call to startMotion(). This is mainly useful for starting motions from the control
level (which is not permitted to issue actual motion requests).

We now consider the motion ID values. While a motion ID which is automatically allocated is
always unique, only its low order bits are used to point to the internal cell containing the motion’s
status. Because memory space is limited, the number of these cells is also limited, and the status
cell associated with a motion ID will be re-used every NUM_SYSMFLAGS motions. This number is
large enough to accommodate most applications, but in case the programmer desires to keep motion
status information around indefinitely, the functionsetMotionFlag (mnp, mid)MANIP *mnp;int mid;
can be used to explicitly set the motion ID of the next motion to be mid. This value must be between
0 and NUM_USRMFLAGS�1. The use of these motion IDs is strictly under application control; RCCL
will never automatically assign a motion ID in this range.

To illustrate some of this, consider another example involving two robots:#define FLAG1 1#define FLAG2 2
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64 4. CONTROLLING A ROBOTMANIP_PTR mnp1, mnp2;POS_PTR posA, posB;setMotionFlag (FLAG1);move (mnp1, posA);setMotionFlag (FLAG2);move (mnp2, posB);while (motionScale (FLAG1) < 0.5);stopMotion (FLAG2, 0);
The idea here is that we have two robots, respectively controlled via MANIP structures pointed to bymnp1 and mnp2. We start the first robot moving toward posAwith FLAG1 explicitly set as the motion
ID (note that we do not store the ID returned by the motion request since we know what it is). The
second robot is then started moving towards posB with the motion ID FLAG2. We then monitor the
scale value of the first motion, and when it is more than half completed, cancel the motion on the
second robot with a code value of 0.

4.8.2 Controlling the Current Motion and Motion Queue

The primitivestopCurrentMotion (mnp, code)MANIP *mnp;int code;
may be used to cancel whatever motion happens to be executing currently, regardless of its motion
ID.

A few functions are available for controlling the motion queue:flushMotionQueue (mnp)MANIP *mnp;numMotionsQueued (mnp)MANIP *mnp;checkMotionQueue (mnp, pos)MANIP *mnp;POS *pos;setMotionQueueSize (mnp, size)MANIP *mnp;int size;
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4.8. SYNCHRONIZATION 65getMotionQueueSize (mnp)MANIP *mnp;flushMotionQueue()cancels all pending motions on the motion queue. It will not, however, abort
the current motion, so the proper way to “kill everything” is with a code fragment like this:flushMotionQueue (mnp);stopCurrentMotion (mnp, STOPCODE);
The motion queue is flushed first so that when the current motion is aborted, the system will not
take another off the queue and start executing it.numMotionsQueued() returns the number of motions pending on the motion queue, and check-MotionQueue() returns true if there is enough space on the queue to handle a motion request to the
target position pos.

The maximum size of the motion queue can be set with setMotionQueueSize()and read back
with getMotionQueueSize(). Setting the maximum queue size can be a useful synchronization
tool in that different queue sizes will produce different blocking behaviors for the motion requests.
Setting the motion queue size to 0 will cause every motion request to block until the associated mo-
tion has been completed (equivalent to doing a waitForCompleted() after every motion request).
Setting the motion queue size to 1 will cause every motion request to block until its motion is being
executed. A general motion queue size of n will cause the move primitives to block until there are
only n� 1 motions still pending on the queue. Consider the following example:MANIP *mnp;POS_PTR posA, posB, posC, posD, posE;setMotionQueueSize (mnp, 0);move (mnp, posA);/* nothing on queue; move to posA is now complete */setMotionQueueSize (mnp, 1);move (mnp, posB);/* nothing on queue; move to posB has at least started */setMotionQueueSize (mnp, 3);move (mnp, posC);move (mnp, posD);move (mnp, posE);/* no more than 2 motions on queue; *//* move to posC has at least started */
We first set the motion queue size to 0, causing move(mnp, posA) to block until completion. The
queue size is then set to 1, which means that the call move (mnp, posB)will block until the motion
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is at least being executed. Setting the queue size to 3 means that subsequent move requests will
block until there are no more than 2 motions on the queue; this means that move (mnp, posE)
must block until the move to position posC is at least being executed.

The motion queue can be set as large as MAX_MQ_ENTRIES. The default queue size can be ob-
tained by calling getMotionQueueSize() immediately after the MANIP structure has been created.

As another example of how the motion request queue interacts with the planning level, consider
the following program:TRSF_PTR z, e , b;POS_PTR p;float iz;z = allocTransXyz ("Z", 0., 0., 864.);e = allocTransXyz ("E" , 0., 0., 170.);b = allocTransRot ("B", 600., 128., 800., yunit, 180.);p = makePosition ("P", z, t6, e, EQ, b, TL, e);while (1){ printf ("Enter Z increment> ");scanf ("%f", &iz);b->p.z += iz;move (mnp, p);}
This allows the user to continuously adjust the z position of the robot. Every time an increment forz is entered, a new motion request to handle that increment will be queued, using the current value
of the b transform.

If the user enters data faster than the manipulator can move to the goal positions, several mo-
tion requests will be queued up. If the user stops entering data, all the requests will eventually be
executed, the manipulator will be brought to rest, and the program will block at the scanf() call.
If the data is provided by continuous stream fp, then the same program could look something like:while (fread (b, sizeof(TRSF), 1, fp) != NULL);{ move (mnp, p);}
4.8.3 Getting UNIX signals on motion completion

A useful feature of RCCL is the ability to request a UNIX signal to be delivered whenever (1) all
requested motions complete or (2) a particular motion completes (these are the same conditions
which cause waitForCompleted() or waitForStop() to return true). The routines to set up the
signals are
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4.8. SYNCHRONIZATION 67setCompletedSig (mnp, signum)MANIP *mnp;int signum;setStopSig (mnp, signum, mid)MANIP *mnp;int signum, mid;setCompletedSig() requests that the signal signum be sent to the planning task the next time the
trajectory generator finishes executing all the motions on the queue. setStopSig() requests that
the signal signum be sent to the planning level task whenever the motion specified by the ID mid
finishes.

Consider the following example:#include <rccl.h>#include <signal.h>handler(){ printf ("All motions completed\n");}robottask(){ ... initializations and other things ...signal (SIGUSR1, handler);setCompletedSig (mnp, SIGUSR1);move (mnp, p0);move (mnp, p1);move (mnp, p2);printf ("Hit <CR> to quit:\n");getchar();}
This program will quickly queue three motion requests, and then block waiting for a character.
When all three motions have completed, the message All motions completedwill be asynchronously
printed to the screen.
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4.9 Program Example: “hex”

This program has the manipulator trace out a small hexagonal grid, or “honeycomb” pattern (see
figure 17). The robot does one column in the grid at a time, and before doing each one goes to a
“pickup” position, as though it were reloading a tool (see figure 18). When each column is com-
pleted, a signal is sent to the planning level that causes a message to be printed.

This program is a bit complex for example purposes, but it does illustrate a wide variety of ca-
pabilities.#include <rccl.h>#include <signal.h> /*1*/#include <math.h>#include "manex.560.h"#define FLAG 2onSignal() /*2*/{ printf ("Column done\n");}main(){ TRSF_PTR e, park, pickup, top, down;POS_PTR home, reload, center;MANIP *mnp;JNTS rcclpark;char *robotName;float hexsize = 15.0;int numRows = 5;int numCols = 5;int i, j;float sin_60;int mid;rcclSetOptions (RCCL_ERROR_EXIT);robotName = getDefaultRobot(); /*3*/if (!getRobotPosition (rcclpark.v, "rcclpark", robotName)){ printf ("position 'rcclpark' not defined for robot\n");exit(-1);}e = allocTransXyz ("E", UNDEF, 0.0, 0.0, TOOLZ);park = allocTrans ("PARK", UNDEF); /*4*/pickup = allocTrans ("PICKUP", UNDEF);top = allocTrans ("TOP", UNDEF);down = allocTrans ("DOWN", UNDEF);
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4.9. PROGRAM EXAMPLE: “HEX” 69home = makePosition ("home", T6, e, EQ, park, TL, e); /*5*/reload = makePosition ("reload", T6, e, EQ, pickup, TL, e);center = makePosition ("center", T6, e, EQ, park, top, down, TL, e);mnp = rcclCreate (robotName, 0); /*6*/rcclStart();movej (mnp, &rcclpark); /*7*/waitForCompleted (mnp);solveTrans (park, home, park, mnp->here); /*8*/rotToTrsf (pickup, zunit, 90.0); /*9*/multTrsf (pickup, pickup, park);multTrsfXyz (pickup, 0.0, 0.0, -125.0);multTrsfRot (pickup, xunit, 30.0);xyzToTrsf (top, 100.0, 0.0, 50.0); /*10*/multTrsfRot (top, xunit, 90.0);setJvelScale (mnp, 2.0); /*11*/setCartVel (mnp, 100.0, 50.0);signal (SIGUSR1, onSignal);sin_60 = sin(60.0*DEGTORAD); /*12*/for (j=0; j<numCols; j++) /*13*/{ setConf (mnp, "n"); /*14*/distance (mnp, "dz", -50.0); /*15*/move (mnp, reload);mid = move (mnp, reload);stop (mnp, 2000.0);distance (mnp, "dz", -50.0);move (mnp, reload);waitForStop (mid); /*16*/OPEN_HAND (mnp);delay (500.0);CLOSE_HAND (mnp);setConf (mnp, "f"); /*17*/top->p.x -= 2*hexsize*sin_60;identTrsf (down); /*18*/for (i=0; i<numRows-1; i++) /*19*/{ traceHex (mnp, center, hexsize, 50.0, UNDEF);if (i%2 == 0) /*20*/{ multTrsfXyz (down, hexsize*sin_60, 3/2.*hexsize, 0.0);}else{ multTrsfXyz (down, -hexsize*sin_60, 3/2.*hexsize, 0.0);}
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70 4. CONTROLLING A ROBOT}traceHex (mnp, center, hexsize, 50.0, FLAG);setStopSig (mnp, SIGUSR1, FLAG); /*21*/}setConf (mnp, "n"); /*22*/move (mnp, home);stop (mnp, 1000.0);waitForCompleted (mnp);rcclRelease (YES);}traceHex (mnp, p, hexsize, approach, flag)MANIP *mnp;POS *p;float hexsize, approach;int flag;{ TRSF offset;int saveMod;int mid;int theta;xyzToTrsf (identTrsf(&offset), 0.0, 0.0, -approach);setDistance (mnp, &offset);move (mnp, p); /*23*/saveMod = getMod(mnp); /*24*/setMod (mnp, 'c'); /*25*/offset.p.z = 0.0; /*26*/for (theta=30; theta<=390; theta+=60){ offset.p.x = hexsize * cos(DEGTORAD*theta);offset.p.y = hexsize * sin(DEGTORAD*theta);setDistance (mnp, &offset);move (mnp, p); /*27*/}xyzToTrsf (identTrsf(&offset), 0.0, 0.0, -approach);setDistance (mnp, &offset);if (flag != UNDEF){ setMotionFlag (mnp, flag); /*28*/}mid = move (mnp, p); /*29*/setMod (mnp, saveMod); /*30*/return (mid);}
NOTE – this example has been coded for the PUMA 560 robot, and lives at$RCCL/demo.rccl/hex.560.c. An equivalent program for the PUMA 260 is contained inhex.260.c
The file <rccl.h> is included as usual. <signal.h> and <math.h> are UNIX files included to
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Figure 17: Robot drawing out a hexagonal “honeycomb” pattern.

get the definition of the signal SIGUSR1 and define the types for routines sin() and cos() (/*1*/).
The signal handler which will be used to print the column completion message is defined at (/*2*/).

The program declares a few variables and pointers, gets the name of the robot to be controlled
and its starting position (/*3*/), then allocates several transforms and position equations (/*4*/
and /*5*/). Except for the end-effector transform e, all of the transforms will be initialized later
in the program. The position start describes the position reached after moving to the joint anglesrcclpark, and is defined simply by T6 = PARKreload is the place the robot moves to before tracing out each column, and is defined by the equa-
tion T6 E = PICKUP
where E describes the manipulator’s end-effector transform. The most complicated position iscen-ter, defined by T6 E = PARK TOP DOWN
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y

z

Figure 18: Position the robot moves to in between drawing each column of the
honeycomb.

which specifies the center point of each hexagon the robot traces out. TOP locates the top of each
column with respect to the initial frame defined by PARK. The transform DOWN describes, with
respect to the frame TOP, a translation in the xy plane from the top of the column down to the center
of a particular hexagon. As the program traces out the different hexagons, it locates the center of
each one by changing the values for top and down appropriately.

The program begins in the usual fashion by setting up the manipulator, starting the trajectory
generator, and moving the robot to the initial angles described by rcclpark (/*6*/ and /*7*/).
At /*8*/ the program initializes park to the current value of T6 by reading the here field of theMANIP structure. pickup is then defined to be a position “off to the side” of park; specifically, park
rotated by 90� in world coordinates about the z axis of the robot’s base, followed by a 30� rotation
about the local x axis (/*9*/) (see figure 18). top is initialized to describe the top left-hand corner
of the hex grid. Specifically, this involves a translation in the xz plane followed by a rotation of 90�
about the x axis so that the robot’s tool tip points horizontally at the grid (/*10*/) (see figure 17).
Because of this last rotation, the xy plane of the frame TOP is parallel to the xz plane of the initial
frame PARK. At /*11*/ the program sets the speed for joint interpolated motions to be double
that of Cartesian interpolated motions, sets the Cartesian velocities explicitly, and sets up the signal
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handler for the end-of-column signal. The variable sin_60 initialized at /*12*/ is introduced to
make the program more readable.

A loop begins at /*13*/ that causes the robot to trace out each of the numCols columns in the
grid. The robot first moves to the reload position, where it does an approach-move-stop-depart
sequence /*15*/. The program synchronizes with the arrival of the robot at reload by waiting on
the motion ID rid (/*16*/) after which it opens the robot’s hand, waits half a second, and then
closes the hand.

The robot then moves to the top of the next column in the grid. Since it is better able to reach
the grid with its wrist in the flip configuration, this configuration is explicitly requested (and later
unrequested) with calls to setConf() and getConf() (/*14*/ and /*17*/). Each column is set
adjacent to the previous one by shifting the x coordinate of top by 2 sin(60�)hexsize, where hex-size is the length of each hexagon’s side. down, which is used to specify the center of each hexagon
relative to the top of the column, is initially cleared (/*18*/). The subloop at /*19*/ uses the rou-
tine traceHex() (discussed below) to create the hexagons. For each loop iteration, the hexagon’s
center is located by increasing the y coordinate of down by 3=2hexsize and shifting the x coor-
dinate either to the right or left by sin(60�)hexsize (/*19*/). The tracing of a single column is
illustrated by figure 19.

The routine traceHex() generates the motion requests necessary to trace out a hexagon in thexy plane of a position p. All the motions are specified relative to the center p using an offset trans-
form (offset) and the routinesetDistance(). It begins by issuing a move to an approach position
located approachmillimeters away from the center point along the z axis (/*23*/). setMod() is
then used to ensure that the remaining motions are done in Cartesian mode (/*25*/). To improve
the modularity of traceHex(), no assumptions are made about the previous interpolation mode.
This means that the mode should be “saved and restored”, which is done with calls to getMod()
and setMod() (/*24*/, /*30*/). After the approach move is requested, the z offset is removed
(/*26*/) and a set of moves are generated to take the robot around the corners of the hexagon.
Each corner point is determined by computing an appropriateX;Y offset from the hexagon center
as a function of an angle theta (/*27*/). The actual trajectory will be slightly “rounded out” be-
cause of path transitions, and the corner points will be correspondingly undercut, unless the robot
is slowed down enough to permit a zero transition time to be specified. Lastly, the robot is moved
back to the approach position (/*29*/). The ID returned by this last motion is saved and returned
to the caller. If the routine argument flag has been set to a value other than UNDEF, then it is used
as the motion ID for the last motion. This is useful in case the caller needs to know the motion IDbefore traceHex() is called.

4.10 Program Example: “jmove”

This example shows how to create a simple program to move the robot around in joint coordinates
and change its configuration. For simplicity, it does not attempt to deal with prismatic joints. The
program is interactive and illustrates the use of the “C-tree matcher”, an automatic command com-
pletion keyboard interface used by many programs in the RCCL/RCI system.
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Figure 19: Path followed by the robot as it traces out one column in the hex grid,
projected onto the xy plane of the frame TOP. The rounding due to transitions is
ignored.
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4.10. PROGRAM EXAMPLE: “JMOVE” 75#include <rccl.h>#include <ctree.h> /*(1)*/char key_buf[256];main(argc, argv)int argc; char **argv;{ MANIP *mnp;JNTS angles;char *robotName;char *keytree;int movejRequest = 0;int jnt;int mid = UNDEF;int newMid = UNDEF;float angval;float speed;char conf[4];rcclSetOptions (RCCL_ERROR_EXIT);if (argc != 2) /*(2)*/{ fprintf (stderr, "USAGE: %s <robotName>\n", argv[0]);exit (-1);}robotName = *++argv; /*(3)*/keytree = tree_match_parse(" \( quit \show \speed \(%f", &speed, ",0,, \"speed scale\") \move \(all \%d", &jnt, ",1,6, \"joint number\" \([by to] \(%f", &angval, ",,, \"angle value (degrees)\")) \) \setConf \(%s", conf, ", \"configuaration string\") \)"); if (keytree == 0) /*(4)*/{ printf ("ERROR/Parse error at %.30s\n", tree_match_err_at());exit (-1);}mnp = rcclCreate (robotName, 0); /*(5)*/rcclStart();angles = *mnp->j6; /*(6)*/
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76 4. CONTROLLING A ROBOTdo{ tree_match (keytree, "JMOVE> ", key_buf); /*(7)*/if (COMMAND("show")) /*(8)*/{ float deg[6];getActiveConf (mnp, conf);printf ("speed: %g\n", getSpeed(mnp));printf ("conf: %s\n\n", conf);printTrsf ("T6: %m\n\n", mnp->t6);scaleVf (deg, RADTODEG, mnp->j6->v, 6);printVf ("J6: %8.3f\n", deg, 6);}else if (COMMAND("speed")) /*(9)*/{ setSpeed (mnp, speed);}else if (COMMAND("move all")) /*(10)*/{ float deg[6];printf ("Joint values> ");if (scanVf (deg, 6) != 1){ printf ("Error reading values\n");continue;}scaleVf (angles.v, DEGTORAD, deg, 6);movejRequest = 1; /*(11)*/}else if (COMMAND("move by")) /*(12)*/{ angles.v[jnt-1] = DEGTORAD*angval + mnp->j6->v[jnt-1];movejRequest = 1;}else if (COMMAND("move to")) /*(13)*/{ angles.v[jnt-1] = DEGTORAD*angval;movejRequest = 1;}else if (COMMAND("setConf")) /*(14)*/{ stopCurrentMotion (mnp, 0);waitForCompleted (mnp); /*(15)*/setConf (mnp, conf); /*(16)*/move (mnp, mnp->last); /*(17)*/waitForCompleted (mnp);angles = *(mnp->j6); /*(18)*/}if (movejRequest) /*(19)*/{ if ((newMid = movej (mnp, &angles)) < 0){ printErrors(); /*(20)*/clearErrors();}else{ if (mid != UNDEF && motionStatus(mid) != M_FINISHED){ stopMotion(mid, 0); /*(21)*/}
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4.10. PROGRAM EXAMPLE: “JMOVE” 77mid = newMid;}movejRequest = 0;}}while (!(COMMAND("quit"))); /*(22)*/stopCurrentMotion (mnp, 0);waitForCompleted (mnp);rcclRelease (YES);}
NOTE – this example has been coded for the PUMA robots, and lives at$RCCL/demo.rccl/jmove.c.

The most complicated thing to explain about this program is the interface code for the “C-tree
matcher”. We feel this is justified because this interface is ubiquitous throughout the RCCL/RCI
system. To avoid learning about the C-tree matcher, just skip over the next few paragraphs.

The C-tree matcher is a command completion input routine. When called, it presents the pro-
gram operator with a prompt and allows him/her to type in only a selected set of keywords or values.
Since the matcher knows what inputs are valid, it can assist the user by providing a menu of what
is legal to type (if the user hits ‘?’) or by expanding input to the next branch point (if the user hits<space>). The matcher returns when a valid sequence has been entered and the user hits <re-turn>. It returns to the program the string of keywords which the user typed, plus any input values
it collected. While this sounds cumbersome, in practice it is not. Full documentation on the C-tree
matcher, for both the end user and the programmer, is available in $RCCL/doc/CtreeMatch.doc.

The program begins as usual by including <rccl.h> and declaring miscellaneous variables and
pointers. Definitions relevant to the C-tree matcher are contained in the include file <ctree.h>
(/*1*/). The name of the robot to be controlled is obtained, in this program, from the command
line rather than from the system routine getDefaultRobot() (/*2*/).

The first main thing the program does is describe to the C-tree matcher the set of permitted in-
puts. This is done using a tree of keywords and input values, specified by a long string argument
given to the routine tree_match_parse() (/*3*/). The inputs allowed by this program arequitshowspeed <speedValue>move allmove <jointNumber> by <angleValue>move <jointNumber> to <angleValue>setConf <configString>
Successive values or keywords are indicated within the specification string by parentheses:<keyword or value> '(' <following keywords or values> ')'
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78 4. CONTROLLING A ROBOT

Whenever the input requires actual values, the C-tree matcher will parse the value according to a
prescribed format and place it in a variable whose address has been given to tree_match_parse().
Allowed formats are %d (integer), %f (float), %s (string), and %x (hex integer). The address through
which the value should be stored is placed in the argument list to tree_match_parse() by break-
ing the specification string, inserting the address, and restarting the specification string:string spec ... %d", &integerVal, " ... more string spec
Integer and float specifications are followed by (optional) lower and upper bounds, and all value
specifications may also be followed by a help prompt (contained within \" \") that appears when
the user hits ‘?’.tree_match_parse() digests the input specification and returns a handle (keytree) that is
later used by tree_match(), which does the actual reading of input. If an error was found in the
input specification, tree_match_parse() returns 0, and a string showing the neighborhood where
the error occurred can be obtained with the routine tree_match_err_at(). (/*4*/).

Now back to RCCL. After the program has initialized the C-tree matcher, it calls rcclCre-ate() and rcclStart() to set up the trajectory generator and start it (/*5*/). It then initializes
the variable angles to the current values of manipulator joint angles, which are stored in the j6
field of the MANIP structure (/*6*/). A loop is then entered which calls tree_match() (/*7*/) to
solicit commands from the user’s terminal, until the final quit command is received (/*22*/).

Commands returned by tree_match() consist of sequences of keywords and are placed in the
buffer key_buf. The macro COMMAND(str) does a strcmp() between str and the contents ofkey_buf to determine what command was entered. The commands that may be returned to this
program arequitshowspeedmove allmove bymove tosetConf

The show command (/*8*/) causes the program to print out the robot’s current speed setting,
configuration, T6 transform value, and joint angles. Note that the joint angles are converted to de-
grees before being printed out; all joints are assumed to be revolute as mentioned earlier.

The speed command (/*9*/) sets the robot’s speed parameter, scaling the speed at which the
robot responds to further motion commands. The variable speed is set during command input bytree_match().

The move all (/*10*/) command is used to move the robot to a particular set of joint values. It
prompts the user for a set of joint angles, reads these in from the keyboard, converts them to radians,
and requests a call to movej() by setting the variable movejRequest (/*11*/).

The move by command (/*12*/) moves one joint by a specified number of degrees. The joint
number and the amount to move it by are read into the variables jnt and angvalby tree_match()
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when the command is entered. The appropriate field in the joint target variable angles is changed,
and a call to movej() is requested by setting movejRequest.

The move to command (/*13*/) is similar to the move by command except that it moves a
joint to a specified value.

All of the move commands change the joint target variable angles and bump the variable move-jRequest, which is examined at the bottom of the loop (/*19*/). If set, the program uses movej()
to queue a motion request to angles. The value returned by movej() is stored in newMid. If this
value is negative, then movej() is known to have failed and the appropriate error message(s) are
printed and the error stack is cleared with a call to printErrors()and clearErrors() (/*20*/).
(see section 9.2.1 for a discussion of the error stack). Otherwise, the request succeeded and newMid
contains its synchronization flag. The program next checks to see if there has been any previous call
to movej() (mid != UNDEF), and if so, if the resulting motion has completed yet. If it has not, the
previous motion is aborted with a call to stopMotion() using the old motion’s ID value (/*21*/).
Doing this after the call the movej() allows for a smooth transition from any previous motion to
the new motion. It also provides a nice illustration of the use of the synchronization primitives.

The last command in jmove is setConf (/*14*/), which is used to change the robot’s current
kinematic configuration. It first uses stopCurrentMotion() and waitForCompleted() to stop
any current manipulator motion (/*15*/). A string describing the new desired configuration is read
into conf by tree_match()when the command is entered, and is used directly as an argument tosetConf() (/*16*/). A motion is then requested to the robot’s current position (/*17*/), using
the the position equation mnp->last built in to the MANIP structure. Internally, this will cause the
trajectory generator to compute the target joint angles for the motion using the new configuration
and generate a joint interpolated motion to these new angles. The program waits for the motion to
finish with another call to waitForCompleted() and then updates the value of angles (/*18*/).
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80 5. MOVING TO VARIABLE TARGETS

5. Moving to Variable Targets

5.1 Transform Bindings

The transforms which make up a position equation are objects which describe positional relation-
ships in the environment. Since these relationships may change, it should be possible to provide
ways for changing the values of the associated transforms.

By default, an RCCL transform allocated using one of the allocTrans() routines is assumed
to be constant. That means that whenever that transform is used in a motion request (as part of a
position equation) the trajectory generator is free to assume that the value of that transform will not
change for the duration of the motion. When move() is called, a private copy of the transform’s
current value is made and sent to the trajectory generator along with the motion request packet. If
the transform’s value is changed after the call to move(), the change will affect only subsequent
motion requests.

While this is a reasonable paradigm, one may not always want a transform to be assumed con-
stant. It may be desirable for the trajectory generator to consider a particular transform to be vari-
able and constantly read its value and adjust the target position accordingly. In other words, a mo-
tion to a target that contains a variable transform will track any changes that variable transform
makes. The value of a transform can be changed by either the planning task or by functions being
executed through the trajectory generator.

The primitive to declare a transform variable issetTransVarb (tr)TRSF_PTR tr;
After this call is made, subsequent motions which reference the transform will track any changes to
it. These changes will be tracked literally, without any of the acceleration limiting that is normally
applied between adjacent motions. One should therefore be careful to ensure that changes to such
transforms are smooth and clean. If a variable transform contained in a target position changes
suddenly by a large amount, the robot will try to “leap” across the work space1. One reason that
variable transforms should usually be changed from the control level is to ensure that the changes
to it are made at a constant rate.

A transform may be set back to being a constant transform with the primitivesetTransConst (tr)TRSF_PTR tr;
One special way of making a transform variable is to bind it to to a function executed at the

control level:1Which is a bad thing, because if the robot is large, it might succeed.
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5.1. TRANSFORM BINDINGS 81transEval (tr, fxn, arg)TRSF_PTR tr;int (*fxn)();int arg;
This instructs the trajectory generator to call the function fxn once every control cycle to adjust the
value of tr. The function will be called with the following arguments:fxn (tr, arg)TRSF_PTR tr;int arg;{ ... modify the value of the transform ...}tr points to the transform being updated (or actually a copy of it; the real transform is updated
atomically as soon as the updating function returns), and arg is the application-defined argument
specified by the third parameter to transEval(). The trajectory generator begins executing the
transform function immediately, and continues to do so until the binding is removed (such as with
a call to setTransVarb() or setTransConst()).

A transform may also be bound to a function that is executed only when the transform is con-
tained within the manipulator’s current target position. This is done with the calltransMotionEval (tr, fxn, arg, mnp)TRANS_PTR tr;int (*fxn)();int arg;MANIP *mnp;
The function fxn will be called to update tr only when mnp is executing a motion that contains tr
as part of the target specification (this is actually the way function binding in the old RCCL system
worked). For this sort of function binding, the trajectory generator calls fxn with a pointer to the
associated MANIP structure as an additional argument:fxn (tr, arg, mnp)TRSF_PTR tr;int arg;MANIP *mnp;{ ... modify the value of the transform ...}

An alternative way of setting the transform bindings discussed above is to use the pair of func-
tions setTransBinding (tr, binding)TRSF_PTR tr;TRANS_BINDING *binding;
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82 5. MOVING TO VARIABLE TARGETSgetTransBinding (tr, binding)TRSF_PTR tr;TRANS_BINDING *binding;setTransBinding() sets the binding for a transform and getTransBinding() reads the current
binding back. Binding information is specified or read back through the data type TRANS_BINDING,
which is defined as follows:typedef struct {int code;int (*fxn)();int arg;MANIP *mnp;} TRANS_BINDING;
The fields fxn, arg, and mnp contain the same information that is provided by the arguments to the
functions transEval() and transMotionEval(). code describes the type of binding and is set
to one the four valuesTRANS_CONSTTRANS_VARBTRANS_EVALTRANS_MOTION_EVAL
depending on the binding.

Function bindings may be applied to any transform in a position equation. When a manipulator
is asked to move to such a time varying target, it will track the changes as it moves toward the target
(and continue to track the changes if it is asked to stop there).

When setting up functionally defined positions, as with all position equations, it is important
to realize that the effect of varying a particular transform depends heavily on where it is located
within the position equation: we have to consider the coordinate frame in which the transform is
itself defined.

As an illustration of this, consider the position equations defined in figure 20. Each of these
contains a manipulatorT6 transform, a fixed transform BASE which maps to the manipulator base
frame from a “world” coordinate frame W, a fixed TOOL transform that maps into a tool frame
T, and a single variable transform (either T(t) or R(t)). The manipulator transform is indicated
by T6(t) as a reminder that it is time varying as well. T(t) performs pure translation, and R(t)
performs pure rotation.

The first two position equations create pure translational motions, the first with respect to the
world frame W and the second with respect to the tool frame T. The difference is obtained by chang-
ing the direction sense ofT(t). (Pure translation always produces a pure translation, no matter what
coordinate frame it is induced in.) The difference between the two motions would simply be dif-
ference in the orientation of the line along which the motion was taking place.

The difference is more severe for the last two position equations, which depict two rotations ap-
plied in two different frames. A rotation in one frame may result in both a rotation and a translation
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Figure 20: Graphs for four different time-varying positions.
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84 5. MOVING TO VARIABLE TARGETS

when observed from another frame. In position (c), the center of rotation is fixed with respect to
W (and will move with respect to T), while in position (d), the center of rotation will be fixed with
respect to T (and will move with respect to W). Rotations in tool coordinates are always hard to
visualize because the tool frame itself is moving.

5.2 Program Example: “zigzag”

In this simple example, the robot is programmed to move back and forth between two positions
which are moving as though they are attached to a conveyor belt. The net result is a sort of “zigzag”
motion (see figure 21).

planning level module#include <rccl.h>#include "manex.560.h"main (){ TRSF_PTR z, e, conv, t1, t2;POS_PTR pt1, pt2;MANIP *mnp;JNTS rcclpark;char *robotName;int convfn();int i;rcclSetOptions (RCCL_ERROR_EXIT);robotName = getDefaultRobot();if (!getRobotPosition (rcclpark.v, "rcclpark", robotName)){ printf ("position 'rcclpark' not defined for robot\n");exit(-1);}z = allocTransXyz ("Z", UNDEF, 0.0, 0.0, ZBASE);e = allocTransXyz ("E", UNDEF, 0.0, 0.0, TOOLZ);conv = allocTransRot ("CONV", UNDEF, C_X, C_Y, C_Z, xunit, 180.0);t1 = allocTransXyz ("T1", UNDEF, -300.0, 50.0, 0.0);t2 = allocTransXyz ("T2", UNDEF, -300.0, -50.0, 0.0); /*1*/pt1 = makePosition ("pt1", z, T6, e, EQ, conv, t1, TL, e);pt2 = makePosition ("pt2", z, T6, e, EQ, conv, t2, TL, e);mnp = rcclCreate (robotName, 0);rcclStart();movej (mnp, &rcclpark); /*2*/waitForCompleted (mnp);
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5.2. PROGRAM EXAMPLE: “ZIGZAG” 85move (mnp, pt1);stop (mnp, 0.0);waitForCompleted (mnp);setMod (mnp, 'c'); /*3*/transEval (conv, convfn, /*speed=*/50); /*4*/for (i=0; i<8; ++i) /*5*/{ move (mnp, pt1);stop (mnp, 1000.0);move (mnp, pt2);stop (mnp, 1000.0);if (i == 3) /*6*/{ waitForCompleted (mnp);transEval (conv, convfn, -50);}}movej (mnp, &rcclpark); /*7*/stop (mnp, 1000.0);waitForCompleted (mnp);rcclRelease (1);}
control level module#include <rccl.h>convfn (t, vel)TRSF_PTR t;int vel;{ t->p.x += vel * rcclGetInterval() / 1000.0; /*8*/}
NOTE – this example has been coded for the PUMA 560 robot, and lives at zigzag.560.c andzigzagCtrl.560.c in $RCCL/demo.rccl. An equivalent program for the PUMA 260 is
contained in zigzag.260.c and zigzagCtrl.260.c. For details on how to compile it, see
section 9.4.3.

The target position motion is created by binding a transform to a real-time function. Since this
function executes at the control level, it must be define in a separate module and loaded specially
using the rcc command. In this and all other examples, control level load modules are given a name
that ends with "Ctrl". The required compilation sequence is discussed in section 9.4.3.

The program creates two manipulator target positions, both of which are attached to a fictitious
conveyor belt (/*1*/). These are described by the following equations:Z T6 E = CONV T1
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86 5. MOVING TO VARIABLE TARGETS

Figure 21: Motion created in the program “zigzag” by moving back and forth be-
tween two moving target points.

and Z T6 E = CONV T2
These positions are a little more complicated than those in previous examples. To begin with, they
both use a transform Z which maps to the base of the manipulator from some more convenient
frame (in this case located at the bottom of the robot’s pedestal). This is useful sometimes because
the pedestal base may make a more reasonable reference frame than the manipulator base (which
is often located in some obscure spot like the middle of the robot’s shoulder). The location of the
conveyor belt itself, relative to the pedestal base, is then given by CONV. The transforms T1 and
T2 represent the location of each target with respect to the conveyor frame.

The program starts up and brings the robot to the usual starting position (/*2*/). It then moves
the robot to the first target point, stops it there, waits for completion, and then requests Cartesian
interpolated motions (/*3*/). The conveyor is not yet “in motion”; this is done next by using tran-sEval() to bind conv to the function convfn (/*4*/). The application argument is used (in this
case) to indicate the conveyor velocity, in millimeters per second. As soon as the function binding
takes place, convfn() will begin to “move” CONV in a positive direction along its x axis. The
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program then issues a series of requests to move the robot back and forth between the two target
points attached to the conveyor, stopping at each point for one second. Since the points are sep-
arated along the y axis of the conveyor, perpendicular to the direction of motion, this results in a
“zigzag” like motion. Half way through the move-stop sequence, the direction of the conveyor is
reversed with another call to transEval() (/*6*/), which leaves the function binding unchanged,
but negates the velocity argument. When this is finished, the program moves the robot back to the
starting point and terminates in the usual way (/*7*/).

As mentioned above, the function convfn() is defined in a separate load module since it will
be executed at the control level. It is defined to receive two arguments: a pointer to the transform it
is to modify and the application argument. The application argument, which specifies the conveyor
velocity in millimeters per second, is multiplied by the RCCL sample interval (obtained with rc-clGetInterval()) to obtain a per-cycle increment which is added to the x axis of the transform
(/*8*/).

5.3 Restrictions for Control Level Functions

Before proceeding further, we should describe in detail the restrictions that apply to functions being
executed at the control level.

Control level application functions are executed by the trajectory generator, within the context
of a trajectory task running on either the main UNIX CPU, or possibly an auxiliary CPU (see fig-
ure 2). Which task/CPU is used is determined either by the system, or by a manipulator which
may be associated with the function: monitor functions (which will be described later) are explic-
itly associated with a manipulator, and transform motion functions are implicitly associated with a
manipulator. Each manipulator is assigned to a particular trajectory task on a particular CPU, and
appliction functions associated with it are executed by the same task.

The control level runs outside of UNIX, and hence does not have access to any of the UNIX
system calls (such as write() or fork()), or any routine (such as malloc() or printf()) which
might itself perform a UNIX system call. This rules out certain library functions that perform I/O,
allocate memory, control processes, etc. In general, the safest course is to not use any UNIX library
routines, except for the math routines in libm.a and the string procedures in libc.a. sprintf()
also appears to be harmless. Likewise, some routines in the RCCL/RCI library cannot be called
from the control level. Routines which allocate structures, or initialize and control tasks, are usually
in this category. Whether or not an RCCL/RCI routine can be called from the control level will
generally be indicated in its reference manual page under the heading Restrictions.

RCI provides a few surrogate routines to do things such as memory allocation and diagnostic
printing; see section 5.6.2.

Additional restrictions apply to functions which are executed at the control level on the main
UNIX CPU. When the control level is executed on the UNIX CPU, it is run in kernel mode, at
maximum IPL, off of the interrupt stack. This rather draconian way of doing things is necessary in
order to get the necessary system response (UNIX simply cannot handle it). The RCI system takes
care to ensure that exceptions are handled properly (and do not result in a system crash, the way
exceptions at that priority normally do). However, there are still a few ways to crash the system.
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One is to have the control level code execute an infinite loop. This will simply hang the machine.
Fortunately, infinite loops turn out to be quite rare. Another way is to create a stray pointer reference
that happens to land in some bad place in system memory (which is not protected because we are
running in kernel mode). Again, instances of this appear to be rare. A final way to cause the system
to crash is to overflow the interrupt stack, which is generally a fatal condition on most machines.
This can happen if the control level routines nest too deeply, or if they declare too much automatic
data. The fix for this is to simply redeclare the offending variables to be static.

Control level functions executing on auxiliary CPUs cannot cause system crashes.

5.4 Ways of Modifying Transforms With Functions

There are several ways that a function bound to a transform may change its value. We will mention
a few of these here, although the discussion is by no means exhaustive.

Absolute Changes. The transform’s value is set directly each control cycle. For instance, we
might have quantities px, py, and pz which are read in from some device such as a joystick.
These could be used to set the transform’s p vector, as infxnAbs (tr, arg)TRSF *tr;int arg;{ float px, py, pz;... values are read in from somewhere ...xyzToTrsf (tr, px, py, pz);}
Relative Changes. The transform’s value is changed incrementally. A common way of ac-
complishing this is to multiply the transform’s existing value by a perturbation transform.
Assume that the quantities dx, dy, and dz are read in from some sensor device. The follow-
ing sample function uses these to apply a relative translational increment to its transform:fxnRel (tr, arg)TRSF *tr;int arg;{ TRSF offset;float dx, dy, dz;... values are read in from somewhere ...xyzToTrsf (&offset, dx, dy, dz);
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The same thing could be accomplished by a call to multTrsfXyz() instead of two calls toxyzToTrsf() and multTrsf(). The difficulty with relative changes is that they can cause
errors in the transform structure. This problem is more severe when modifying the rotational
component, which can lose orthogonality quite easily. This situation can be improved some-
what by renormalizing the transform regularly, such as with the routine unitTrsf(). An-
other option is to use a representation for the net rotation that has fewer parameters (this is
particularly easy if the rotation is about a single axis), change the reduced that, and then con-
vert it into a transform once every cycle. This will in fact be done in the example below.

Time Dependent Changes. The changes to a transform may depend explicitly on time. For
instance, suppose that we desire to make a transform rotate slowly about the z axis with a
rotational velocity !. A function that will do this isrotZ (tr, omega)TRSF *tr;int omega; /* omega, in deg/sec */{ float angle;static float t0 = F_UNDEF;if (t0 == F_UNDEF){ t0 = rcclSysTime();}angle = omega*(rcclSysTime() - t0)/1000.0;rotToTrsf (tr, zunit, angle);}
It obtains ! through the application argument and uses rcclSysTime() to get the current
system time in milliseconds. Because absolute time is being used, it is necessary to keep
track of the initial time; this is done using the static variable t0. An equivalent function that
does the same thing with less fuss, using incremental changes, isrotZrel (tr, omega)TRSF *tr;int omega; /* omega, in deg/sec */{ multTrsfRot(tr,zunit,omega*rcclGetInterval()/1000.0);}
This simply uses rcclGetInterval() to obtain the system sample interval (in milliseconds)
and converts this into a per-cycle displacement.

Motion Relative Changes. The variation of a transform can also be tied directly to the scale
value of a motion, that is, the value that changes from 0.0 to 1.0 as the motion goes from start
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to finish. For example, suppose we wish to add a translational displacement dp to a transform
over the course of a motion. Assuming that dp has been defined somewhere, a function that
would do this isdispFxn (tr, arg, mnp)TRSF *tr;int arg;MANIP *mnp;{ float s;s = motionScale (getActiveMotionId (mnp);tr->p.x = dp.x * s;tr->p.y = dp.y * s;tr->p.z = dp.z * s;}
The motion scale is obtained using the motionScale() function called with the ID of the
current motion for mnp. Several things about the motion scale value should be noted. First,
if the motion has no explicit time limit, then the scale will always be 0.0. Second, if the mo-
tion starts with a non-zero transition time, then the motion scale will be negative prior to the
transition midpoint, since scale is defined to be 0.0 only at the transition midpoint.

5.5 Communicating with the Control Functions

5.5.1 Memory objects

The function convfn() in the program zigzag obtained information from the planning level using
the application argument. This works well, provided that no more than one integer’s worth of in-
formation needs to be passed. To pass more information between the planning and control levels,
shared memory facilities are available.

These basically work as follows: the planning task allocates a piece of shared memory, the con-
trol level routines obtain a pointer to it, and then everybody can access it. The basic shared mem-
ory mechanism used by RCCL is the RCI allocMem() package, which is also described in the RCI
User’s Guide. Its manual pages appear in the RCI Reference Manual, instead of the RCCL Refer-
ence Manual.

Let us assume that the programmer has defined a structure foo:typedef struct foo {int value1;int value2;} FOO;
and would like to create an object of this type which is shared between the planning and control
levels.
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The object is allocated by the planning level using the callFOO *fp;fp = (FOO*)allocMem ("foo", sizeof(FOO), UNDEF);allocMem() takes three arguments: a string name for the memory object, the size of the memory
object in bytes, and a specifier for the memory allocation pool to be used. This last argument serves
the same purpose as the pool argument in allocTrans(); it is typically not too important and is
set to UNDEF. Also, as with transforms, the name argument is optional. allocMem() allocates the
memory, zeros it, and returns a pointer to it. Memory can be deallocated with the call freeMem().

Because the memory returned by allocMem() is almost invariably cast to some structure, there
is a macro available to make this easier:#define ALLOC_MEM(n,t,p) (t*)allocMem(n,sizeof(t),p)
Using this, the allocation of "foo" shown above would be written asfp = ALLOC_MEM ("foo", FOO, UNDEF);

For another part of the program (such as a control level routine) to access a shared memory
object, it must first obtain a valid pointer to it. Doing this generally requires using a reference func-
tion. This is because the control level may reside on a separate CPU, and a memory address which
is valid at the planning level may not be valid on a different CPU. To get a valid pointer, we may
use either of the functionsvoid *getMemByName (name)char *name;void *getMemByAddr (addr)void *addr;getMemByName() locates a pointer to the memory using its name as a key (the same name that was
specified in the allocMem() call), while getMemByAddr() locates the pointer using the planning
level address (the same one returned by allocMem()) as a key. In practice, the routine getMem-ByAddr() is used more commonly, because (1) it is faster, and (2) it relieves us of the need to
name the memory object, thereby avoiding name space collision problems. The planning level ad-
dress can be passed to the control routine using either another object or the routine’s application
argument2.2Time for a confession: we frequently cast pointers to integers and back for purposes of passing them through the
application argument. The clean way around this would be to either make the application argument itself a generic
pointer, or to make it a union of, say, a generic pointer and an integer. A change like this may be implemented if it
becomes important, so stay tuned : : :
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5.5.2 Access Collision and Atomic Access

When using shared memory to communicate between different tasks, one frequently runs into the
program of access collision: one task may try to read an object at the same time another task is
writing it. Often enough this is not a problem, since the primary data types which comprise the
object (float, int, etc.) are usually written atomically on most systems and bus architectures for
which RCCL/RCI is implemented. The biggest problem is that an aggregate which is read back can
be “out of sync”, i.e., while the contents of the individual fields are OK, some of them contain “old”
information and some contain “new” information. For instance, suppose the planning level reads
back the output joint angles in the j6 field of the MANIP structure, which could be done simply with
the code fragmentJNTS jbuf;jbuf = *mnp->j6;
While the structure is being copied, it is possible for the trajectory generator to write new values to
it. This means that the first few joint values may be valid for one control cycle while the remaining
values are valid for another control cycle. This sort of thing may not be a problem, depending on
what the information in the object is being used for. However, to avoid the situation, there are three
primitives available which may be used to atomically read and write memory objects which have
been created using allocMem():readMem (mem, buf)void *mem, buf;writeMem (mem, buf)void *mem, buf;accessMem (mem, src, dst, size)void *mem, src, dst;int size;readMem() reads the contents of memory object mem into buf (which is assumed to be the same size
as the memory object) and writeMem()writes the contents of buf into the memory object mem. buf
is not assumed to be a memory object and access to it is not atomic. The last routine, accessMem(),
is the most general: it reads size bytes from src into dst while locking the memory object mem
(which may be either src or dst, or neither). It is intended for accessing subfields of an object.

Needless to say, in order for the atomic access primitives to work, all write operations (and read
operations, usually) on the object in question must use them. All of the aggregate fields in the MANIP
structure are updated by the trajectory generator using calls to writeMem(). They may be read
atomically using either readMem() or writeMem(), as inJNTS jbuf;readMem (mnp->j6, &jbuf);
or
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5.5. COMMUNICATING WITH THE CONTROL FUNCTIONS 93float angles[NUM_JNTS];accessMem (mnp->j6, mnp->j6->v,angles, mnp->j6->num*sizeof(float));
The first example copies the entire structure. The second example is a little faster because it copies
from j6 only the v field entries corresponding to actual joints.

5.5.3 Double Buffering

We should mention briefly another common technique that can be used to avoid data consistency
problems. This is called double buffering, and can be used whenever there are several tasks that
read an object but only one task that writes it. It is conceptually simple, and generally faster than
using the atomic access primitives. Suppose that the data we are interested in is described by a typeDATA. We create an object that contains two versions of DATA and a version number:struct dataObj {DATA data[2];int version;}
The data buffer which is currently in use is indicated by the low bit of versionNumber. When
the writing process updates the data, it changes the buffer that is not in use, and then increases the
version number:writeData (mem, buf)struct dataObj *mem;DATA *buf;{ int new = (mem->version&1)^1;mem->data[new] = *buf;mem->version++;}
The process doing the read uses the data buffer that is in use, and then checks to see if the version
number has increased by more than one. If it has, it tries again:readData (mem, buf)struct dataObj *mem;DATA *buf;{ int idx;do{ idx = mem->version;*buf = mem->data[idx&1];}while ((mem->version&~1) != (idx&~1))
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This will work quite nicely in practice, as long as the data is not updated so frequently as to saturate
the system (an update once every RCCL control cycle would be considered quite infrequent).

5.5.4 Locating and Using Other Objects

Now to divulge what the alert reader was probably beginning to suspect: Transforms allocated withallocTrans() and position equations allocated with makePosition() are also memory objects,
completely analogous to the ones described in the section (5.5.1). They each have their own access
functions:TRSF *getTransByName (name)char *name;TRSF *getTransByAddr (addr)TRSF *addr;POS *getPositionByName (name)char *name;POS *getPositionByAddr (addr)POS *addr;
which can obtain pointers to them given either names or planning level addresses. One reason for
giving these objects separate access routines is to make it possible to separate their name spaces.
For instance, it is possible to create a memory object using allocMem() and a transform using al-locTrans()which both have the same string name.

It is also necessary to use a reference routine to get a pointer to a MANIP structure from the control
level, even though these items are not actually implemented as formal objects. The routinesMANIP *getManipByName (name)char *name;MANIP *getManipByAddr (addr)MANIP *addr;
are provided to do this. (NOTE: a valid MANIPpointer is frequently given as an argument to the con-
trol level application functions. It is not necessary to re-reference this pointer. However, sometimes
we want to access the MANIP structure for another manipulator from within one of these routines,
and for this the above routines can be useful.)

Transforms also have their own atomic access routines, analogous to the ones described in sec-
tion (5.5.2):TRSF *readTrans (tr, buf)TRSF *tr, *buf;
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To find the name of a transform given a pointer to it, the routinechar *getTransName (tr)TRSF *tr;

may be used.

Using position equations from the control level is slightly more complicated. Although one may
access a position equation from anywhere within the RCCL program, the equation returned will
generally not be usable at the control level because the data structures within the equation itself
use pointers whose values are valid for the planning level. To get around this problem, a routine
called copyPosition() is available which makes a local copy of a position object which is valid
for the current memory context. When the local copy of the position is no longer needed, it can be
deleted using freePosition(). A typical usage paradigm for copyPosition() looks something
like this: -- planning level --POS *gpos;gpos = makePosition (NULL, T6, tool, EQ, b, TL, tool);-- control level --POS lpos;... gpos is passed down from the planning level ...lpos = copyPosition (getPositionByAddr (gpos));... use 'lpos' locally ...freePosition (lpos);
The planning level declares the position equation in the usual way using makePosition(). Later,
the control level uses getPositionByAddr() to get a local reference to equation using the planning
level’s original address, and then translates this into valid local equation using copyPosition().
This local copy may then be used with the routines which do position equation computations, such
as solveTrans() or solveChain(). Note that copyPosition() copies only the equation itself,
not the transforms that it references.

The ability to access positions from the control level is new and has not been used much. More
information on this feature can be found in the manual pages.
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5.5.5 Synchronizing with the control level

It is sometimes necessary to synchronize activity between the planning level and an application-
defined control level function. The basic way of doing this is with flags implemented using shared
memory. Suppose the planning level wants to send a command to a monitor function, and then
wait for the monitor function to respond. The command can be implemented as a field (which we
will call com) in a shared memory object (which we will assume is called mem). Then the following
simple construction may be used:-- planning level --mem->com = COMMAND;waitWhile (mem->com)-- control level function --if (mem->com){ ... do action ...mem->com = 0;}
The planning level just sets the command field and waits for the control level function to clear it.
If it is known that control level will respond during the next control cycle, then the planning level
can use the primitive rcclBlock() instead:mem->com = COMMAND;rcclBlock();rcclBlock()waits for one entire control cycle to elapse between the time it is called and the time
it returns, and so can be used to effect single cycle synchronization.

5.6 Control Level Support Routines

5.6.1 RCCL system routines

The following RCCL functions may be called from anywhere with an RCCL program, but are par-
ticularly useful for control level applications.

The system time, in milliseconds, may be obtained withfloat rcclSysTime();
This does not return “real time” in that all this really does is return the product of the trajectory
generator sample interval and the number of elapsed control cycles. The system time does not in-
crease when the trajectory generator is not running or is paused (as with rcclPause()), and is reset
to 0 every time rcclStart() is called. Applications which need a more genuine time clock can
use the RCI time routine, rciTime(), which returns an accurate timecount (in milliseconds) that
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is maintained constantly for the duration of the program. Applications which change the value of
a transform explicitly with time are encouraged to use rcclSysTime(), because it “stops ticking”
when the system is paused, and so prevents discontinuities in target positions when the system is
unpaused.

The routinegetActiveCount(mnp)MANIP *mnp;
returns the count associated with a manipulator’s current motion. The count starts at 0 (at the be-
ginning of the transition into the motion)and is increased by one for every control cycle that the
motion is executed. It can be used to initialize transform functions:function (tr, arg, mnp)TRSF *tr;int arg;MANIP *mnp;{ if (getActiveCount(mnp) == 0){ ... motion is just starting, dosome special stuff ...}}
5.6.2 RCI support routines

Functions executing at the control level do not have access to UNIX system services, either directly,
or indirectly (by calling library routines such as printf()or malloc()which use system services).
To help compensate for this, RCI provides a few routines which can be called from the control level
to do diagnostic printing, allocate memory, and send signals to the main UNIX program. These
include: rciPrintf (format, values ... )char *format;rciPrintToTerminal (on)int on;void *rciMalloc (size)int size;rciFree (ptr)void *ptr;rciSignal (signum)int signum;
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CPU running the trajectory task. If the trajectory task is running on the main UNIX CPU, then it
is possible to direct the output from rciPrintf() to the user’s terminal. This can be arranged by
calling the routine rciPrintToTerminal() (with a non-zero argument) at some point within the
program.

Care should be used when doing printing from the control level, since it can cause large delays
in the execution of the control level code. In some cases, rciPrintf()will block until all its char-
acters have been output. If an output message is 20 characters long, and the console line baud-rate
is 9600, then this can cause (roughly) a 20 msec. delay in the control level.rciMalloc() and rciFree()are equivalent to the conventional UNIX routines malloc() andfree(). There is generally a limit to the total amount of memory that can be allocated, and this may
be as low as 256K.rciSignal() sends the indicated UNIX signal signum to the main program.

For details on all of these functions, the programmer should consult their manual pages in the
RCI Reference Manual.

5.6.3 The Fast Math Library

Robotics applications make frequent use of the trigonometric functions sin(), cos(), atan2(),
and the function sqrt(). The execution times for these routines can be lengthy (by real-time stan-
dards), particularly if the host machine does not have hardware support for these functions or the
native math library does not make use of it.

To help with this problem, RCCL provides a set of routines that do the same computations using
table lookup and interpolation. Execution times are significantly faster (by as much as 5 or 6 times),
and the accuracy is typically around 10�6, which is quite tolerable for most applications.

The available routines arefloat SIN (x)float x;float COS (x)float x;float ATAN2 (x, y)float x, y;SQRT (x)float x;SINCOS (x, s, c)float x;float *s, *c;
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(except the arguments and results are in single precision). All angle values are passed in radians.SINCOS() computes both the sine and cosine of x, and returns the values through the pointers s andc, respectively. This routine exists because it is faster to compute both these quantities together than
to compute them separately.

Definitions for these routines are contained in the file <fastmath.h>. The user is encouraged
to make use of them.

5.7 Program Example: “rotate”

This demonstration program uses two transforms bound to circular motions to create a “wheels
within wheels” effect. The robot is located at the center of fictitious circular table which can be
made to rotate about the robot’s base. An initial motion is made to a point tracking a small wheel
whose axis is fixed at a point on the larger turntable (figure 22). Another motion is then specified
for which the table itself begins to turn and the robot starts tracing out a “circular cycloid” (figure
23). This last motion automatically aborts when the table has traveled through a certain distance.

planning level module#include <rccl.h>#include "manex.560.h"main (){ TRSF_PTR table0, table, p, wheel;POS_PTR p0, pt;MANIP *mnp;ROTATE_CTRL_BLK *rcb; /*1*/JNTS rcclpark;char *robotName;int tableFxn();int wheelFxn();int mid;rcclSetOptions (RCCL_ERROR_EXIT);robotName = getDefaultRobot();if (!getRobotPosition (rcclpark.v, "rcclpark", robotName)){ printf ("position 'rcclpark' not defined for robot\n");exit(-1);}p = allocTransRot ("P", UNDEF, P_X, P_Y, P_Z, xunit, 180.0);table0 = allocTransRot ("TABLE0", UNDEF, 0.0, 0.0, 0.0, zunit, -45.0);wheel = allocTrans ("WHEEL", UNDEF);table = allocTrans ("TABLE", UNDEF);
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100 5. MOVING TO VARIABLE TARGETSrcb = ALLOC_MEM ("rcb", ROTATE_CTRL_BLK, UNDEF); /*2*/rcb->wheelRadius = 70.0; /*3*/rcb->wheelRPS = .50;rcb->tableRPS = 0.02;p0 = makePosition ("p0", T6, EQ, table0, p, wheel, TL, T6);pt = makePosition ("pt", T6, EQ, table0, table, p, wheel, TL, T6);mnp = rcclCreate (robotName, 0);rcclStart();transEval (wheel, wheelFxn, 0); /*4*/movej (mnp, &rcclpark);setMod (mnp, 'c'); /*5*/move (mnp, p0);mid = stop (mnp, F_UNDEF); /*6*/transMotionEval (table, tableFxn, 0, mnp); /*7*/setTime (mnp, F_DEFAULT, F_UNDEF);move (mnp, pt); /*8*/movej (mnp, &rcclpark); /*9*/stop (mnp, 1000.0);waitFor (motionStatus(mid) == M_RUNNING); /*10*/delay (10000.0); /*11*/stopMotion (mid, 0);waitForCompleted (mnp);rcclRelease (1);}
control level module#include <rccl.h>#include <fastmath.h>#include "manex.560.h"wheelFxn (t, arg)TRSF_PTR t;int arg;{ ROTATE_CTRL_BLK *rcb;static float alpha = 0.0; /*12*/if ((rcb = (ROTATE_CTRL_BLK*)getMemByName("rcb")) == NULL){ rciAbort (0, "wheelFxn(): can't find argument object\n");
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5.7. PROGRAM EXAMPLE: “ROTATE” 101return;}alpha += rcb->wheelRPS * rcclGetInterval() / 1000.0; /*13*/t->p.x = rcb->wheelRadius * COS(alpha * PIT2);t->p.y = rcb->wheelRadius * SIN(alpha * PIT2);}tableFxn (t, arg, mnp)TRSF_PTR t;int arg;MANIP *mnp;{ ROTATE_CTRL_BLK *rcb;static float alpha = 0.0;static done = 0; /*14*/if ((rcb = (ROTATE_CTRL_BLK*)getMemByName("rcb")) == NULL){ rciAbort (0, "tableFxn(): can't find argument object\n");return;}alpha += 360.0 * rcb->tableRPS * rcclGetInterval() / 1000.0;rotToTrsf (t, zunit, alpha);if (alpha >= 90.0 && !done) /*16*/{ stopCurrentMotion (mnp, 1);done = 1;}}
NOTE – this example has been coded for the PUMA 560 robot and lives at rotate.560.c androtateCtrl.560.c in $RCCL/demo.rccl. An equivalent program for the PUMA 260 is
contained in rotate.260.c and rotateCtrl.260.c.

The first new thing the reader may notice in this example is the pointer declaration for the typeROTATE_CTRL_BLK (/*1*/), which is defined in "manex.560.h". A memory object of this type is
allocated using allocMem() (/*2*/) and is used to communicate information to the control level
functions. The fields of the structure contain parameters for the function computations: wheelRa-dius is the radius of the smaller wheel; wheelRPS is the speed the smaller wheel should spin at (in
revolutions per second), and tableRPS is the speed the turntable should spin at (also in revolutions
per second) when it starts to move (/*3*/).

The program uses two position equations: p0, defined asT6 = TABLE0 P WHEEL
describes a point on the spinning wheel attached to the larger turntable. Notice that for this program
we have omitted the manipulator TOOL transform. TABLE0 describes a rotation about the z axis
of the manipulator base frame. P defines a translational offset and flip about the x axis relative to
TABLE0. Both of these transforms are fixed. WHEEL is a moving transform whose translation
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Figure 22: Manipulator tracking a rotating “wheel”, in the example program ro-tate.

values trace out a circle. Position p0 assumes that the turntable is fixed at the initial rotation angle
of TABLE0. Position p1, defined asT6 = TABLE0 TABLE P WHEEL
is similar, except that the turntable is now set in motion by an additional (moving) transform TA-
BLE.

After the program has turned on the trajectory generator, it sets the wheel transform in motion
with a call to transEval() (/*4*/). The application argument is specified as 0 because it will not
be used. After moving to the canonical initial position, the robot is told to do a Cartesian interpo-
lated motion to p0 and stop there indefinitely (/*5*/), during which time it will continue to track
the motion of the wheel (figure 22). Without waiting for this to complete, the program then sets
up the motion requests for the rest of the program. A call to transMotionEval() (/*7*/) binds
TABLE to the function tableFxn(), which will be executed whenever TABLE is contained in the
target of the current motion. A request for a motion of indefinite time to position p1 is then queued
(/*8*/), followed by a final motion request which moves the robot back to the starting position
(/*9*/).
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Figure 23: Tracking the “wheel” when its axis of rotation is fixed to a “turntable”
rotating about the manipulator’s base.

Both the stop at p0 (/*6*/) and the motion to p1 (/*8*/) are specified to last indefinitely, which
means that they must be explicitly aborted by the program. The stop is canceled by the planning
level, which first waits for the stop request to start executing (/*10*/), waits another 10.0 seconds
(/*11*/), and then cancels it with a call to stopMotion(). The motion to p1 is canceled from
within the function that produces that turntable motion when the turntable offset angle exceeds 90�
(/*16*/).

The control level functions are quite simple. Each first obtains a pointer to the control struc-
ture using getMemByName() and the name "rcb" (/*12*/, /*14*/). If the memory object is not
found, the program is aborted with a call to rciAbort() (see section 9.2.2). wheelFxn() causes
the translational component of its transform to trace out a circle in the x–y plane. It increments
the current angle of rotation (/*13*/) and uses this to compute appropriate values for t->p.x andt->p.y. tableFxn() causes its transform to rotate about the z axis. To do this, it increments a
rotation angle and feeds this into the function rotToTrsf().
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5.8 Program Example: “pivot”

This next program makes the robot move through a large arc, with its tool pointing along the radius
of the arc, as though it were turning a lever (figure 24). The robot will line itself up with the lever’s
initial position and then use a functional transform to move it through 60�. Circular arc motions are
interesting in that they can sometimes be accomplished by locating the TOOL frame in a particular
place, rather than by using moving frames. As an illustration, the program does this to move the
“lever” back.

planning level module#include <rccl.h>#include "manex.560.h"extern pivotFxn();main(){ TRSF_PTR e, b, handle, rot0, rot1, roty;POS_PTR p0, p1, pt, pd;MANIP *mnp;JNTS rcclpark;char *robotName;rcclSetOptions (RCCL_ERROR_EXIT);robotName = getDefaultRobot();if (!getRobotPosition (rcclpark.v, "rcclpark", robotName)){ printf ("position 'rcclpark' not defined for robot\n");exit(-1);}e = allocTransXyz ("E", UNDEF, 0.0, 0.0, TOOLZ);b = allocTransRot ("B", UNDEF, B_X, B_Y, B_Z, xunit, 180.0);handle = allocTransXyz ("HANDLE", UNDEF, 0.0, 0.0, -300.0);rot0 = allocTransRpy ("ROT0", UNDEF, 0.0, 0.0, 0.0, 0.0, -30.0, 0.0);rot1 = allocTransRpy ("ROT1", UNDEF, 0.0, 0.0, 0.0, 0.0, 30.0, 0.0);roty = allocTrans ("ROTY", UNDEF);p0 = makePosition ("p0", T6, e, EQ, b, rot0, handle, TL, e);pt = makePosition ("pt", T6, e, EQ, b, roty, handle, TL, e);p1 = makePosition ("p1", T6, e, EQ, b, rot1, handle, TL, e);pd = makePosition ("pd", T6, e, EQ, b, rot0, handle, TL, handle);mnp = rcclCreate (robotName, 0);rcclStart();setMod (mnp, 'c');distance (mnp, "dz", -75.0); /*1*/move (mnp, p0);
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5.8. PROGRAM EXAMPLE: “PIVOT” 105move (mnp, p0);setTime (mnp, 200.0, 12000.0); /*2*/*roty = *rot0;transMotionEval (roty, pivotFxn, 0, mnp); /*3*/move (mnp, pt);distance (mnp, "dz", -75.0); /*4*/move (mnp, p1);move (mnp, p1); /*5*/setTime (mnp, 200.0, 12000.0);move (mnp, pd);distance (mnp, "dz", -75.0);move (mnp, p0);setMod (mnp, 'j');movej (mnp, &rcclpark);stop (mnp, 1000.0);waitForCompleted (mnp); /*6*/rcclRelease (1);}
control level module#include <rccl.h>pivotFxn (tr, arg, mnp)TRSF_PTR tr;int arg;MANIP *mnp;{ static TRSF tr0;TRSF trr;float scale;if (getActiveCount(mnp) == 0) /*7*/{ tr0 = *tr;}scale = motionScale(getActiveMotionId(mnp)); /*8*/identTrsf (&trr);rotToTrsf (&trr, yunit, 60.0*scale);multTrsf (tr, &tr0, &trr);}
NOTE – this example has been coded for the PUMA 560 robot and lives at pivot.560.c andpivotCtrl.560.c in $RCCL/demo.rccl. An equivalent program for the PUMA 260 is
contained in pivot.260.c and pivotCtrl.260.c
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Figure 24: Robot “turning a lever” about a pivot point, in the program examplepivot.

The program sets up four position equations p0, pt, p1, and pd, defined respectively asT6 E = B ROT0 HANDLET6 E = B ROTY HANDLET6 E = B ROT1 HANDLET6 E HANDLE�1 = B ROT0
These describe the various positions of the tip of the lever. The lever’s center of rotation is located at
frame B. To get from there to the tip, we rotate by some amount about the y axis (which is done using
either ROT0, ROTY, or ROT1), and then use HANDLE to translate along the z axis. Position p0
defines the initial position of the lever, with ROT0 describing a rotation of �30:0�. The place we
want to move the lever to is described by p1, which is the same as p0 except that its rotation angle
(given by ROT1) is 30�. To get from p0 to p1 along an arc, the transform ROTY is used. ROTY
is bound to a function which varies its rotation angle from �30:0� to 30:0�. Position pd is used
to move back from p1 to p0. It describes the same target position as p0, except that the TOOL
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frame is located at the “pivot”, the base of the handle, coincident with frame B. In this frame, the
displacement from p1 to p0 is purely rotational, and so when the trajectory generator interpolates
between the two positions, it effectively follows the same path (in reverse) as was created by ROTY
in the first motion.

The robot first approaches and then positions itself at p0 (/*1*/). An explicit motion time of 12
seconds is established for the motion to pt (/*2*/), since the trajectory generator would otherwise
compute this based only on the displacement between p0 and pt, which is initially zero. ROTY
is initialized to the value of ROT0, and then bound to a transform motion function (pivotFxn())
that will change the rotation angle (/*3*/). The motion to pt is then requested, which brings the
robot to the final position described by p1. This is followed by a small depart motion away fromp1 (/*4*/).

To return to p0, the robot is first moved back to p1, and then a motion to p0 is specified usingpd (/*5*/) as the target. As with the initial motion, the time is explicitly specified; this is done to
ensure that both motions will be completely symmetrical.

Notice that the entire motion sequence for the program is specified without waiting for any mo-
tions to complete; this is done only before the program exits (/*6*/).

The function pivotFxn() rotates its transform by 60� about the y axis. It records the initial
transform value during the first cycle of the motion; it senses whether the current cycle is the first
cycle by calling getActiveCount() (/*7*/), which returns 0 only during the first cycle of the
motion. (We could also have used a static variable in this case, since pivotFxn() is used for only
one motion.) The amount of rotation to apply is determined from the motion scale, which is found
by using motionScale() and the current motion ID (/*8*/).

5.9 The Joint Bias Functions

A recent addition to the RCCL tool kit is joint biasing, which is an extension of the concept of
variable transforms to joint coordinates.

Each manipulator has a built in set of joint bias values, described by the jbiasfield of the MANIP
structure. If the user calls the routinejbiasSelect (mnp, on)MANIP *mnp;int on;
with the argument on set to true, then, for each subsequent motion request, the trajectory generator
will add the contents of jbias to the joint values of the motion target. Joint biasing works only for
joint interpolated motions. It may be deselected by calling jbiasSelect()with on set to 0.

Like a variable transform, the joint biases may be declared constant, variable, or bound to an
evaluation function, through the following routines:setJbiasConst (mnp)MANIP *mnp;
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108 5. MOVING TO VARIABLE TARGETSsetJbiasVarb (mnp)MANIP *mnp;jbiasMotionEval (fxn, arg, mnp)int (*fxn)();int arg;MANIP *mnp;setJbiasConst() sets the joint biases to be constant, which means the trajectory generator uses a
private copy of them, created at the time the motion request was issued. This is the default setting.setJbiasVarb() instructs the trajectory generator not to use a local copy of the joint biases, but
rather to constantly track the values in mnp->jbias. jbiasMotionEval() binds mnp->jbias to
the function fxn for the duration of the next motion request. The evaluation function is called by
the trajectory generator using the call formatfxn (jbias, arg, mnp)JNTS *jbias;int arg;MANIP *mnp;{ ...}jbias is the joint bias values, arg is the application argument provided throughjbiasMotionEval(),
and mnp is the manipulator containing the joint biases.

Joint biasing is particularly useful in applications involving control of the robot using joysticks
or hand controllers. In these situations, it is often desirable to map the controller inputs into joint
coordinates rather than into some Cartesian coordinates. Although one can sometimes accomplish
this using functional transforms, the necessary kinematic computations are quite time consuming,
and are not necessarily well defined.

5.10 Pausing the System

A couple of routines are provided to suspend all motions currently being executed:rcclPause (accelTime, pauseTime)float accelTime, pauseTime;rcclResume()rcclPause() brings all the program’s manipulators to rest, for a duration of pauseTimemillisec-
onds; if pauseTime is equal to F_UNDEF, then the pause state will continue indefinitely until rc-clResume() is called. The transition time used to bring the manipulators to rest can be specified
in milliseconds by accelTime; otherwise, if this argument is given as F_DEFAULT, the system will
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compute the transition times automatically. As with the function setTime(), the specified transi-
tion time is actually one half the total acceleration time; i.e., it is equal to � multiplied by the control
cycle time (see figure 14).

When the system is paused, all motion monitors and transform motion functions are suspended
(i.e., those which are set up with runMotionFxn() and transMotionEval(). Permanent monitor
and transform functions continue to execute (monitor functions will be discussed in section 6.3.1).

WARNING: One should be careful when pausing the system with motions under-
way that depend on real-time sensor inputs. If large changes in the sensor inputs
accumulate while the system is paused, then the dependent motion(s) might glitch
when they are resumed.

To help the programmer handle the problem stated above, there are two predicate functions
available: rcclIsPaused()rcclWasPaused()rcclIsPaused() returns true if the system is currently in a paused state. Monitor functions can
use this and act accordingly. Similarly, rcclWasPaused() returns true if the system was paused
during the last control cycle; this helps motion monitors or transform motion functions look out for
discontinuities.

Another problem with “pause glitches” can occur with functions that depend explicitly on time.
This can be overcome by using rcclSysTime(), which returns a time value which is frozen when
the system is paused.
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6. Interacting with the Environment

6.1 The Low Level RCI Robot Interface

The present version of RCCL is implemented on top of RCI (Real-time Control Interface), which
is a software system that allows real time control tasks to be run in a UNIX environment. RCI also
provides a simple joint-level robot and sensor I/O interface, which RCCL uses internally. Since
parts of this interface may be useful to the RCCL programmer, it is described briefly here. A com-
prehensive description of everything in this section may be found in the RCI User’s Guide and the
RCI Reference Manual.

One reason a programmer may wish access to the RCI interface is to get at the sensor I/O in-
terface. At the present time, RCCL does not specifically provide very much in the way of sensor
I/O. It might even be argued that sensor I/O does not belong in the RCCL package per-se. The
disadvantage of having not done this, however, is that the sensor I/O features that do exist (using
RCI directly) are somewhat ad-hoc. Certain types of sensor inputs which are clearly robot-specific
(such as force/torque measurements from joint or wrist sensors) may be formally incorporated into
RCCL at a later time.

6.1.1 The RCI_RBT Structure

The RCI robot interface is centered around the RCI_RBT structure. Every robot being controlled
by an RCI control task1 is referenced through one of these. A pointer to the RCI_RBT structure is
provided by the rbt field of the MANIP structure.

The RCI_RBT structure contains several fields, the most important of which are:JLS *jls;KYN *kyn;void *var;HOW *how
For convenience, pointers to each of these are also provided directly by fields of the same name

in the MANIP structure.

The jls field (Joint Level Stuff) points to a data type which defines an extensive set of fixed
joint level parameters for the robot. It is a veritable grab-bag of all sorts of things such as the number
of joints, the type of each joint, the gear ratios, joint value limits, maximum velocities, calibration
information and vectors, desired nominal velocities, etc. It is, in effect, a database of joint level
robot parameters.

The kyn field points to the robot’s KYN structure, which contains various kinematic and dynamic
level parameters for a particular robot.1Recall that the trajectory generator is implemented using RCI control tasks.
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The KYN structure is defined as follows:typedef struct _KYN {GEN_KYN *gen;void *ext;} KYN;
The gen field points to a substructure of type GEN_KYN, and contains parameters generic to most

serial link robots. This includes such things as the “A” matrix parameters, link inertias and masses
(currently being added), and joint friction coefficients. It also contains pointers to routines that do
robot specific kinematic and dynamic computations.

The ext field points to an data area which defines extra parameters specific to the robot’s class.
This can include things such as precomputed terms for enhancing the efficiency of the kinematic
computation functions. The type associated with this data area varies from one robot class to an-
other, and takes a name of the form<CLASS>_KYN.The one for the PUMA robots, defined in puma_kynvar.h,
is called PUMA_KYN. Notice that the ext field is declared to be void*, so that it may be handled in-
dependantly of the robot class.

The var field points to the robot’s VAR structure, which is a hook to help do real-time compu-
tations. It is a “scratch pad” in which terms which are generated during a particular computation
may be remembered for use in another computation. Like the ext component of the KYN structure,
the actual definition depends on the robot class, and so it is generally referenced using a generic
pointer. Typical things that are placed in the VAR structure include the sines and cosines of the joint
angles and coefficients of the Jacobian. The VAR structure for PUMA robots is defined by the typePUMA_VAR. It is unlikely that this structure will be of much initial interest to an RCCL programmer.

The HOW structure is a blackboard containing robot state and sensor I/O information. It defines
a large number of fields, not all of which are necessarily implemented on a particular system. The
information in the HOW structure is updated once every control cycle by the RCI interface. More
information on HOW is given in section 6.1.3.

More information on the JLS, KYN, and VAR structures can be found in the “RCI Reference Man-
ual” and the “RCI User’s Guide”.

6.1.2 Other ways to get JLS, KYN, and VAR
It is not necessary to get the JLS,KYN, or VAR structures for particular robot from its MANIP structure.
Indeed, this may not be possible if the robot in question is not under explicit RCCL control. Pointers
to these structures are necessary in order to use the kinematic and dynamic functions described in
section 6.2.1.

Pointers to the JLS and KYN structures can be obtained by calling the routines getJls() andgetKyn() with the name of the robot in question:#include <rci.h>JLS *jls;KYN *kyn;
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112 6. INTERACTING WITH THE ENVIRONMENTint kynExtSize;jls = getJls ("nameOfRobot");kyn = getKyn ("nameOfRobot", &kynExtSize);
The second argument to getKyn is an optional integer pointer for returning the size of the structure
associated with the ext field. Both of these routines, and the pointers they return, can only be used
from the RCCL planning level.

To access JLS and KYN structures from the control level as well as the planning levels, the rou-
tines rciGetJls (name)rciGetKyn (name, sizep)
should be used instead. For any particular robot, each of these routines must be called once initially
from the planning level, since the first call accesses file information. On Sun4 and Micro-VAX sys-
tems, the first call should also be made when the control level is not running, because of difficulties
with the memory locking code.VAR structures must be allocated by the application program. The necessary size can be be de-
termined using the routine getVarSize():void *var;var = malloc (getVarSize("nameOfRobot"));
If called from the RCCL control level, rciMalloc() should be used in place of malloc(). If the
structure is to be shared by both the planning and control levels, then allocMem() should be used.

Once allocated, it is often necessary to instantiate the VAR structure with values for a particular
robot position; see section 6.2.1.

More information on these routines can be found in the “RCI Reference Manual” and the “RCI
User’s Guide”.

6.1.3 The HOW Blackboard

Few of the HOW structure fields are likely to be of immediate interest to an RCCL programmer; those
that are are described here. Some which relate directly to the robot areint enc[MAXJNTS];float encVel[MAXJNTS];float jtorque[MAXJNTS];char torqueOK;enc and encVel give the robot’s current position and velocity, as read back from the robot con-
troller, in terms of encoder counts. Angle level information is also available, but this can generally
be obtained from the fields of the MANIP structure. jtorque gives the current force/torque values

RCCL/RCI Release 4.2, December 12,1995



6.1. THE LOW LEVEL RCI ROBOT INTERFACE 113

on each joint. The system must be explicitly asked to update the jtorque field (see the next sec-
tion), but some systems (or robots!) do not support this capability. If jtorque is being updated,
and the information in it is valid for the current cycle, the torqueOK field is set true.

Some fields related to sensor I/O include:long options;char numAdc;char numPioIn;char numPioOut;long pendantInput[HOW_PENDANT];float forceInput[6];int jstickInput[6];int adcInput[HOW_MAXADC];ushort pioInput[HOW_MAXPIO];char pendantOK;char forceOK;char jstickOK;long adc;options is a bit mask describing which of the various sensor I/O features are implemented. Codes
of interest here include TORQUE_AVAIL (joint torque information is available), PENDANT_AVAIL
(teach pendant information is available), FORCE_AVAIL (wrist force sensor information is avail-
able), JSTICK_AVAIL (input from a multi-DOF joystick is available). numAdc is the number of
analog-to-digital converter channels available, numPioIn is the number of parallel input ports, andnumPioOut is the number of parallel output ports. Input from the teach pendant, force sensor, joy-
stick, and ADC channels can be turned on and off using special commands (see the next section).
When valid data is read back from each of these, it is placed in the appropriate field pendantIn-put, forceInput,jstickInput, or adcInput, and the corresponding field pendantOK,forceOK,jstickOK, or adc is set valid. Parallel port input information is always available through the fieldpioInput.HOW structure information may be read back from any part of an RCCL program, although there
is currently no way to do this atomically (section 5.5.2), unless the read is done from the control
level on the same CPU that is running the trajectory generator for the manipulator.

The reason the HOW structure was implemented using shared memory was to make access to it
very fast. Historically, this was very important because the original RCCL systems were imple-
mented on VAXen, where the overhead associated with a subroutine call can be particularly grue-
some. The inability to read information from it atomically could be resolved by double buffering,
since the structure is updated at a regular interval. Both issues could, and probably should, be fixed
by wrapping access to the HOW structure fields in macros. For more detailed information on the HOW
structure, the reader should consult either the manual page or the RCI User’s Guide.
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6.1.4 Robot and I/O Commands

The “other half” of the RCI robot interface is a large set of command macros that control the robot
and attached sensor devices. Like the HOW structure, these macros can be called from anywhere
within the RCCL program. What each macro actually does is store the command information away
in a private buffer that is flushed by the RCI interface once every control cycle. Each macro is
called with a pointer to the RCI_RBT structure, along with whatever other arguments are appropriate.
Since RCCL uses the command interface itself, care should be taken to avoid conflicts. Some of
the commands likely to be of interest to an RCCL programmer and unlikely to conflict with the
trajectory generator are:SET_TORQUE_READ (rbt, on)SET_FORCE_READ (rbt, on)SET_JSTICK_READ (rbt, on)SET_ADC_CHAN (rbt, mask)PUT_PIO (rbt, num, value)SET_TORQUE_READ() enables reading of the joint torque values into the jtorque field of theHOW structure. Likewise, SET_FORCE_READ()and SET_JSTICK_READenable reading of the wrist/force
torque sensor and the multi-DOF joystick into the forceInput and jstickInputfields of the HOW
structure. SET_ADC_CHAN() sets a mask describing which ADC channels should be activated for
reading into the adcInputfield of the HOW structure. Finally, PUT_PIO places the bit pattern value
into parallel output port num. The value which is set may be read back from the pioOutput field
of the HOW structure.

6.2 Kinematic Computation Functions

6.2.1 Routine Descriptions

RCI provides routines for doing various types of kinematic and dynamic computations, such as
forward and inverse kinematics, forward and inverse Jacobian mappings, etc. Each routine takes
as one of its arguments a pointer to the robot’s KYN structure. Some routines require pointers to theVAR and/or JLS structures as well. The following functions are currently defined:fwdKinematics (t6,c,j6,kyn,var)invKinematics (j6,t6,c,refj,kyn,jls,var)solveConf (c,j6,kyn)fwdJacob (dc,dj,j6,kyn)invJacob (dj,dc,j6,kyn,epsilon)fwdJacobT (t,f,j6,kyn)invJacobT (f,t,j6,kyn,epsilon)gravload (t,j6,kyn)
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6.2. KINEMATIC COMPUTATION FUNCTIONS 115strToConfig (c,s,kyn)configToStr (s,c,kyn)fwdKinematics() computes t6 and a configuration bit-code c from the joint values j6. It uses
information provided by the KYN structure kyn and updates the sine/cosine information in the VAR
structure var if that argument is not NULL. invKinematics() is the most complicated routine: it
computes j6 given t6, a configuration bit-code c, and a set of reference joint values (refj) that it
uses to help resolve singularities and joint angle redundancies. It uses information in the kyn andjls structures and, if var is not NULL, updates the sine and cosine terms in that. solveConf()
computes only the robot configuration c from the joint values j6.

The Jacobian routines each apply one of the four principal Jacobian calculations to an input
vector. Each uses information in the kyn structure as well as the current robot joint values j6. Ecah
routine computes, respectively, dc = J djdj = J�1 dct = JT ff = J�T t
The variable dc is of type DIFF and f is of type FORCE. dj and t are simply vectors of floats.

The routine gravload() computes the gravity loading torques t given a kyn structure and the
robot’s joint position j6. No other dynamics routines are implemented at this time.strToConfig() takes a string representation s of the robot’s configuration and returns the cor-
responding bit code c. configToStr() performs the inverse operation.

Arguments for the above routines which correspond to sets of joint values are defined to be of
type float*. This is because the “level” at which these routines are defined is below that of RCCL
and the definition of the JNTS data type. When using a JNTS data type with these routines, the v
field should be used for the argument.

More detailed information about these routines, and what they do in the event of errors, can be
found by consulting their respective entries in the “RCI Reference Manual”.

Some of these routines make use of terms, such as the sines and cosines of the joint angles, or
entries in the Jacobian matrix, which are constant for a particular robot position. It may be compu-
tationally more efficient to compute these terms only once if several routines are called for a specific
robot position. Because of this, some routines have equivalent routines, whose names end in Var,
which take the robot VAR structure as an argument in place of the joint values. These routines cur-
rently are:fwdJacobVar (dc,dj,var,kyn)invJacobVar (dj,dc,var,kyn,epsilon)fwdJacobTVar (t,f,var,kyn)invJacobTVar (f,t,var,kyn,epsilon)gravloadVar (t,var,kyn)
RCCL/RCI Release 4.2, December 12,1995



116 6. INTERACTING WITH THE ENVIRONMENT

When these routines are called, the VAR structure must be valid for the current robot position.
The VAR structure associated with the robot’smnp structure is automatically maintained by the RCCL
trajectory generator, and so will be valid whenever the trajectory generator is running. Programs
should not modify the contents of this particular VAR structure.

Otherwise, if the VAR structure is allocated by the user, then it is necessary to explicitly update
it for a given joint position. There are two routines for doing this:updateVar (var,j6,kyn)updateVarXsincos (var,j6,kyn)updateVar() computes all the information in the VAR structure based on a given set of joint valuesj6 and information in the KYN structure. updateVarXsincos() does the same thing, but does not
compute the sine and cosine terms that may optionally be set by the routines fwdKinematics()
and invKinematics(). It is only necessary to update the VAR structure when the robot position
changes (which typically happens once per control cycle). The following call sequence would be
valid: updateVar (var,j6,kyn);fwdJacobVar (dc,dj,var,kyn);gravloadVar (load,var,kyn);

All of these functions are implemented internally by routines specific to each particular robot
class. Pointers to the implementation routines are contained in the KYN structure itself. The internal
implementation routine for a particular robot class takes the same name as the external routine, only
with the first letter capitalized and the robot class name added in front. For example, the routine to
implement fwdKinematics() for the PUMA is called pumaFwdKinematics().

These routines are meant to be somewhat “robot independent”. In fact, there is still some robot
dependency with regard to the inverse routines, since inverses are only well defined for robots with
six degrees of freedom or less. For robots with more degrees of freedom, the interface functions
would probably need to be generalized to allow the specification of strategies for resolving the re-
dundancy.

6.2.2 Example Program

The following stand alone program illustrates how the above routines can be used directly to com-
pute inverse kinematics for robots supported by RCI.#include <rccl.h>#include <rci.h>char **argvec;main(argc, argv)int argc;char *argv[];{
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6.2. KINEMATIC COMPUTATION FUNCTIONS 117float ang[MAXJNTS];float roll, pitch, yaw;unsigned long confcode;char confstr[9];int status;TRSF t6;JLS *jls;KYN *kyn;argvec = argv;argc--; argv++;if (argc != 1){ usage (-1, "%s <robot-name>\n", argvec);}if ((jls = getJls (*argv)) == NULL){ printErrors ();exit (-1);}if ((kyn = getKyn (*argv, (int*)0)) == NULL){ printErrors ();exit (-1);}while (1){ if (scanf ("%f%f%f%f%f%f%s", &t6.p.x, &t6.p.y, &t6.p.z,&roll, &pitch, &yaw, confstr) != 7){ exit (0);}rpyToTrsf (&t6, roll, pitch, yaw);strToConfig (&confcode, confstr, kyn);status = invKinematics (ang, &t6, confcode, (float*)0,kyn, jls, (void*)0);if (status & (KYN_JOINT_LIMIT | KYN_CANT_REACH)){ printf ("Out of range\n");}else{ radianToDegree (ang, ang, jls);printVf ("joints: %9.3f\n", ang, jls->numJ);}}}
The program gets the name of the robot from the argument list. It then calls getJls() andgetKyn() to obtain pointers for the robot JLS and KYN structures. The rest of the program is a

loop which reads in a Cartesian position and a desired robot configuration, and applies the inverse
kinematic routine. The Cartesian position is described by x, y, and z translations and by roll, pitch,
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and yaw rotations, which are converted to the TRSF structure t6. The desired robot configuration is
read as a string and is converted to a bit code using strToConfig(). Both t6 and the configuration
code are handed to invKinematics(), which tries to solve for the joint values and return them inang. The fourth argument to invKinematics() is optional and is omitted here. If specified, it
gives a set of joint values that are used to resolve joint angle redundancies (caused by the fact that
a joint can have more than 360� of range). If omitted, the joint mid-range values are used instead
(these are obtained from the JLS structure).invKinematics() returns a status value which is used to see if the routine succeeded. Although
this example does not do so, a status value that indicates failure can be analysed to yield detailed
information about what went wrong. If the inverse kinematics routine succeeds, then the revolute
joint values are converted to degrees using radianToDegree() and the result is printed out.

6.3 Control Level Routines and the Trajectory Generator

6.3.1 Monitor Functions

In addition to transform functions, an RCCL program can establish monitor functions, which are
also executed by the trajectory generator, and can do things ranging from general sensor computa-
tions to the monitoring of cancellation conditions for motions.

There are two types of monitor functions, similar in concept to the two types of transform func-
tions: permanent monitor functions, which, once created, are executed until they are explicitly
deleted, and motion monitor functions, which are executed only for the duration of a particular mo-
tion.

Permanent monitor functions are created and deleted with the routinesrunMonitorFxn (mnp, fxn, arg)MANIP *mnp;int (*fxn)();int arg;deleteMonitorFxn (mnp, id)MANIP *mnp;int id;runMonitorFxn() instructs the trajectory generator to call fxn once every control cycle, with
the application argument arg, in the following format:fxn (arg, mnp)int arg;MANIP *mnp;{ ...}
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Function execution begins immediately (provided the trajectory generator is running). runMoni-torFxn() returns an ID value which can be used to cancel the monitor function with deleteMoni-torFxn(). Both runMonitorFxn()and deleteMonitorFxn() require a pointer to a manipulator;
this specifies which trajectory task should be used to run the monitor (recall that for multiple CPU
systems, one trajectory task is created per CPU, and each MANIP is controlled by a particular task).
A program may run up to MAX_MONITOR_FXNSmonitors at once.

A motion monitor function is run for the duration of a particular motion. It may be established
with the callrunMotionFxn (mnp, fxn, arg)MANIP *mnp;int (*fxn)();int arg;
The trajectory generator will then execute fxn once every control cycle for the time span of the
next requested motion on mnp. The monitor is called using the same arguments as for permanent
monitors. fxn (arg, mnp)int arg;MANIP *mnp;{ ...}
Execution starts at the beginning of the transition into the motion, and ends at the beginning of the
transition out of the motion. Up to MAX_MONITOR_FXNSmotion monitors may be specified for any
given motion.

Monitor functions may communicate with other parts of the program using the same shared
memory primitives that are available to the rest of the system (section (5.5.1)).

6.3.2 Trajectory Generator Computation Sequence

When an application is created where several different transform and monitor functions are exe-
cuting together, it may be important to know the order in which the various executions take place.
This section describes the computation sequence used by the trajectory generator for each control
cycle.

We will describe the default behavior first (see figure 25). Each trajectory task begins by ex-
changing data with all the robots which it is controlling: for each robot, state and sensor informa-
tion is read in and the trajectory setpoints and commands which were computed and accumulated
during the previous control cycle are written out. The rendezvous operation which follows the robot
communication will be described momentarily. Next, all the control computations are performed:
for each of the task’s manipulators2 all the permanent monitors are called, followed by all the mo-2We say manipulator instead of robot because it is possible to create virtual manipulators which are not attached to
any real robot. This is described in section 8.2.
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Communicate with Robots:

Do Control  Computations:

Solve for Trajectories:

for  each robot
    { read in data from robot;
      write commands to robot;
    }

for each manipulator
    { compute trajectories;
    }

for each manipulator
    { call all permanent monitor functions;
       call all motion monitor functions;

       increase motion count;
       start new motion segment,  if necessary;

       evaluate functional transforms which
          are motion dependent;
    }
evaluate permanent functional transforms;

rendezvous

rendezvous

Figure 25: Default sequence of operations carried out by each trajectory task,
once per control cycle.
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communicate
with robots

do control
computations

solve for 
trajectories

rendezvous

rendezvous

communicate
with robots

do control
computations

solve for 
trajectories

rendezvous

rendezvous

Trajectory Task
on CPU 1

Trajectory Task
on CPU 2

Figure 26: Rendezvous points between trajectory tasks executing on separate
CPUs.

tion monitors. The current motion count is then increased, and if it is time to start a new motion
request, that is done and the motion count is set to zero. All the functional transforms associated
with the current (and perhaps new) motion segment (the transMotionEval() bindings) are then
evaluated. The permanent functional transforms are evaluated afterwards. Finally, the trajectory
generator combines all this information and solves for the output setpoints of each manipulator.

When several trajectory tasks are running on different CPUs, the computations described here
will overlap. While this can certainly be desirable, it may cause some ambiguities about what was
computed when. To offset this problem, all the trajectory tasks rendezvous with each other at two
prescribed points during each control cycle (figure 26). The first rendezvous takes place after each
robot’s state and sensor data has been read in, and ensures that each task will see the same state and
sensor information for each robot. The second rendezvous takes place after all the application com-
putations have been performed. At this point, all the information associated with moving motion
targets has been computed, and the rendezvous ensures that the same values will be seen by each
task.

In cases where several monitor or transform functions are defined simultaneously, they are eval-
uated in the same order that they were set up in. In other words, for the following example,extern foo();extern bar();
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Trajectory task timing

Servo controller timing

gather
state &
sensor

info

execute 
setpoints &
commands

compute setpoints
for next control cycle

control cycle
begins here

read data
from
robot

write
commands

to robot

Figure 27: Default sequence used by the trajectory task for communicating with
the robots.runMonitorFxn (mnp, foo, 0);runMonitorFxn (mnp, bar, 0);

monitor function foo will be executed before function bar. For the transform motion functions set
up with transMotionEval(), the order of evaluation is based on the transform’s counterclockwise
location within the position equation, starting with the transform closest to T6.

The reader will notice that by default, the trajectory task reads data in from the robot, writes
out setpoints and commands from the previous cycle, and then computes the setpoints for the next
control cycle. This is done to allow parallel operation with the low level robot controller. Typically,
the robot controller collects the robot state and sensor information, sends this to the trajectory gen-
erator, and receives back a set of setpoints and commands which it then executes (figure 27). The
computation of the next setpoint values by the trajectory task can then overlap with the execution
of the current setpoint values by the robot controller. This can save time, particularly if the robot
controller is slow (which was true historically). However, it also introduces a one-cycle delay in the
trajectory computation process, which can be detrimental in feedback situations where the setpoints
depend on the state and sensor information.

It is possible to have the robot setpoints sent to the controller at the end of each control cycle,
rather than at the beginning of the next control cycle. To do this, the routinercclTightControlLoop (on)int on;
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Trajectory task timing

Servo controller timing

gather
state &
sensor

info

control cycle
begins here

execute 
setpoints &
commands

compute setpoints
for next control cycle

Figure 28: Robot communication sequence with no control lag.

should be called, with on set true, at some point when the trajectory generator is switched off. Set-
points will then be sent to the robots during the same cycle that they are solved for, as shown in
figure 28.

6.4 Sensor Integration

An important feature of RCCL is its ability to easily combine control of the robot with a variety
of sensor inputs. The robot behavior can be influenced by modifying a motion’s target positions or
canceling the motion altogether. If the target position is modified in advance of the motion, this is
called “presetting the world model”; such sensor integration occurs at the task level. Initializing a
transform is a special case of this. If the target position is modified while the motion is in progress,
this is called “tracking”. If sensor monitors are set up to cancel a motion on certain conditions, this
is called a “guarded motion”. Executing a guarded motion usually implies some uncertainty about
the world model; correspondingly, if the guarded motion makes “contact”, then the environment
is known with greater certainty than before, and it may be desirable to update the world model ac-
cordingly.
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6.4.1 Task Level Integration

This section will present a demonstration program that simulates the integration of RCCL with a
computer vision system. Assume that a camera has been attached to link 4 of a PUMA robot. The
computer vision system is simulated by a function snapshot(), which causes a picture to be taken
of the scene and stored, and by a function getobj(), which extracts the position and orientation of
an object in the camera coordinate frame. The task is programmed in such a way that the “process-
ing” done by getobj() overlaps with the motion of the arm. The strategy used consists of moving
the manipulator toward a position where the object is expected to be in the camera’s field of view.
The program is synchronized so that the picture is taken at a given point in the trajectory. At the
instant the picture is taken, the manipulator’s T6 value is recorded, and from this the camera coor-
dinate frame can be computed. Knowledge of the camera coordinate frame, plus the object position
returned in camera coordinates, provides all the information necessary to approach the object, grasp
it, and take it somewhere else.
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6.4. SENSOR INTEGRATION 125#include <rccl.h>#include <fastmath.h>#include "manex.560.h"TRSF *computeU5();int numberOfObjects;main(){ TRSF_PTR z, e, cam, o, coord, expect, drop;POS_PTR look, get, put;MANIP *mnp;TRSF t6r, u5;JNTS rcclpark, j6r;char *robotName;int putId, lookId, getId;numberOfObjects = 5;rcclSetOptions (RCCL_ERROR_EXIT);robotName = getDefaultRobot();if (!getRobotPosition (rcclpark.v, "rcclpark", robotName)){ printf ("position 'rcclpark' not defined for robot\n");exit(-1);}z = allocTransXyz (NULL, UNDEF, 0.0, 0.0, ZBASE);e = allocTransXyz (NULL, UNDEF, 0.0, 0.0, TOOLZ);cam = allocTransRot (NULL, UNDEF, 50.0, 0.0, 0.0, xunit, 90.0);expect = allocTransRot (NULL, UNDEF, 400.0, 400.0, 700.0,xunit, 180.0);drop = allocTransRot (NULL, UNDEF, -400.0, 400.0, 700.0,xunit, 180.0);o = allocTrans (NULL, UNDEF);coord = allocTrans (NULL, UNDEF);look = makePosition (NULL, z, T6, e, EQ, expect, TL, e);get = makePosition (NULL, T6, e, EQ, coord, cam, o, TL, e);put = makePosition (NULL, z, T6, e, EQ, drop, TL, e);mnp = rcclCreate (robotName, 0);rcclStart();setSpeed (mnp, 2.0); /*1*/OPEN_HAND(mnp);for ( ; ; ) /*2*/{ lookId = move (mnp, look);waitFor (motionScale(lookId) > 0.7) /*3*/
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126 6. INTERACTING WITH THE ENVIRONMENTsnapshot(); /*4*/readTrans (mnp->t6, &t6r); /*5*/readMem (mnp->j6, &j6r);computeU5 (&u5, j6r.v[4], j6r.v[5]); /*6*/multRiTrsf (coord, &t6r, &u5);if (!getobj(o)){ break;}distance (mnp, "dz", -50.0); /*7*/move (mnp, get);getId = move (mnp, get);stop (mnp, 500.0);distance (mnp, "dz", -50.0);move (mnp, get);waitForStop (getId); /*8*/CLOSE_HAND (mnp);move (mnp, put);putId = stop (mnp, 500.0);stop (mnp, 500.0);waitForStop (putId);OPEN_HAND (mnp); /*9*/}movej (mnp, &rcclpark);stop (mnp, 1000.0);waitForCompleted (mnp);rcclRelease (1);}snapshot(){ printf ("\nTAKING PICTURE\n");}getobj(t)TRSF_PTR t;{ extern double frandom();double rand;/* fake a camera coordinate reading */rand = frandom (-20.0, 20.0);xyzToTrsf (t, rand, rand, 150.0+rand);
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6.4. SENSOR INTEGRATION 127rpyToTrsf (t, 90.0, -25.0+rand, 0.0);printTrsf ("Object is at %m\n", t);return (numberOfObjects--);}TRSF *computeU5 (u5, ang5, ang6)TRSF *u5;float ang5, ang6;{ /* Compute U5 for a PUMA 560 (old coordinates) */float s5, c5, s6, c6;SINCOS (ang5, &s5, &c5);SINCOS (ang6, &s6, &c6);u5->n.x = c5 * c6;u5->n.y = s5 * c6;u5->n.z = s6;u5->o.x = -c5 * s6;u5->o.y = -s5 * s6;u5->o.z = c6;u5->a.x = s5;u5->a.y = -c5;u5->a.z = 0.0;u5->p.x = 0.0;u5->p.y = 0.0;u5->p.z = 0.0;return (u5);}
NOTE – this example has been coded for the PUMA 560 robot, and lives atpickAndDrop.560.c in $RCCL/demo.rccl. An equivalent program for the PUMA 260 is

contained in pickAndDrop.260.c
The program makes use of three position equations: the position look, where the object is ex-

pected to be seen by the camera, the position get, at which the object should be grasped, and the
position put, where the object should be placed.

The position equation look expresses the ordinary transform graph shown in figure 29. Z is
a reference frame at the base of the manipulator pedestal, E is the usual end effector frame, and
EXPECT is the location, with respect to the pedestal base, where we expect to find the object in
the camera’s field of view.

The position equation put also expresses an ordinary transform graph (figure 30). DROP is the
location, relative to the manipulator base, where the object is to be dropped.

The position equation get expresses a slightly more complicated transform graph (figure 31).
It uses the additional transforms COORD, which locates the base frame to which the camera is
mounted (in this case link 4 of the arm), CAM, which describes the camera view frame relative to
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T6 E

Z EXPECT

Figure 29: Transform graph for position “look”.

T6 E

Z DROP

Figure 30: Transform graph for position “put”.

the camera base frame, and O, which describes the position of the object in relative to the camera
view frame.

Once all the component transforms of get are known, the manipulator may be moved to the
pickup location. CAM and E are given, and O is returned by the “vision software” inside getobj().
How do we find COORD? Note that get is really just a subgraph of the (nicely complicated) graph
shown in figure 32.

The camera is mounted on link 4 of the robot, and so COORD is equivalent to the manipulator’sT4 transform, which is the product of the robot’s first 4 “A” matrices (see section 3.1). T4 may be
cumbersome to compute directly, but this is not necessary: instead, we can compute the transformU5 which maps from link 4 to link 6 (and is the product of the robot’s last two “A” matrices. From
the graph it is obvious that COORD = T6 U5�1U5 can be computed quite easily given joint angles 5 and 6; the program does this using the
routine computeU5(). Notice that the sines and cosines of the two angles are computed using SIN-COS(), which is part of the RCI fastmath library.

Looking now at the program itself, we see that it increases the manipulator speed for dramatic
effect (/*1*/), opens the hand, and then enters into a loop where it will “pick and drop” objects
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T6 E

O

CAMCOORD

Figure 31: Transform graph for position “get”.

until getobj() says that it can’t find any more.

Once the robot has been told to move to look, the program waits on the corresponding motion
ID until the robot is 70% of the way there (/*3*/). At this point the camera is told to take a picture
(/*4*/), and the current T6 and joint angles values are read back from the manipulator structure
(/*5*/). readTrans()and readMem()are used to guarantee that the data is read atomically 3. U5
is computed using the read back angle values and the recorded T6 value is post multiplied by its
inverse (/*6*/) to get COORD. Finally, getobj() is called to either report the object position or
indicate that it couldn’t find anything. Notice that getobj()has the remainder of the travel time to
the target look in which to compute the value of O. While it is unlikely that a complicated vision
function could profit much from this extra time, this does illustrate how the asynchronous nature of
the motion requests can be put to use.

The rest of the loop (/*7*/) issues the commands for the robot to approach the object, grasp it,
and take it away and drop it. Notice how the opening and closing of the hand is coordinated with
the motion requests using motion IDs (/*8*/, /*9*/).

The function getobj() constructs a simulation of O using a random number generator and a
few well chosen transform manipulator routines.

As a side note, the reader might notice that we have not assigned names to any of the position
equations or transforms in the program, and this will be true of the remaining examples as well.
Names for these are only necessary when they are used by calling either getPositionByName()
or getTransByName(). Memory objects will also be unnamed for the same reason. The use of
names in the previous examples was for illustrative purposes only.

6.4.2 Tracking

This next example illustrates tracking, which is what happens when functionally defined transforms
are updated based on sensor readings. The program itself is very simple: the xy translation values
of a particular transform are made to follow the readings from a dual-channel potentiometer.3although it will not guarantee that T6 and the joint angles are consistent with respect to one another; however, this
is unlikely to be a problem because the robot is not moving very fast. If it did present a problem, we could grab only
the joint angle values, and compute T6 using the forward kinematics routines.
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T4

CAM O

U5 E

T6

COORD CAM O

Figure 32: More complex description of position “get”.

When connecting sensor inputs directly to transform values, one typically uses either position
tracking, in which the transform coordinates are constructed directly from the input values, or ve-
locity tracking, in which the inputs define an incremental offset which is applied to the existing
transform value. Position tracking has the advantage that no errors are accumulated, but the result-
ing motion can be very rough unless some sort of smoothing is applied. Velocity tracking is much
smoother but can result in drifting unless the input device has a well defined dead band. The demo
program here uses absolute position tracking.

planning level module#include <rccl.h>#include "manex.560.h"main (){ TRSF_PTR p, track;POS_PTR p1;MANIP *mnp;TRACK_CTRL_BLK *tcb;extern trackFxn();
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6.4. SENSOR INTEGRATION 131rcclSetOptions (RCCL_ERROR_EXIT);tcb = ALLOC_MEM (NULL, TRACK_CTRL_BLK, UNDEF); /*1*/p = allocTransRot (NULL, UNDEF, P_X, P_Y, P_Z, xunit, 180.0);track = allocTrans (NULL, UNDEF);p1 = makePosition (NULL, T6, EQ, p, track, TL, T6);mnp = rcclCreate (getDefaultRobot(), 0);rcclStart();tcb->compute = YES;tcb->gain = 1.0;tcb->vlimit = 400.0;tcb->mnpAddr = (void*)mnp;transEval (track, trackFxn, (int)tcb); /*2*/rcclBlock();move (mnp, p1); /*3*/stop (mnp, F_UNDEF);while (1) /*4*/{ printf ("%7.4f %7.4f\n", tcb->xval, tcb->yval);delay (500.0);}}
control level module#include <rccl.h>#include <fastmath.h>#include "manex.560.h"float clip (delta, maxDelta) /*5*/float delta;float maxDelta;{ return (delta >= 0.0 ? MIN(delta, maxDelta) : -MIN(-delta, maxDelta));}trackFxn (t, arg, mnp)TRSF *t;int arg;MANIP *mnp;{ char *fxnName = "trackFxn()";TRACK_CTRL_BLK *tcb;
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132 6. INTERACTING WITH THE ENVIRONMENTRCI_RBT *rbt;float maxDelta;float delta;float x, y; /*6*/if ((tcb = (TRACK_CTRL_BLK*)getMemByAddr (arg)) == NULL){ rciAbort (0, "%s -- Can't find paramter block\n", fxnName);return;}rbt = (getManipByAddr(tcb->mnpAddr))->rbt; /*7*/if (tcb->tracking){ getInput (rbt, &x, &y);tcb->xval = x*tcb->gain;tcb->yval = y*tcb->gain; /*8*/maxDelta = FABS(tcb->vlimit) * rcclGetInterval() / 1000.0;t->p.x += clip (tcb->xval - t->p.x, maxDelta);t->p.y += clip (tcb->yval - t->p.y, maxDelta); /*9*/if (!tcb->compute) /*10*/{ turnInputOff (rbt);tcb->tracking = 0;}}else{ if (tcb->compute) /*11*/{ turnInputOn (rbt);tcb->tracking = 1;}}}static float faket;turnInputOn(rbt)RCI_RBT *rbt;{ if (rbt->how->numAdc > 0){ SET_ADC_CHAN (rbt, 0x3); /*12*/}else{ rciPrintf ("will fake the input\n"); /*13*/faket = 0.0;}}turnInputOff(rbt)RCI_RBT *rbt;{ if (rbt->how->numAdc > 0){ SET_ADC_CHAN (rbt, 0x0); /*14*/}
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6.4. SENSOR INTEGRATION 133}getInput(rbt, x, y)RCI_RBT *rbt;float *x, *y;{ if (rbt->how->numAdc > 0){ if (rbt->how->adc & 0x3){ /* input bias of 1024 is specific to McGill site */*x = rbt->how->adcInput[0] + 1024;*y = rbt->how->adcInput[1] + 1024; /*15*/}}else{ /* fake the input ... draw an ellipse */faket += rcclGetInterval()/1000.0;*x = 100*COS(PI*faket);*y = -50*SIN(PI*faket);}}
NOTE – this example has been coded for the PUMA 560 robot and lives at track.560.c andtrackCtrl.560.c in $RCCL/demo.rccl. An equivalent program for the PUMA 260 is
contained in track.260.c and trackCtrl.260.c. If the program discovers that the system does
not have the correct sensor inputs, the tracking function just punts and simulates them.

The program uses only a very simple position equation p1, containing a base transform P, which
is set to correspond to the robot’s starting position, and a tracking transform TRACK. The struc-
ture TRACK_CTRL_BLK (/*1*/) is used to communicate between the planning level and the tracking
function. It contains the following control fields: compute, which “turns the function on”, gain,
a constant by which the sensor input values are multiplied, vlimit, a tracking velocity threshold
(in millimeters per second), mnpAddr, the planning level address of the MANIP structure which is
used to reference the MANIP structure from the control level, and tracking, a field which is used
internally by the tracking function. The fields xval and yval are set by the tracking function to
the current x and y target values being tracked. The tracking function is set running with a call totransEval() (/*2*/). This is followed by a call to rcclBlock(), so that we know that the track-
ing function has executed at least once. The robot is then requested to move to the tracking position
and stay there indefinitely while the planning task reads and prints out the x and y coordinates as
determined by the tracking function (/*4*/). There is no explicit quit command for this program;
the usual interrupt character will do quite nicely4.

Most of this program’s action takes place in the tracking function. Because absolute position
tracking is implemented, the function clip is used to limit the maximum displacement that can
occur during any particular cycle (/*5*/).

The first thing trackFxn()does is use getMemByAddr() to get a pointer to the control memory
structure. It then obtains a pointer to the MANIP structure using getManipByAddr(), and uses this4Notice that this means we do not call rcclRelease() at the end of the program. While this is certainly “cleaner”
to do if possible, it is not mandatory.
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get a pointer to the RCI_RBT structure (/*7*/) (section 6.1.1), which will be used to obtain and
control sensor inputs.

The state variable tcb->tracking indicates whether the tracking function is active or not. If
tracking is active, then getInput() is called to get the rawx and y values from the sensor, which are
then scaled by tcb->gain and written into the xval and yval fields of the control block (/*8*/).
The maximum permitted per-cycle displacement is computed from the velocity threshold and the
RCCL sample interval, and is used to clip the final x and y values which are set in the transform. If
the tcb->compute has been cleared, then input sensor values are turned off with a call the turn-InputOff() (/*10*/). If the function is not tracking, then it waits for tcb->compute to be set by
the planning level, then turns sensor inputs on with turnInputOn().

The sensor I/O is encapsulated in separate routines. This was done mainly for show, but also
because the sensor input code is a bit of a hack and we didn’t want to clutter up trackFxn()with
it. turnInputOn() instructs the RCI robot interface to start reading analog-to-digital converter
channels 0 and 1 (/*12*/), or, if there are no ADC channels, announces that the sensor input will
be faked (/*13*/). turnInputOff() closes the channels (/*14*/). Finally, getInput() either
reads back the ADC values from the HOW structure (/*15*/) or fakes them with an ellipse pattern
(/*16*/).

The velocity limiting algorithm used in this example is kept very crude for simplicity. Of course,
more elaborate smoothing techniques, or even general control laws, can be used as required by the
application.

The original version of RCCL contained an example program in which a linear potentiometer
was attached to the robot tool tip and was used to do depth tracking along surfaces. To accomplish
this, a very simple tracking function fingerFxn()was defined which adjusted the z coordinate of
its transform using the following code:fingerFxn (tr, arg, mnp)TRSF *tr;int arg;MANIP *mnp;{ HOW *how = mnp->how;tr->p.z + 100.0 * how->adcInput[CHAN] * GAIN;}

If the sensor inputs are very slow or the corresponding computations are very lengthy, one has
the choice of either spreading the tracking computation over several control cycles, or doing the
tracking from the planning level. Planning level tracking is tricky mainly because the planning level
does not have the real-time priority of the control level (and can even be suspended for short periods
of time by UNIX). However, the reader might find one of the following paradigms interesting:

1. Make the tracking transform variable and set it from the planning level at some reasonable
rate. Presumably the changes are not large.TRSF change;
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6.4. SENSOR INTEGRATION 135TRSF tmp;...setTransVarb (track);readTrans (track, &tmp); /* initialize */...setTime (mnp, F_DEFAULT, F_UNDEF);move (mnp, pt); /* semi-permanent motion */while (!quit){ getSensorInput (&change);multTrsf (&tmp, &tmp, &change);writeTrans (track, &tmp);delay (REASONABLE_INTERVAL);}
2. A more reasonable method than the one above would be to issue many short motion requests

from the planning level. This is preferable because then the trajectory generator will interpo-
late and provide smoothing between successive data points.setTransConst (track);...setMotionQueueSize (mnp, 1);while (!quit){ getSensorInput (&change);multTrsf (track, track, &change);move (mnp, pt);}track is set constant since each move request will then make a private copy of it. Setting the
motion queue size to 1 prevents queue saturation and ensures that each call to move() will
block until the requested motion is being executed. One problem with this method is that the
first few cycles of any motion incur a large amount of overhead (to compute the drive and
transitioning parameters). This effect will be greatly reduced if the path is naturally smooth
enough that the motion transition times can be set to zero. A small fixed delay within the loop
would also help reduce the frequency of the motions.

6.4.3 Guarded Motions

The next example uses a monitor function to implement guarded motions. The basic guarded mo-
tion paradigm is very simple: a monitor function waits until some particular condition is raised, and
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then cancels the motion. The planning level can examine the stop code associated with the motion
to see whether or not the cancellation actually occurred5.

When doing guarded motions, it is often desirable to be able to determine the value of a par-
ticular transform (within the context of a specified position equation) at the instant of contact (or
whatever condition is being tested for). This computation has to be done by the trajectory genera-
tor, because an unacceptable length of time may elapse between when the guarded motion ends and
when the planning task learns of it and tries to record the appropriate data. Assume that we want
to know the value of a transform t0 in the context of some position equation p0. What we want to
be able to do is ask the trajectory generator to call solveTrans() for t0, using position p0, at the
end of a particular motion. The functionupdateTrans (mnp, tr, p0, t0, tx)MANIP *mnp;TRSF_PTR tr, t0, tx;POS_PTR p0;
will do just this. The evaluation is done at the end of the next requested motion on the manipulatormnp. The last four arguments to updateTrans() are equivalent to the four arguments of solve-Trans(). Usually, the position p0 will contain a T6 transform, which we will want to be instanti-
ated with the current value of the manipulator’s t6 field. The corresponding call looks like this:updateTrans (mnp, tr, p0, t0, mnp->t6);

All of the transform arguments to updateTrans()must be allocated using the allocTrans()
routines.

The sample program below simulates a situation in which the manipulator supposedly has a
contact sensor with which it tries to find the locations of two points on a planar surface. When
each motion finishes, the current manipulator position at the contact point is remembered and used
afterwards (if both motions achieved contact) to trace out a line along the surface between the two
points.

planning level module#include <rccl.h>#include "manex.560.h"extern int touchFxn();main(){ TRSF_PTR target, e, contact[2];5This information could also be returned by the application using shared memory, but motion stop codes are explic-
itly incorporated into RCCL, so they may as well be used. Stop codes exist mainly to make it possible to (in the future)
implement a feature where different reflex motions are executed depending on the stop code returned by the previous
motion.
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6.4. SENSOR INTEGRATION 137TRSF start[2]; /*1*/POS_PTR p0;MANIP *mnp;JNTS rcclpark;char *robotName;int mid;int bothTouched;int i;rcclSetOptions (RCCL_ERROR_EXIT);robotName = getDefaultRobot();if (!getRobotPosition (rcclpark.v, "rcclpark", robotName)){ printf ("position 'rcclpark' not defined for robot\n");exit(-1);}target = allocTrans (NULL, UNDEF);e = allocTrans (NULL, UNDEF);contact[0] = allocTrans (NULL, UNDEF);contact[1] = allocTrans (NULL, UNDEF);p0 = makePosition (NULL, T6, e, EQ, target, TL, e); /*2*/mnp = rcclCreate (robotName, 0);rcclStart();setJvelScale (mnp, 2.0);movej (mnp, &rcclpark);waitForCompleted (mnp);xyzToTrsf (e, 0.0, 0.0, TOOLZ); /*3*/solveTrans (&start[0], p0, target, mnp->t6); /*4*/solveTrans (&start[1], p0, target, mnp->t6);multTrsfXyz (&start[0], -750.0, 150.0, 0.0);multTrsfXyz (&start[1], -750.0, 350.0, 0.0);/* turn on 1st ADC channel, *if* we have one */if (mnp->how->numAdc > 0){ SET_ADC_CHAN (mnp->rbt, 0x1); /*5*/}else{ printf ("no real ADC channel; going to fake it\n");}bothTouched = 1;mid = 0;for (i=0; i<2; i++) /*6*/{ *target = start[i];move (mnp, p0);setMod (mnp, 'c');setCartVel (mnp, 10.0, F_DEFAULT); /*7*/
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138 6. INTERACTING WITH THE ENVIRONMENTsetMotionFlag (mnp, ++mid); /*8*/runMotionFxn (mnp, touchFxn, mid);updateTrans (mnp, contact[i], p0, target, mnp->t6); /*9*/distance (mnp, "dz", 200.0);move (mnp, p0); /*10*/setTime (mnp, 0.0, F_DEFAULT);distance (mnp, "dz", -20.0);move (mnp, mnp->last); /*11*/setMod (mnp, 'j');*target = start[i];move (mnp, p0); /*12*/waitForStop (mid); /*13*/if (motionStopCode(mid) == 1) /*14*/{ printf ("Motion %d touched\n", i+1);}else{ printf ("Motion %d did not touch\n", i+1);bothTouched = 0;}}waitForCompleted (mnp);if (bothTouched) /*15*/{ printf ("playing back ...\n");setMod (mnp, 'c');setCartVel (mnp, F_DEFAULT, F_DEFAULT);*target = start[0];move (mnp, p0);*target = *contact[0]; /*16*/target->p.z += 5.0;move (mnp, p0);*target = *contact[1];target->p.z += 5.0;move (mnp, p0);*target = start[1];move (mnp, p0);waitForCompleted (mnp);setMod (mnp, 'j');}movej (mnp, &rcclpark);stop (mnp, 1000.0);waitForCompleted (mnp);rcclRelease (YES);}
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control level module#include <rccl.h>#include "manex.560.h"#define THRESHOLD 500touchFxn(mid, mnp)int mid;MANIP *mnp;{ HOW *how;static int count = 0;how = mnp->how; /*17*//* *if* we have an ADC channel, use it for sensor readings.Otherwise, fake the touch function using the motionscale value */if (how->numAdc > 0){ if (how->adc & 0x1 && how->adcInput[0] > THRESHOLD){ stopMotion (mid, 1); /*18*/}}else{ if (motionScale(mid) > (count == 0 ? 0.2 : 0.6)) /*19*/{ stopMotion (mid, 1);count++;}}}
NOTE – this example has been coded for the PUMA 560 and lives at guarded.560.c andguardedCtrl.560.c in $RCCL/demo.rccl. An equivalent program for the PUMA 260 is
contained in guarded.260.c and guardedCtrl.260.c. If the program discovers that the system
does not have right sensor inputs, then the monitor function just punts and aborts the guarded
motions at different points along their trajectories.

The program is a bit verbose, but fairly straightforward. To illustrate a different way of speci-
fying motion targets, it only defines one position equation p0 (/*2*/):T6 E = TARGET
E is the usual end-effector transform and TARGET is a transform which is set to a specific target
location for each motion. This can be done since all motion requests are to fixed locations. Some
transforms can then be declared as regular variables, since they will be used only within the planning
task (/*1*/). The transforms pointed to by contact are allocated using allocTrans() since they
will be used as arguments to updateTrans(). All of the transform values are instantiated starting at
(/*3*/), after the robot has been moved to its initial position. E is set to the canonical end-effector
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values. The locations in start describe the points at which the guarded motions will begin; they
are defined simply by a translational offset from the initial value of TARGET in the position p0
(/*4*/).

The touch sensor input is assumed to come from channel 0 of the analog-to-digital converters
supplied by the RCI robot/sensor interface. If ADC channels are available, the program enables
this channel at (/*5*/). It will be read by the monitor function.

The guarded motions are set up by the loop at (/*6*/). Moving the manipulator to a particular
location is done by setting TARGET to the desired location and then queueing a move request top0. The first move is to the start position. The next move is the guarded motion, which involves
setting up a few things. Cartesian interpolation is specified. A slow velocity is set in anticipation
of contact (/*7*/). An explicit motion ID is requested, using setMotionFlag() (/*8*/); this is
so that the motion ID will be known in advance and can therefore be passed as an argument to the
monitor function touchFxn(), which is established with a call to runMotionFxn(). To store the
location at the end of the guarded motion, updateTrans() asks the trajectory generator to solvep0 for TARGET at the end of the motion and place the result in one of the transforms pointed to
be contact (/*9*/). Finally, the guarded motion itself is implemented by requesting a move to a
target offset from start by 200.0 millimeters along the z axis (/*10*/). Since the guarded motion
presumably makes contact with a hard surface, we wish to follow it with a quick “jump” back up
the z axis by a small amount. This is accomplished using a relative motion, created with another z
offset applied to the position mnp->last (/*11*/). The transition time is set to 0 so that the manip-
ulator will pull away from the surface immediately; otherwise, the deceleration associated with the
transition would carry the robot farther into the surface. A transition time of 0 is tolerable since the
approach velocity is low. After the pullback motion, the robot switches to joint mode and moves
back to the starting point (/*12*/). The program itself uses a motion ID to wait for the guarded
move to complete (/*13*/), and then examines the stop code (which was set by the monitor func-
tion) to determine if contact was actually achieved (/*14*/). A stop code of 1 indicates contact;
otherwise, the system will have set the stop code to ON_NORMAL when the nominal endpoint was
reached.

If both guarded moves make contact with the surface, the program has the robot draw a line, at
normal velocity, 5.0 millimeters above and between the two contact positions (/*15*/). The robot
is moved to the first start point, the first contact point, the second contact point, and back to the first
start point. The 5.0 millimeter vertical displacement is achieved by simply adding an offset to the
contact target positions (/*16*/).

The monitor function touchFxn() is quite simple. It begins by fetching a pointer to the robot’sHOW structure (/*17*/; see section 6.1.3) from which it reads ADC channel 0. The motion is can-
celed if this channel displays a value greater than THRESHOLD (/*18*/). If the system does not have
any ADC channels, the monitor function fakes it by canceling the motion when it is either 20% or
60% done (/*19*/).
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6.5 Teaching Positions

6.5.1 The Teach Routine

RCCL provides a teach routine, rcclTeach(), which allows a user to move the arm around using
a combination of keyboard and teach pendant commands:rcclTeach (mnp, prompt, tool)MANIP *mnp;char *prompt;TRSF *tool;rcclTeach() assumes that the trajectory generator is currently active (i.e., rcclStart()has been
called. When it returns (at the command of the operator), the robot’s new position can be read from
the appropriate fields in the mnp structure (such as t6, here, lastTC, or j6; the first three fields will
all be equal). If an error occurs such that the teach routine was unable to successfully complete, it
returns -1 and an appropriate error code is placed on the error stack (section 9.2.1). The argumentprompt defines the prompt used for keyboard input. tool is an optional argument that specifies a
transform applied to the T6 frame to define a TOOL frame. If tool is given as NULL, then the T6
frame is used as the TOOL frame.rcclTeach()allows the operator to specify motions in three principal coordinate systems: joint,
tool, and world. These are completely analogous to their counterparts in the Unimation language
VAL. In joint coordinates the robot is moved by specifying individual joint angles. In tool coor-
dinates the robot is moved by specifying Cartesian translations and rotations relative to the TOOL
frame. In world coordinates, the robot is moved by specifying Cartesian translations relative to the
manipulator base frame and rotations relative to the manipulator base frame translated so that its
origin is coincident with that of the TOOL frame.

6.5.2 Keyboard Commands

The keyboard commands are implemented using the C-tree matcher (see section 4.10): the terminal
displays a prompt and the user enters commands. Typing ? gives either a menu of valid commands
or instructions as to what should be entered next. Hitting <space> automatically matches what the
user has typed against the offered commands and expands the input line accordingly.return – Causes rcclTeach() to return with a value of 0.record – Causes rcclTeach() to return with a value of 1. This can be useful when

the teach routine is executing in a loop; a return value of 1 can be used to sig-
nal that we want to record the current point (and perhaps call rcclTeach()
again to record more points).stop – Stops the arm “dead in its tracks”.show position –
Prints the manipulator’s current position in both Cartesian and joint coordi-
nates.
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142 6. INTERACTING WITH THE ENVIRONMENTshow tool – Prints the specified value of the tool transform.show t6*tool –
Prints the location of the TOOL frame relative to the manipulator base frame.world <dof> by <value> –
Moves the indicated degree of freedom by a certain value in world coordi-
nates. Translations are specified by a <dof> of x, y, or z, and a value in mil-
limeters. Rotations are specified by a <dof> of rx, ry, or rz, and a value
in degrees.tool <dof> by <value> –
Moves the indicated degree of freedom by a certain value in tool coordinates.
Values are specified the same way as for world coordinates.joint <num> by <value> –
Moves the indicated joint by a specified value (degrees for rotational joints
and millimeters for prismatic joints).joint <num> to <value> –
Moves the indicated joint to a specified value (degrees for rotational joints
and millimeters for prismatic joints).goto joints –
Moves all the joints of the robot to a specified set of values.set speed – Sets a scale value for the motion speed (the default value is 1.0). The default
velocities used by rcclTeach()are the current values set by setCartVel()
and setJointVel(). Setting the speed within the teach routine will not change
the speed settings in the program when the routine returns.set translation <x> <y> <z> –
Moves the manipulator so that the x, y, and z translational coordinates of the
TOOL frame (relative to the manipulator base frame) are set to a particular
value (in millimeters).set rotation euler <phi> <the> <psi> –
Moves the manipulator so that the rotational component of the TOOL frame
(relative to the manipulator base frame) is described by a particular set of
Euler angles (degrees).set rotation rpy <roll> <pitch> <yaw> –
Moves the manipulator so that the rotational component of the TOOL frame
(relative to the manipulator base frame) is described by a particular set of
roll-pitch-yaw angles (degrees).set tool <x> <y> <z> <roll> <pitch> <yaw> –
Explicitly sets the tool transform to the specified translational values (mil-
limeters) and roll-pitch-yaw angles (degrees).
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6.5. TEACHING POSITIONS 143set integration [on | off] –
Enables or disables servo level integration; when integration is enabled, joint
servo errors are reduced to zero, but the manipulator may become more “frisky”.
This command is (at the moment) specific to Unimation/PUMA robots.hand <value> –
Sets the manipulator hand to a particular value (for open/close grippers, 1
usually means “open” and 0 usually means “closed”).

6.5.3 Pendant Commands

The commands from the (PUMA) teach pendant are now described.� The buttons joint, tool, or world set the default coordinate system for subsequent teach pen-
dant commands.� The button free places the manipulator into a zero-gravity mode, with all joints limp and their
gravity loadings compensated for; the operator is then free to move the arm around into any
position desired.

WARNING: check to make sure this command is working properly; if it isn’t
the robot might fall.� The switch on the side of the pendant controls the speed of motion; it has three settings: fast,

medium, and slow. The fastest setting is the momentary one.� The tick button enables “ultra-slow” pendant motions; this is for fine position adjustment.� The clamp1 and clamp2 buttons (usually) open and close the gripper.� The REC button causes the teach routine to return with a value of 1, as though the keyboard
command record had been entered. This is useful if the operator is teaching a whole set of
points and does not wish to return to the terminal.� The joint control buttons (1 to 6) do different things depending on the mode. In tool or world
mode, they cause relative translations or displacements: the first three buttons create � mo-
tions along the x, y, and z axes, while the last three buttons create � rotations about the x,y, and z axes. In joint mode, each button controls its corresponding joint. In free mode, the
(+) side of each button “locks” its corresponding joint, so that it is no longer limp, while the
(�) side limps it again.

6.5.4 Programming with the Teach RoutinercclTeach()may be embedded inside applications and called whenever it is desirable for an op-
erator to move the arm around explicitly, either for teaching new positions or just for the fun of
it.
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This is best illustrated by the following sample program, in which the teach routine is used to
record a sequence of positions (and hand settings), and then “play them back”.#include <rccl.h>#include <ctree.h> /*(1)*/char *key_buf[256];#define MAXPOINTS 256int numPoints = 0;JNTS points[MAXPOINTS]; /*(2)*/int handSet[MAXPOINTS];main(){ char *keytree, *tree_match_parse(), *tree_match_err_at();float speed = 1.0;MANIP *mnp;numPoints = 0; /*(3)*/keytree = tree_match_parse(" \( quit \set \(speed \(%f", &speed, ",0,10, \"speed scale (1.0 nominal)\") \) \show \record \playback \)",0); if (keytree == 0){ printf ("ERROR/Parse error at %.30s\n", tree_match_err_at());exit (-1);}if ((mnp = rcclCreate (getDefaultRobot(), 0)) == NULL) /*(4)*/{ printErrors();exit (-1);}if (rcclStart() < 0){ printErrors();exit (-1);}do{ tree_match (keytree, "PLAYBACK> ", key_buf); /*(5)*/if (COMMAND ("set speed")) /*(6)*/{ setSpeed (mnp, speed);}
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6.5. TEACHING POSITIONS 145else if (COMMAND("show")) /*(7)*/{ printf ("speed = %g\n", speed);printf ("%d points stored\n", numPoints);}else if (COMMAND ("record")) /*(8)*/{ int status;numPoints = 0;printf ("use command \"return\" to stop recording points\n");while ((status = rcclTeach(mnp, "RECORDING> ", NULL)) == 1){ points[numPoints] = *mnp->j6; /*(9)*/handSet[numPoints] = mnp->handPos;if (++numPoints >= MAXPOINTS){ break;}}if (status < 0){ printErrors(); /*(10)*/exit(-1);}}else if (COMMAND ("playback")) /*(11)*/{ int i;for (i=0; i<numPoints; i++){ movej (mnp, &points[i]);if (handSet[i] != mnp->handPos){ waitForCompleted (mnp);if (handSet[i]){ OPEN_HAND(mnp);}else{ CLOSE_HAND(mnp);}}}}}while (!(COMMAND("quit")));rcclRelease(1);}
NOTE – this example has been coded for the PUMA robot and lives at playback.c in$RCCL/demo.rccl.

Like the teach routine itself, this program uses the C-tree matcher. A brief description of the C-
tree matcher is given for the example program in section (4.10). Detailed information is provided
by the document CtreeMatch.doc in $RCCL/doc.

Definitions relevant to the C-tree matcher are included with the file <ctree.h> (/*1*/). The
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taught positions are stored (in joint coordinates) in the array points, with the hand position settings
in the array handSet (/*2*/). Binary (open/close) hand settings are assumed.

The call to tree_match_parse() (/*3*/) sets up the keyboard commands that will be ac-
cepted by the Ctree-matcher. These commands includequitset speed <value>showrecordplayback
Since the program does not set the option RCCL_ERROR_EXIT, it checks the routinesrcclCreate()
and rcclStart() explicitly for error conditions; if errors are detected, the error information is
printed by printErrors() (see section 9.2.1) and the program exits (/*4*/).

Commands are read in by the routine tree_match() (/*5*/), in a loop, until the commandquit is entered.

The set speed command (/*6*/) calls setSpeed() to set the speed with which the program
will play back the recorded positions

The show command (/*7*/) prints out the current playback speed setting and the number of
playback points which are currently stored.

The recordcommand (/*8*/) allows the operator to teach a set of points, which is done by call-
ing rcclTeach() in a loop. The teach routine will return each time the operator enters the record
command from the keyboard, hits the REC button on the teach pendant, or enters the command re-turn. In the first two cases, the routine will return 1, which the program uses as a signal to record
the current point and call the teach routine again (/*9*/). The joint values of each recorded point
are read from the j6 field of the MANIP structure. The hand settings are read from the handPos
field of the MANIP structure. If rcclTeach() returns a negative value, this indicates an error has
occurred, and the program prints out information about the error and exits (/*10*/).

The playback command (/*11*/) plays back all points which are currently recorded. This is
done simply by calling movej() for each recorded point, and, if the hand position for that point is
different from the current hand position, waiting for the move to finish and setting the new hand
value appropriately.

6.6 Logging Data

In RCCL programs, it is often necessary to log data created or read in at the control level. For
instance, an experimenter working with force control algorithms might want to record, for every
control cycle, the force sensor values and the current position of the robot.

The convenient thing to do in these cases would be to write the data directly to a file. Unfor-
tunately, one cannot access files directly from the RCCL control level. Instead, the data must be
written into an intermediate buffer (implemented using shared memory) which the planning level
flushes to a file when it gets full. This is not very difficult to do, and once written, the actual code
can be applied to most similar situations. We have written a short program demonstrating this.
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planning level module#include <sys/file.h>#include <rccl.h>#include <stdio.h>#include <signal.h>#include "logger.h"int logfd;DATABUF *dataBuf;extern logJ6Values();logHandler() /*1*/{ writeLogFile (logfd, dataBuf->bufnum^1);}writeLogFile (fd, num) /*2*/FILE *fd;int num;{ if (write (fd, dataBuf->buf[num], dataBuf->count[num]) < 0){ perror ("can't write to log file");exit (-1);}}main(){ MANIP *mnp;int fxnId;rcclSetOptions (RCCL_ERROR_EXIT);mnp = rcclCreate (getDefaultRobot(), 0);rcclStart();signal (SIGUSR1, logHandler); /*3*/if ((logfd = open ("log", O_RDWR|O_CREAT, 0666)) < 0) /*4*/{ perror ("can't open log file");exit (-1);}dataBuf = ALLOC_MEM (NULL, DATABUF, UNDEF); /*5*/dataBuf->bufnum = UNDEF;fxnId = runMonitorFxn (mnp, logJ6Values, (int)dataBuf); /*6*/delay (10000.0);deleteMonitorFxn (mnp, fxnId); /*7*/rcclBlock();writeLogFile (logfd, dataBuf->bufnum); /*8*/close (logfd);
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148 6. INTERACTING WITH THE ENVIRONMENTrcclRelease(YES);}
control level module#include <rccl.h>#include <signal.h>#include "logger.h"logJ6Values (arg, mnp)int arg;MANIP *mnp;{ DATABUF *db;char *str;int num;int length;static int count = 0;if ((db = (DATABUF*)getMemByAddr((void*)arg)) == NULL){ rciAbort (0, "can't get data buffer memory\n");}if (db->bufnum == UNDEF) /*9*/{ db->bufnum = 0;db->count[0] = 0;count = 0;}num = db->bufnum;str = &db->buf[num][db->count[num]]; /*10*/sprintf (str, "%d %8.3f %8.3f %8.3f %8.3f %8.3f %8.3f\n",count++,RADTODEG*mnp->j6->v[0], RADTODEG*mnp->j6->v[1],RADTODEG*mnp->j6->v[2], RADTODEG*mnp->j6->v[3],RADTODEG*mnp->j6->v[4], RADTODEG*mnp->j6->v[5]);db->count[num] += (length = strlen(str)); /*11*/if ((db->count[num] + length) >= BUFSIZE) /*12*/{ num ^= 1;db->count[num] = 0;db->bufnum = num;rciSignal (SIGUSR1); /*13*/}}
NOTE – this example has been coded for all systems, and lives at logger.c and loggerCtrl.c in$RCCL/demo.rccl.

All this program does is start the trajectory generator, and then turn on a monitor function which
logs the current joint setpoints. The monitor writes the log data into a buffer, and when the buffer
is full, it sends a signal to the planning task, which then writes the contents out to the log file. A
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double buffer system is used, as described in section 5.5.3. The buffer itself is implemented using
a shared memory object defined as follows:#define BUFSIZE 4096typedef struct {int bufnum;char buf[2][BUFSIZE];int count[2];} DATABUF;bufnum is the index of the buffer currently being written to by the monitor function. The double
buffer itself is the buf element. The field count describes how much data is in each of the two
buffers. In general, the size of the buffer (BUFSIZE in this case) should be selected so that UNIX has
time to catch the “buffer full” signal and write all the data out to a file before the second buffer fills
up. What this number is depends on how much data is being logged, the control sample rate, and the
UNIX system itself. To be safe, one should probably make the buffer big enough to accommodate 1
second worth of data, and also should try to avoid writing so much as to cause the system to choke.
Logging about 10 Kbytes per second should certainly cause no difficulties, and more is certainly
possible.

When the planning task receives the “buffer full” signal, it calls the signal handler logHan-dler() (/*1*/), which in turn calls writeLogFile() (/*2*/) to write out the buffer. The second
argument to writeLogFile() is the number of the buffer which should be written. This is set to
the buffer opposite from bufnum, that is, the buffer not currently being written to by the control
level.

We will now look at the program itself. SIGUSR1 is used to indicate “buffer full”; logHan-dler() is bound to this signal at (/*3*/). The log file is opened at (/*4*/) and the data buffer
structure is allocated at (/*5*/). bufnum is set to UNDEF to tell the monitor function it has to initial-
ize the data structure. Once everything has been set up, the monitor function is started at (/*6*/),
the program naps for 10 seconds, and then the monitor function is deleted (/*7*/). We delay for
a control cycle to make sure that we have caught the last “buffer full” signal. Then, the rest of the
buffer that was being filled at the time the monitor was turned off is written out (/*8*/).

The logging function itself is fairly straightforward. It does some initialization if the bufnum
field is set to UNDEF (/*9*/). It then sets the variable str to the point in the buffer where it left
off the last time (/*10*/), and prints information there using sprintf(). The buffer counter is
increased by the size of the string that was created (/*11*/), and the string length is also used to
decide if there is enough buffer space for another cycle (/*12*/)6. If there is not, we switch buffers
and signal the planning task (/*13*/).

If space is very tight, one does not have to use an ASCII data format as we have done here.
Binary formats are several times more compact (and usually much faster), although they are less
portable and generally require a program interface to read.6This particular code might break if the string is unexpectedly longer during the next cycle; the necessary checks
were omitted from this example for simplicity.
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A programmer doing a lot of work involving data logging would probably want to encapsulate
the logging code presented here into a small set of routines.
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7. Force Control and Motion Limit Detection

In assembly tasks, objects are required to be brought into contact and motions have to be stopped
when the collision occurs. Once objects are in contact the task is said to be constrained because
arbitrary motions are no longer possible in every direction. When the task is constrained, the arm
must exert forces on objects and can no longer be purely position servoed for all six degrees of
freedom. Instead, the degrees of freedom (DOFs) along or about which the constraints occur must
comply to the interaction forces. When moving to and from contact situations, guarded motions are
usually performed. The limit conditions for these guarded motions are typically force thresholds
(when contact is anticipated), and possibly trajectory error thresholds (when the robot is complying
but there is a possibility it might “slip off” the contact surface).

Multi-RCCL does not have an explicit built-in capability for performing compliant motions or
monitoring specific motion limit conditions. The original version of RCCL did provide a simple
force algorithm based on the old Paul and Shimano method ([Paul and Shimano 1976]), but this
does not work well on robots which lack joint level force sensors, and even when such sensors are
available, it is approximate and unstable. Old RCCL also provided built-in checking for force and
displacement limits, which allowed automatic cancellation of a motion when either observed forces
or displacements from the desired trajectory exceeded specified threshold values.

Explicit support of this capability was dropped because it required making too many assump-
tions about what sensors were available and what algorithms might be suitable for different applica-
tions. This does not restrict the overall functionality of the system, however, since both compliant
motion and the limit checking can be easily implemented by application code using monitor func-
tions and functionally defined transforms. In fact, the ease with which such functionality can be em-
bedded within RCCL has been a principal reason for its popularity. The RCCL sites at GE/ATL and
JPL have both implemented their own force control strategies within RCCL, based, in both cases,
on position accommodation techniques such as those described by [Maples and Becker 1986]. Ex-
ample force control programs written at JPL are included at the end of this section.

As a convenience for the programmer (and for possible future extensions) Multi-RCCL still
provides interface routines which allow force control and limit specifications to be described for
particular motions, and read back when necessary by application code responsible for their imple-
mentation. These routines will be discussed below and their use illustrated by example programs.

7.1 Limit Specification Routines

Force or displacement limits for the next motion can be specified by the routineslimit (mnp, format, value1, value2, ... )MANIP *mnp;char *format;float value1, value2, ...
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152 7. FORCE CONTROL AND MOTION LIMIT DETECTIONsetForceLimit (mnp, mask, flimit)MANIP *mnp;unsigned long mask;FORCE *flimit;setDispLimit (mnp, mask, dlimit)MANIP *mnp;unsigned long mask;DIFF *dlimit;limit() uses a format string, containing a set of two letter codes separated by white space, to
state what types of limits to check for. Translational force limits (along the principal axes) are indi-
cated by the codes fx, fy, and fz. Torque limits (about the principal axes) are indicated by the codestx, ty, and tz. Likewise, displacement limits along or about the principal axes are indicated by dx,dy, dz, rx, ry, or rz. For each given limit, the routine takes an additional argument describing the
associated threshold value.

For instance, a force limit of 10.0 Newtons along the x and y axes, and a displacement limit of30� about the z axis, could be specified aslimit (mnp, "fx fy rz", 10.0, 10.0, 30.0);
A more “machine oriented” way of describing the same thing is provided by the routines set-ForceLimit() and setDispLimit(). setForceLimit() uses a bit mask to specify the degrees

of freedom along (or about) which force limits should be monitored; the limit value for each se-
lected DOF is obtained from the corresponding field in the argument flimit. The bit mask should
be assembled from the following codes:ALONG_XALONG_YALONG_ZABOUT_XABOUT_YABOUT_Z
Displacement limits are set in the same way using setDispLimit(). The sample usage of limit()
given above could be coded using these routines as:FORCE flimit;DIFF dlimit;flimit.f.x = 10.0;flimit.f.y = 10.0;setForceLimit (mnp, (ALONG_X|ALONG_Y), &flimit);dlimit.m.z = 30.0;setDispLimit (mnp, ABOUT_Z, &dlimit);
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Limit specifications are made by the planning level and are valid only for the duration of the
next requested motion.

Since RCCL does not actually implement the limit detection, some part of the application pro-
gram (a monitor function most likely) will have to read back the limit specifications. This is done
with the routinesgetActiveForceLimit (mnp, mask, flimit)MANIP *mnp;unsigned long *mask;FORCE *flimit;getActiveDispLimit (mnp, mask, dlimit)MANIP *mnp;unsigned long *mask;DIFF *dlimit;getActiveForceLimit() returns (through mask) a bit mask describing the force limits for the mo-
tion currently active on mnp. The associated thresholds are returned in the corresponding fields offlimit. Similarly, getActiveDispLimit() returns the currently active displacement limits.

A simple monitor function that checks for displacement limits could be written as follows:dispMonitor (arg, mnp)int arg;MANIP *mnp;{ unsigned long mask;DIFF limit;TRSF disp;float rz, ry, rx;getActiveDispLimit (mnp, &mask, &limit);if (mask){ multRiTrsf (&disp, mnp->t6o, mnp->t6);trsfToRpy (&rz, &ry, &rx, &tmp);if (((mask & ALONG_X) && FABS(disp.p.x) > limit.t.x) ||((mask & ALONG_Y) && FABS(disp.p.y) > limit.t.y) ||((mask & ALONG_Z) && FABS(disp.p.z) > limit.t.z) ||((mask & ABOUT_X) && FABS(rx) > limit.r.x) ||((mask & ABOUT_Y) && FABS(ry) > limit.r.y) ||((mask & ABOUT_Z) && FABS(rz) > limit.r.z)){ stopCurrentMotion (mnp, ON_LIMIT);}}}
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This is a permanent monitor function that runs all the time. It checks to find out what limit spec-
ifications are currently in effect for its associated manipulator. If there aren’t any (mask == 0), it
saves computation by simply returning. Otherwise, it computes the difference between the desired
trajectory and the real trajectory by multiplying the output value of T6 (given by the t6 field of
the MANIP structure) by the inverse of the observed value of T6 (given by the t6o field; the modeT6O_EVAL (section 9.1.2) has presumably been set so that the trajectory generator will in fact main-
tain mnp->t6o). The rotational difference is converted into yaw, pitch, and roll angles so that it may
be easily compared with the displacement thresholds along each axis. For each selected DOF, the
trajectory error is then compared with the threshold and, if it is exceeded, the motion is canceled
with the code ON_LIMIT.

Because only the application software uses the values set by the limit routines, they can be used
to implement things different from their original defined purpose. For instance, setDispLimit()
could be used to implement a velocity limit rather than a trajectory error limit. A monitor function
which did this would look the same as the one above, except that it would have to compute a ve-
locity transform instead of a displacement transform. It could do this by keeping the old value of
T6 around in a static variable, multiplying it by the new value of T6 every cycle, and then scaling
the outputs to units-per-cycle rather than units-per-second:TRSF oldT6;float scale;...scale = rcclGetInterval() / 1000.0;multRiTrsf (&disp, &oldT6, mnp->t6);trsfToRpy (&rz, &ry, &rx, &tmp);rx *= scale;ry *= scale;rz *= scale;disp.p.x *= scale;disp.p.y *= scale;disp.p.z *= scale;oldT6 = *mnp->t6;
7.2 Compliance Specification Routines

Compliant motions can be specified with routines similar to the limit routines:comply (mnp, format, value1, value2, ...)MANIP *mnp;char *format;float value1, value2, ...
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7.2. COMPLIANCE SPECIFICATION ROUTINES 155lock (mnp, format)MANIP *mnp;char *format;setComply (mnp, mask, bias)MANIP *mnp;unsigned long mask;FORCE *bias;comply() takes a format string indicating which DOFs should be put into compliant mode. The
codes are the same as those used to describe force limits with the limit() routine: fx, fy, fz, tx,ty, and tz. For each selected DOF, an additional argument is provided indicating the bias force to
be associated with the compliance.

A compliance specification for a particular DOF takes effect with the next requested motion
and stays in effect for all subsequent motions until explicitly canceled. To take a particular DOF
out of comply mode, the primitive lock() can be called, where the DOFs to be locked are specified
using the same format as for the comply() routine. For example, suppose the program wishes to
establish a compliance along the z axis with a bias force 10.0 (Newtons) for the next three moves,
and in addition, specify a zero-bias compliance about the x and y axes for the second motion. This
could be specified as follows:comply (mnp, "fz", 10.0);move (mnp, p1);comply (mnp, "tx ty", 0.0, 0.0);move (mnp, p1);lock (mnp, "tx ty");move (mnp, p3);lock (mnp, "fz");

Compliance can also be described in a more “machine oriented” way using the primitive set-Comply(), which takes a mask selecting the desired comply DOFs and a FORCE type argument con-
taining the corresponding biases. Using this, the above example could be coded as:FORCE bias;bias.f.z = 10.0;setComply (mnp, ALONG_Z, &bias);move (mnp, p1);bias.m.x = bias.m.y = 0.0;setComply (mnp, (ALONG_Z|ABOUT_X|ABOUT_Y), &bias);move (mnp, p2);setComply (mnp, ALONG_Z, &bias);move (mnp, p3);setComply (mnp, 0, &bias);
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Since compliance specifications are “sticky” (i.e., they remain in effect for more than one mo-
tion request), it is useful to have a routine available that reads back the current settings so that in-
termediate specifications can be made without disturbing the overall context. The routinegetComply (mnp, mask, bias)MANIP *mnp;unsigned long *mask;FORCE *bias;
returns the current compliance settings. In the following example, we specify compliance along thex and y axes for two motions, without any knowledge of the surrounding context:FORCE bias;FORCE oldbias;unsigned long oldmask;...getComply (mnp, &oldmask, &oldbias);bias = oldbias;bias.t.x = bias.t.y = 0.0;setComply (mnp, (oldmask|ALONG_X|ALONG_Y), &bias);move (mnp, p1);move (mnp, p2);setComply (mnp, oldmask, &oldbias);...getComply() returns the comply state currently set at the planning level. On the other hand, a
function responsible for implementing compliance at the control level will need to know the spec-
ification in effect for the current motion. This is obtained with the routine getActiveComply():getActiveComply (mnp, mask, bias)MANIP *mnp;unsigned long *mask;FORCE *bias;

To implement compliant motion in RCCL, the applications generally use some variation of the
position accommodation technique described in [Maples and Becker 1986]. With this paradigm,
correctional displacements responding to the sensed forces are added to some coordinate frame in
the manipulator’s target position. In effect, the manipulator is made to “track” the observed force
errors. Because the lowest level of control is still a position servo (responding to positional set-
points output by the trajectory generator) the response of such a system to changes in force values
is somewhat damped. This, however, is usually desirable, as force control systems can otherwise
be quite unstable.

It is easy to see that accommodation-based compliant control can be implemented by a func-
tional transform that has access to force sensor data. Let the compliance specification be given by
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a selection matrix S and a set of bias forces fc, let the observed forces (in the comply frame) be fo,
let the corresponding error be fe, let the value of the comply transform beC, and let p be a gain as-
sociated with the force error. Then the computation done by the compliance function is effectivelyfe = S (fc � fo)C = C diffToTrsf(pfe)
The term pfe represents a small Cartesian displacement, which is converted into a transform usingdiffToTrsf(), and then accumulated in C. This computation will be performed in the following
example program.

The force control law presented above is a simple proportional one; more elaborate control laws
can be developed with characteristics suitable for different sorts of tasks.

7.3 Program Example: “Comply”

This program uses RCCL primitives to implement a very simple compliance package, which is then
used to put the manipulator into a “free” mode created by zero-bias compliance along each of the
three coordinate axes. In this mode, the arm will allow itself to be “pushed around” in any transla-
tional direction. The force sensor connected to the robot is the usual 6 DOF wrist model manufac-
tured by the Lord Corporation. The values read back from it are available in the forceInputfield
of the HOW structure.

planning level module#include <rccl.h>#include <errorCodes.h>#include "manex.560.h"COMPLY_CTRL_BLK *complyInit (mnp, tgain, rgain)MANIP *mnp;float tgain, rgain;{ COMPLY_CTRL_BLK *cbk;TRSF *comply;extern computeForce();extern complyFxn();comply = allocTrans (NULL, UNDEF); /*1*/cbk = ALLOC_MEM (NULL, COMPLY_CTRL_BLK, UNDEF);cbk->tgain = tgain; /*2*/cbk->rgain = rgain;cbk->comply = comply;cbk->mnp = mnp;transMotionEval (comply, complyFxn, (int)cbk, mnp); /*3*/
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158 7. FORCE CONTROL AND MOTION LIMIT DETECTIONreturn (cbk);}complyRun (cbk)COMPLY_CTRL_BLK *cbk;{ cbk->init = YES;runMonitorFxn (cbk->mnp, computeForce, (int)cbk); /*4*/rcclBlock();}main(){ TRSF_PTR b, e;POS_PTR p1;MANIP *mnp;JNTS rcclpark;COMPLY_CTRL_BLK *cbk;rcclSetOptions (RCCL_ERROR_EXIT);e = allocTransXyz (NULL, UNDEF, 0.0, 0.0, TOOLZ);b = allocTransRot (NULL, UNDEF, B_X, B_Y, B_Z, xunit, 180.0);mnp = rcclCreate (getDefaultRobot(), 0);cbk = complyInit (mnp, 0.01, 0.0); /*5*/p1 = makePosition (NULL, T6, e, cbk->comply, EQ, b, TL, cbk->comply);rcclStart();complyRun (cbk); /*6*/setMod (mnp, 'c');setTime (mnp, F_DEFAULT, F_UNDEF);comply (mnp, "fx fy fz", 0.0, 0.0, 0.0); /*7*/move (mnp, p1);while (1) /*8*/{ FORCE f;accessMem (cbk, &cbk->force, &f, 6*sizeof(float)); /*9*/printVf ("%10.4f\n", (float*)&f, 6);delay (500.0);}}
control level module#include <rccl.h>#include <puma_kynvar.h>
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7.3. PROGRAM EXAMPLE: “COMPLY” 159#include <errorCodes.h>#include "manex.260.h"#define SENSOR_Z_OFFSET 90.0#define NEWTONS_PER_POUND 4.448#define LB_PER_UF (1.0/40.0)#define NEWTONS_PER_UF (4.448/40.0)#define MM_PER_INCH 25.4computeForce (arg, mnp)int arg;MANIP *mnp;{ COMPLY_CTRL_BLK *cbk;FORCE force1;FORCE force2;char *fxnName = "computeForce()"; /*10*/if ((cbk = (COMPLY_CTRL_BLK*)getMemByAddr ((void*)arg)) == NULL){ rciAbort (EFatal, "%s -- can't find control block\n", fxnName);return;}if (cbk->init){ SET_FORCE_READ (mnp->rbt, 1); /*12*/cbk->init = NO;cbk->valid = 0;}else{ if (mnp->how->forceOK) /*13*/{ TRSF stoc;force1.f.x = mnp->how->forceInput[0]*NEWTONS_PER_UF;force1.f.y = mnp->how->forceInput[1]*NEWTONS_PER_UF;force1.f.z = mnp->how->forceInput[2]*NEWTONS_PER_UF;force1.m.x = mnp->how->forceInput[3]*NEWTONS_PER_UF*MM_PER_INCH;force1.m.y = mnp->how->forceInput[4]*NEWTONS_PER_UF*MM_PER_INCH;force1.m.z = mnp->how->forceInput[5]*NEWTONS_PER_UF*MM_PER_INCH;multRiTrsf (&stoc, mnp->tool, getTransByAddr(cbk->comply));stoc.p.z -= SENSOR_Z_OFFSET; /*14*/transForce (&force2, &force1, &stoc);accessMem (cbk, &force2, &cbk->force, 6*sizeof(float));cbk->valid = 1; /*15*/}else{ cbk->valid = 0; /*16*/}}}
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160 7. FORCE CONTROL AND MOTION LIMIT DETECTIONcomplyFxn (t, arg, mnp)TRSF *t;int arg;MANIP *mnp;{ char *fxnName = "complyFxn()";COMPLY_CTRL_BLK *cbk;FORCE complyValues;unsigned long complyMask;FORCE forceError;DIFF accomodate;TRSF accomTrsf;if ((cbk = (COMPLY_CTRL_BLK*)getMemByAddr ((void*)arg)) == NULL){ rciAbort (EFatal, "%s -- can't find control block\n", fxnName);return;}if (!cbk->valid){ if (cbk->badDataCount++ > 4) /*17*/{ rciAbort (0, "bad force data for 4 consecutive cycles\n");}return;}cbk->badDataCount = 0;bzero ((char*)&forceError, sizeof(FORCE));getActiveComply (mnp, &complyMask, &complyValues); /*18*/if (complyMask & ALONG_X){ forceError.f.x = (complyValues.f.x - cbk->force.f.x);}if (complyMask & ALONG_Y){ forceError.f.y = (complyValues.f.y - cbk->force.f.y);}if (complyMask & ALONG_Z){ forceError.f.z = (complyValues.f.z - cbk->force.f.z);}if (complyMask & ABOUT_X){ forceError.m.x = (complyValues.m.x - cbk->force.m.x);}if (complyMask & ABOUT_Y){ forceError.m.y = (complyValues.m.y - cbk->force.m.y);}if (complyMask & ABOUT_Z){ forceError.m.z = (complyValues.m.z - cbk->force.m.z);} /*19*/accomodate.t.x = forceError.f.x * cbk->tgain;accomodate.t.y = forceError.f.y * cbk->tgain;
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7.3. PROGRAM EXAMPLE: “COMPLY” 161accomodate.t.z = forceError.f.z * cbk->tgain;accomodate.r.x = forceError.m.x * cbk->rgain;accomodate.r.y = forceError.m.y * cbk->rgain;accomodate.r.z = forceError.m.z * cbk->rgain;diffToTrsf (&accomTrsf, &accomodate); /*20*/multTrsf (t, &accomTrsf, t); /*21*/}
NOTE – this example has been coded for the PUMA 560 robot and lives at comply.560.c andcomplyCtrl.560.c in $RCCL/demo.rccl. No equivalent program has been written for the
PUMA 260 because no force sensor is currently available (force sensors tend to be too big for the
PUMA 260).

The comply package implemented in this program consists of two planning level routines, com-plyInit()and complyRun(), and two control level routines, computeForce()and complyFxn().complyInit() should be called after the mnp structure for the robot has been created (/*5*/).
It allocates a comply transform and sets up an internal data structure used to communicate with the
control level functions. It also sets the translational and rotational compliance gains, which it takes
as arguments. At (/*1*/), the comply transform (which will be used to accumulate the necessary
force accommodations) is allocated. Communication with the control level routines will be done
using a memory object of the type COMPLY_CTRL_BLK (defined in "manex.560.h"). This type is
defined as follows:typedef struct {float tgain;float rgain;TRSF *comply;MANIP *mnp;FORCE force;int valid;int init;} COMPLY_CTRL_BLK;
The fields include the translational and rotational accommodation gains tgain and rgain; com-ply, which is the planning level address of the comply transform and is used by the control level
function to get a valid pointer to it; force, which contains force sensor values transformed into the
comply frame; valid, a boolean value stating whether or not the force values are valid for the cur-
rent control cycle; and init, another boolean value used to initialize the force computation function.complyInit() sets the fields tgain and rgain to the gain values passed in as arguments (/*2*/),
sets the comply field to the comply transform address, and uses transMotionEval() to bind the
comply transform to the function complyFxn()on a per-motion basis (/*3*/). The routine returns
a pointer to the comply control block, which will be passed back as an argument to complyRun().
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The gains which are passed to complyInit() are very application specific. They depend, in
general, on the characteristics of the robot and its position servos, the task being performed, and
the trajectory control rate.

Having allocated a comply transform by calling complyInit(), the main program needs to
incorporate it into the target position of any motion which is to respond to comply requests. In
particular, the comply transform should be the last transform in the target position’s TOOL frame.
In the current program example, this is done for the position p1, defined as follows:T6 E COMPLY = B
where E is the end-effector transform, B is a convenient starting location in space, and COMPLY
is the comply transform.

The program starts the trajectory generator and calls complyRun() (/*6*/), which starts up a
permanent monitor function to compute the force values in the current manipulator TOOL frame
(/*4*/). complyRun() sets the init field of the comply control block to tell the monitor to turn
on the force torque sensor.

Compliant motions may now be requested using the system comply() primitive and motions
to target positions which contain the comply transform. The desired “free manipulator” effect is
achieved by requesting a zero-force compliance along all three translational degrees of freedom
(/*7*/). The compliant motion itself is set to have an indefinite time limit. While it is in progress,
the program occupies itself by printing out the force sensor values computed by the monitor func-
tion. The monitor writes the force values into the force field of the comply control block for the
planning level to read out. To guarantee consistency of the force data, the field is written and read
using accessMem() (/*9*/), although (in this case) this is done more for show than from necessity.

Two control level functions are used to implement the compliance: computeForce(), which
computes the forces as seen in the compliance frame, and complyFxn(), which uses these to deter-
mine the necessary changes to the COMPLY transform. Partitioning the computation in this way
is reasonable (though not essential).computeForce() runs all the time, computing force values for anyone who cares to read them.
It begins by using its application argument to get a pointer to the comply control block (/*10*/).
The force sensor readings themselves are obtained from the manipulator’sHOW structure (see section
6.1.3).

If cbk->inithas been set by the planning level, this indicates that things are just starting up and
the RCI interface must be told to start reading the force torque sensor. This is done with a call to the
macro SET_FORCE_READ() (/*12*/), after which init is cleared and computeForce() returns,
since valid force torque data will not be ready for at least another control cycle.

To determine whether the HOW structure contains valid force/torque values for the current control
cycle, the field how->forceOK is examined (/*13*/), and if true, the force values are read out of
the forceInputfield and converted from sensor units into Newtons and Newton-millimeters. (The
conversion values in this program are specific to the 6 DOF Lord sensor.) Once the force values
have been read in, they still must be converted to the coordinate frame in which the COMPLY
transform is being computed. The transform STOC is defined to map from the wrist sensor frame
to the COMPLY frame. Recall that the application code was requested to make COMPLY the last
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transform in the TOOL part of the target position. If the rest of TOOL is described by T, then we
have T COMPLY = TOOL
If we have another transform F which maps from the T6 frame to the sensor, then STOC is given
by STOC = F�1 T
which can be computed as STOC = F�1 TOOL COMPLY�1
since TOOL is constantly maintained by the trajectory generator and is available as the tool field
in the MANIP structure. STOC is computed at location (/*14*/). Since F is simply an offset alongz with no rotational component, some computation can be saved by simply subtracting this offset
from TOOL COMPLY�1 rather than premultiplying by F�1. Once we have STOC, it is used
by transForce() to map forces from the sensor frame into the comply frame. These values are
then written into the comply control block and the valid field is set (/*15*/). For any control
cycle in which no valid force values are available, the valid field is cleared (/*16*/).

The function complyFxn() executes only when the target motion position contains the COM-
PLY transform. Its job is to use the force values computed by computeForce()and perturb COM-
PLY to accommodate the error between these values and desired force bias for whatever degrees
of freedom happen to be in compliance mode. Again, the function uses its application argument to
get a pointer to the comply control block. It immediately checks the valid field to see if there is
proper force data for this cycle, and if not, then the function bumps a counter and returns. When the
counter exceeds a certain value, it means that force data values have been unavailable for several
consecutive cycles, and the program is aborted (/*17*/).

The next thing the routine does is use getActiveComply() to obtain the current comply mask
and bias forces. The force error is initialized to zero, and then for each compliant DOF given by
the mask, the corresponding field is set to the difference between the desired bias force and the
observed force (/*19*/). The required accommodations are determined by multiplying the force
errors by the appropriate gain to get a displacment. This displacement is small enough to treat as
a differential1, so it can be converted to a transform using diffToTrsf() (/*20*/). Successive
perturbations are accumulated into COMPLY by post multiplication (/*21*/).

7.4 Program Example: “Cylin”

This demo program was written at the Jet Propulsion Laboratory on a PUMA 560 robot. It uses
guarded force-limit motions and compliance to locate a small cylinder and then comply around the
outside of it. It assumes that the robot is fitted with a force/torque sensor and a peg-like end-effector,
and that there is a small cylinder in the work space which the operator can position the robot near
using the teach routine.1if it is not, then the gains are too high and there will be stability problems.
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164 7. FORCE CONTROL AND MOTION LIMIT DETECTION

planning level module#include <rccl.h>#include <math.h>#include "manex.560.h"#define PEG_LENGTH 230.0 /* length of comply peg */#define PEG_RADIUS 9.5 /* radius of comply peg */#define DROP_DEPTH 35.0 /* vertical dist. to probe points */#define MAX_RADIUS 70.0 /* max. likely radius of cylinder */#define NUM_TURNS 2 /* no. of times to go around cylinder */#define MSEC_PER_REV 12000.0 /* speed to go around cylinder at */extern forceMonitor();extern rotzFxn();extern COMPLY_CTRL_BLK *complyInit();float square(x)float x;{ return (x*x);}main (){ MANIP *mnp;JNTS rcclpark;char *robotName;COMPLY_CTRL_BLK *cbk;TRSF_PTR start, rotz, offset, peg, touch;float xval[3], yval[3];POS_PTR idle, seek, turn;int i;float centerX;float centerY;float radius;rcclSetOptions (RCCL_ERROR_EXIT);robotName = getDefaultRobot();if (!getRobotPosition (rcclpark.v, "rcclpark", robotName)){ printf ("position 'rcclpark' not defined for robot\n");exit(-1);}start = allocTrans (NULL, UNDEF);offset = allocTrans (NULL, UNDEF);rotz = allocTrans (NULL, UNDEF);peg = allocTransXyz (NULL, UNDEF, 0.0, 0.0, PEG_LENGTH);touch = allocTrans (NULL, UNDEF);
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7.4. PROGRAM EXAMPLE: “CYLIN” 165mnp = rcclCreate (robotName, 0);cbk = complyInit (mnp, 0.005, 0.00); /*1*/idle = makePosition (NULL, T6, peg, EQ, start, TL, peg);seek = makePosition (NULL, T6, peg, rotz, EQ,start, rotz, offset, TL, rotz);turn = makePosition (NULL, T6, peg, rotz, cbk->comply, EQ,start, rotz, offset, TL, cbk->comply);rcclStart ();complyRun (cbk); /*2*/printf ("Position robot about %g mm. above cylinder, with peg down\n",DROP_DEPTH-10.0);rcclTeach (mnp, "TEACH> ", NULL); /*3*/solveTrans (start, seek, start, mnp->here); /*4*//* locate the points around the cylinder */runMonitorFxn (mnp, forceMonitor, (int)cbk); /*5*/setMod (mnp, 'c');offset->p.x = MAX_RADIUS; /*6*/for (i=0; i<3; i++){ int mid;TRSF delta;rotToTrsf (rotz, zunit, 120.0*i); /*7*/move (mnp, seek); /*8*/offset->p.z = DROP_DEPTH;move (mnp, seek); /*9*/limit (mnp, "fx", 5.0);setCartVel (mnp, 10.0, F_DEFAULT); /*10*/distance (mnp, "dx", -MAX_RADIUS);updateTrans (mnp, touch, idle, start, mnp->t6); /*11*/mid = move (mnp, seek); /*12*/setCartVel (mnp, F_DEFAULT, F_DEFAULT);setTime (mnp, 0.0, F_DEFAULT);move (mnp, seek); /*13*/offset->p.z = 0.0;move (mnp, seek); /*14*/waitForStop (mid);if (motionStopCode(mid) != ON_FORCE){ printf ("Did not touch cylinder\n");rcclRelease (1);exit (-1);}multLiTrsf (&delta, start, touch);xval[i] = delta.p.x;yval[i] = delta.p.y; /*15*/printf ("point %d: x = %g, y = %g\n", i+1, xval[i], yval[i]);}
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166 7. FORCE CONTROL AND MOTION LIMIT DETECTIONoffset->p.x = 0.0;move (mnp, seek);waitForCompleted (mnp);computeCenter (xval[0], yval[0], xval[1], yval[1], /*16*/xval[2], yval[2], &centerX, &centerY);printf ("Cylinder center is at (%g, %g)\n", centerX, centerY);multTrsfXyz (start, centerX, centerY, 0.0); /*17*/radius = sqrt (square(xval[0] - centerX) + square(yval[0] - centerY))- PEG_RADIUS;printf ("radius = %g\n", radius);rcclSetModes (mnp, TRACKING_MODE); /*18*/setCartVel (mnp, 10.0, F_DEFAULT);identTrsf (rotz);move (mnp, turn);offset->p.x = radius + PEG_RADIUS + 5.0;move (mnp, turn);offset->p.z = DROP_DEPTH;move (mnp, turn);comply (mnp, "fx", 2.0); /*19*/offset->p.x = radius;move (mnp, turn);waitForCompleted (mnp);transMotionEval (rotz, rotzFxn, 0, mnp); /*20*/comply (mnp, "fx", 10.0); /*21*/setTime (mnp, F_DEFAULT, NUM_TURNS*MSEC_PER_REV);move (mnp, turn);waitForCompleted (mnp);delay (1000.0); /*22*/setCartVel (mnp, F_DEFAULT, F_DEFAULT);lock (mnp, "fx");setTransConst (rotz);offset->p.x = radius + PEG_RADIUS + 5.0;move (mnp, seek);offset->p.z = 0.0;move (mnp, seek);offset->p.x = 0.0;move (mnp, seek); /*23*/stop (mnp, 1000.0);waitForCompleted (mnp);rcclRelease (1);}
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7.4. PROGRAM EXAMPLE: “CYLIN” 167

control level module#include <rccl.h>#include "manex.560.h"#define MSEC_PER_MINUTE (60.0*1000.0);#define RPM 5rotzFxn (t, arg)TRSF *t;int arg;{ /* produce a rotation about z at 5 rpm */static float ang = 0.0;ang += 360.0*RPM*rcclGetInterval()/MSEC_PER_MINUTE;rotToTrsf (t, zunit, ang);}forceMonitor (arg, mnp)int arg;MANIP *mnp;{ char *fxnName = "forceMonitor()";COMPLY_CTRL_BLK *cbk;int limitMask;FORCE limitValues;if ((cbk = (COMPLY_CTRL_BLK*)getMemByAddr((void*)arg)) == NULL){ rciAbort (0, "%s -- can't find control block\n", fxnName);return;}getActiveForceLimit (mnp, &limitMask, &limitValues); /*24*/if (limitMask && cbk->valid) /*25*/{ if ( (limitMask & ALONG_X &&FABS(cbk->force.f.x) > limitValues.f.x)|| (limitMask & ALONG_Y &&FABS(cbk->force.f.y) > limitValues.f.y)|| (limitMask & ALONG_Z &&FABS(cbk->force.f.z) > limitValues.f.z)|| (limitMask & ABOUT_X &&FABS(cbk->force.m.x) > limitValues.m.x)|| (limitMask & ABOUT_Y &&FABS(cbk->force.m.y) > limitValues.m.y)|| (limitMask & ABOUT_Z &&FABS(cbk->force.m.z) > limitValues.m.z))
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168 7. FORCE CONTROL AND MOTION LIMIT DETECTION{ stopCurrentMotion (mnp, ON_FORCE); /*26*/rciPrintVf ("LIMIT X %11.4f\n", &cbk->force, 6);}}}
NOTE – this example has been coded for the PUMA 560 robot and lives at comply.560.c andcomplyCtrl.560.c in the directory $RCCL/demo.rccl. An equivalent program for the PUMA
260 lives at cylin.260.c and cylinCtrl.260.c, except that it only simulates the presence of
the cylinder and does not do any real compliance.

This program makes use of the compliance package defined in the previous example. Compli-
ance is enabled by calling complyInit() and complyRun() after the calls to rcclCreate() andrcclStart(), respectively (/*1*/,/*2*/). The operator is instructed to move the robot so that the
peg tip is positioned several millimeters above the cylinder, with the peg facing down. To facilitate
this, the program enters the teach routine (/*3*/). When the teach routine returns, the transform
START is instantiated so that the position equation seek defines the current robot location (/*4*/).

The program is now ready to begin the guarded motions to locate the cylinder exactly. A per-
manent monitor function, forceMonitor(), is set up to detect force limits (/*5*/). This monitor
will use the force values calculated by the monitor computeForce() (see the previous example),
which was set running by the routine complyRun(). It is assumed that the peg tip is located roughly
above the center of the cylinder. The exact location of the center is determined using three guarded
moves, in which the robot moves away from cylinder, down, and then back towards it in hope of
making contact. Each move is spaced radially 120� apart. The different via points used to do the
moves are created by making local modifications to the transform OFFSET in seek.forceMonitor()checks force limits independently along or about each specified axis. For best
accuracy, therefore, the force limit for each guarded move should lie along a single axis (the x axis
is used in this case)2. How may this be done when the motions themselves approach the cylinder
from three different directions? The answer is to rotate the tool frame itself between moves so that
its x axis is always parallel to the line of approach. This is the purpose of the transform ROTZ.
The reason this works is that the force values themselves are computed by the function compute-Force() and hence are described with respect to the current tool frame (offset by the COMPLY
transform, but COMPLY is the identity at this point in the program, and so we do not worry about
it).

To keep from having to actually rotate the end-effector when the TOOL frame is rotated, an-
other ROTZ is placed on the other side of the position equation to cancel out the net rotation (the
transform OFFSET, which lies in between, does not interfere because it contains only translations).

Each guarded motion starts at a position located MAX_RADIUS millimeters away from the pre-
sumed cylinder center. This location is specified by setting the x coordinate of offset to MAX_RADIUS
(/*6*/). This works for all the guarded motions because the OFFSET frame is constantly rotated so
as to be parallel to the approach axis (/*7*/). The motion sequence consists of moving out along
the radius (/*8*/), dropping down (/*9*/), and coming back in with a force limit set along the2Alternatively, the monitor function could be implemented to interpret its limit information differently.
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Figure 33: The three guarded motions used to locate the cylinder.x axis (/*12*/) (see figure 33). The velocity is set low to prevent damage on contact (/*10*/),
and updateTrans() is used to request that the transform touch be evaluated when the guarded
move terminates (/*11*/). Upon contact, the robot moves back out (/*13*/) and up (/*14*/).
The program waits for each guarded move to complete, checks the associated motion stop code to
make sure that contact was actually achieved, and then uses the transform touch to determine the
location of the contact point in the xy plane of the frame START.

When the guarded moves are complete, the collected x and y coordinates of the three contact
points are used to compute the real center of the cylinder (/*16*/) (the function computeCenter()
is defined in a companion file). The START transform is then updated correspondingly (/*17*/).

The last part of the program involves moving the manipulator back to the cylinder and com-
plying around it. The comply motions are done with the manipulator in “tracking mode” (/*18*/)
(section 9.1.2). This ensures that if a delay occurs between adjacent compliant motions, such that
the following one is not on the motion queue when the previous one ends, the robot will continue
to track the last target (and hence remain in comply mode), rather than entering the idle state and
“freezing” where it is. As with the force limits, the compliance is specified along the x axis only.
For the approach move, during which contact is made, a small bias force is set (/*19*/); for the next
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170 7. FORCE CONTROL AND MOTION LIMIT DETECTION

move, which moves the peg around the cylinder (/*21*/), a larger bias force is used. The action of
moving the peg around the cylinder is achieved by binding ROTZ to a rotation function (/*20*/).
When the circular motion has finished, the program waits for another 10 seconds (/*22*/) to illus-
trate the effect of tracking mode: the rotation around the cylinder should continue during this time.
Finally, the arm is moved back up to its starting position (/*23*/).

The control level module for this program contains the rotation function rotzFxn() used for
the compliant move and the force monitor function forceMonitor(). It also loads in the routinescomplyFxn() and computeForce(), which belong to the comply package. The force limit mon-
itor uses the force data computed by the comply routine computeForce(). It gets the force limit
specification for the current motion (/*24*/), checks to see that the force data is valid (/*25*/),
and cancels the motion if the observed forces exceed any of the specified limit values (/*26*/).
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8. Multi-Robot Capabilities

8.1 Controlling Multiple Robots

Multi-RCCL allows several robots to be controlled from within one program. All the programmer
needs to do is make separate calls to rcclCreate() for each robot, and then refer to the differentMANIP structures as required. At the Jet Propulsion Laboratory, there are two robots called "Right"
and "Left". A piece of code which moves both of them to their starting positions looks like this:MANIP *right, *left;JNTS parkR, parkL;...getRobotPosition (parkL.v, "rcclpark", "Right");getRobotPosition (parkL.v, "rcclpark", "Left");right = rcclCreate ("Right", 0);left = rcclCreate ("Left", 0);rcclStart();movej (right, &parkR);movej (left, &parkR);waitForCompleted (right);waitForCompleted (left);rcclRelease (1);

The only real limitation to this capability is the CPU power available to do all the necessary
trajectory computations. To this end, the multi-CPU versions of the system are quite useful. The
trajectory generation task for each robot can be assigned to a different CPU. rcclCreate() tries
to do this by default, starting with the auxiliary CPUs. If for some reason the application wants to
have the trajectory task for a robot run on a particular CPU, then this can be specified explicitly
using the CPU selection mask (the second argument to rcclCreate()). In the example above,right = rcclCreate ("Right", 0x2);left = rcclCreate ("Left", 0x2);
would explicitly assign both robots to CPU 1 (the CPUs are numbered starting at 0, where 0 is the
arbiter CPU).
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8.2 Virtual Manipulators

Another, particularly useful capability of Multi-RCCL is the ability to create “virtual manipula-
tors”. These are basically T6 frames without the attached robot. They are controlled by the same
data structures and routines as normal RCCL robots, are assigned to trajectory task on a particular
CPU, and can be moved with the usual motion primitives. Their only restriction is that joint level
features are not defined for them; i.e., calling setJointVel() or doing setMod('j') on a virtual
manipulator will cause an error.

A virtual manipulator is created with a call to rcclCreate(). The system will set up a virtual
manipulator if the name of the robot (given by the first argument) is not equal to the name of any
real robot configured into the system. Naturally, the name foo is a common one:vmnp = rcclCreate ("foo", 0);
The t6 (and related fields) of the MANIP structure are initialized to the identity. The joint angle
structures, such as j6 and the like, are simply zeroed and left that way. The only interpolation mode
allowed for a virtual manipulator is Cartesian (which of course means that unlike manipulators cor-
responding to real robots, the default interpolation mode for virtual manipulators is Cartesian).

Because a virtual manipulator has no physical constraints, it can be assigned any acceleration
or velocity limit desired. When created, it is given the same default Cartesian velocity limits as the
rest of the manipulators in the system, along with the acceleration limits DEFAULT_TRANS_ACCEL
and DEFAULT_ROT_ACCEL.

Sometimes, when moving a virtual manipulator to a position, it is nice to simply “put it there”,
rather than having to move it there with a move() command. Again, this is possible because there
are no physical constraints on the manipulator. The primitivemaintain (vmnp, pos)MANIP *vmnp;POS *pos;
is designed to do this: it “puts” vmnp at the target position pos and keeps it there indefinitely, until
another move or maintain request is received.

One place where virtual manipulators are useful is in system testing, since there is no robot to
worry about or even to start up. As a simple example, we present the following program based on
one of the internal RCCL testing routines. The program tests to see that the system is behaving
correctly with regard to the setCartVel()primitive. To do so, it reads back the number of control
cycles assigned by the system to a particular motion (the � value; see section 4.4.1) and checks
that this corresponds to the specified velocity. The check count is much easier to determine if the
transition time is set to 0, which is risky on a real robot but completely natural on a virtual one.MANIP *vmnp;TRSF *target;POS *p0;int sigmaCheck;int sigma;
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8.2. VIRTUAL MANIPULATORS 173target = allocTrans (NULL, UNDEF);p0 = makePosition (NULL, T6, EQ, target, TL, T6);vmnp = rcclCreate("foo", 0);rcclStart();target->p.z = 123.0;setCartVel (vmnp, 123.0, F_UNDEF);setTime (vmnp, 0.0, F_DEFAULT);move (vmnp, p0);rcclBlock();getActiveMotionCounts (vmnp, NULL, &sigma);sigmaCheck = NINT(1000.0/rcclGetInterval());if (sigma != sigmaCheck){ printf ("sigma = %d vs. %d\n", sigma, sigmaCheck);}
The virtual manipulator is told to move from its initial (identity) position to a target position that
has a displacement of 123 along the z axis. Since the translational velocity is also set explicitly to
123, and the transition time is set to 0, the time required for this motion should be 1 second. This is
verified by reading back the actual motion segment count � with the routine getActiveMotion-Counts(). The preceding call to rcclBlock() ensures that at least one control cycle has elapsed
since the move request and that � has in fact been computed.

Another, more application oriented use of the virtual manipulator is in controlling the trajec-
tory of a robot arm by making it track a remote frame. Suppose that a robot target position p0 is
composed of the usual T6, E, and Z (base) frames, plus another frame OBJ defined with respect to
Z: Z T6 E = OBJ
Now suppose that OBJ happens to be the T6 frame for a virtual manipulator. If this virtual ma-
nipulator is moved to, or made to follow, some arbitrary target position pv, defined (generally) as
as OBJ = TARGET;
then we will have the kinematic situation seen in figure 34.

Any motion of the virtual manipulator will be tracked by the real manipulator. If the motion of
the real robot to p0 is set for indefinite duration, then an entire set of motions can be specified for
it by moving only the virtual manipulator.setTime (mnp, F_DEFAULT, F_UNDEF);move (mnp, p0);... now control 'mnp' using 'vmnp' ...move (vmnp, p1);stop (vmnp, 1000.0);
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OBJ TARGET

Z

T6

E

Figure 34: Kinematic graph in which a robot’s target position is bound to a virtual
manipulator.move (vmnp, p2);... and now release 'mnp' ...waitForCompleted (vmnp);stopCurrentMotion (mnp);

These induced motions will differ from direct motions on mnp because the coordinate frame in
which the drive parameters are computed will be the TOOL frame of vmnp, not mnp. This can in
fact be useful if it is necessary to move a robot with the drive transform computed somewhere other
than adjacent to the TOOL frame.

The transition and path segment times for induced motions, unless explicitly stated, will be
based on the default acceleration and velocity limits for the virtual manipulator rather than the real
manipulator. Because of this, it may be desirable to set these limits on the virtual manipulator to be
equal to the limits for the real manipulator. A piece of code that does this isfloat tval, rval;getCartVel (mnp, &tval, &rval);setCartVel (vmnp, tval, rval);getCartAccel (mnp, &tval, &rval);setCartAccel (vmnp, tval, rval);
where the velocity and acceleration scale factors are assumed to be 1; if not, they can be “brought
over” as well:setSpeed (vmnp, getSpeed (mnp));setAccelScale (vmnp, getAccelScale (mnp));
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8.2. VIRTUAL MANIPULATORS 175

It is possible not only to drive a real manipulator with a virtual one, but to connect two real
manipulators together in a “master-slave” configuration. All we need to do is to create a “slave
position” for the slave robot which explicitly contains the T6 transform for the master robot. For
example, consider the following:MANIP *master, *slave;POS *ps;master = rcclCreate ("Right", 0);slave = rcclCreate ("Left", 0);... set up appropriate transforms 'a' and 'b'connecting the slave to the master atthe base and tool tips ...ps = makePosition (NULL, a, T6, b, EQ, master->t6);setTime (slave, F_DEFAULT, F_UNDEF);move (slave, ps);... slave is now bound to master ...
After this code is executed, the robot “Left” is slaved to the robot “Right” for all subsequent motions
(until the move to ps is canceled). The kinematic situation is essentially the same as in figure 34,
except that Z is replaced by A and E by B.

COMPLY

T6 T6

A

B

masterslave
master
target

Figure 35: Kinematic graph for a simple master-slave robot configuration.

When manipulators are connected together and made to move around, a problem is usually cre-
ated by the residual forces which build up between them: they start doing “isometric exercises”
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Figure 36: Kinematic graph for two manipulators holding a common object.

with one another. In general, this can be solved by inserting a COMPLY transform at some point
in the kinematic chain between the two robots. The COMPLY transform is attached to a real-time
function that adjusts its values to cancel out the residual forces. While this transform can be placed
anywhere between the two robots, it is desirable in practice to place it as close as possible to the
place where the forces are actually sensed. If they are sensed in or near the T6 frame of the slave
manipulator, then we will want to construct a slave kinematic loop like the one in figure 35.

It is also possible to slave two or more real robots to a single master manipulator, which may be
either a virtual manipulator or another real robot. There should be at least one COMPLY transform
for every extra real manipulator in the graph. If the master manipulator is a virtual manipulator, then
we have a kinematic situation which is useful if we want two or more real robots to manipulate a
common physical object. This situation is shown in figure 36.

Each manipulator is “connected” to the physical object using a position equation that looks likeA T6 E COMPLY = OBJ G
Transform A maps from the object base frame to the manipulator base frame; E is the transform
from T6 to the point at which the object is grasped; OBJ is location of the object (equal to the “T6”
of the virtual manipulator controlling the object); and G transforms from the object location to the
grasp point. On the assumption that the force sensors are located near the grasp points, the COM-
PLY transforms are placed there as well. This example uses two comply transforms, which is not
strictly necessary since there are only two real manipulators. However, using two transforms po-
tentially allows us to “balance” the interactions between the two robots and achieve true distributed
load sharing.

No attempt will be made to discuss here the ways in which the comply transforms can be com-

RCCL/RCI Release 4.2, December 12,1995



8.3. PROGRAM EXAMPLE: “TRACKII” 177

puted to achieve cooperative control between manipulators, as this is still an active area of research.
In particular, the RCCL site at the Jet Propulsion Laboratory is studying problems of this sort.

8.3 Program Example: “TrackII”

A virtual manipulator which is used to drive a slave manipulator is sometimes referred to as an
object frame. This program demonstrates two manipulators tracking a single object frame. Because
the program runs in free space with no kinematic connection between the two arms, there is no need
for any of the COMPLY transforms discussed above. A diagram of the kinematic relationships is
given in figure 37. The object frame is made to trace sequences of boxes and circles, with both
attached robots duplicating these motions.

planning level module#include <rccl.h>#include "manex.560.h"extern int circleFxn();#define CIRCLE_RADIUS 50main(){ JNTS rcclpark1;JNTS rcclpark2;TRSF_PTR offset, e, track;POS_PTR mnpPos, objPos;MANIP_PTR mnp1, mnp2, obj;float tval, rval;char *robotName1 = "Rsun"; /*1*/char *robotName2 = "Lsun";rcclSetOptions (RCCL_ERROR_EXIT);if (!getRobotPosition (rcclpark1.v, "rcclpark", robotName1)){ printf ("position 'rcclpark' not defined for robot\n");exit(-1);}if (!getRobotPosition (rcclpark2.v, "rcclpark", robotName2)){ printf ("position 'rcclpark' not defined for robot\n");exit(-1);}e = allocTransXyz (NULL, UNDEF, 0.0, 0.0, TOOLZ);track = allocTrans (NULL, UNDEF);offset = allocTrans (NULL, UNDEF);
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178 8. MULTI-ROBOT CAPABILITIESmnp1 = rcclCreate (robotName1, 0);mnp2 = rcclCreate (robotName2, 0);obj = rcclCreate ("foo", 0); /*2*/mnpPos = makePosition (NULL, T6, e, EQ, offset, obj->t6, TL, e);objPos = makePosition (NULL, T6, EQ, track, TL, T6);rcclStart();movej (mnp1, &rcclpark1);movej (mnp2, &rcclpark2);waitForCompleted (mnp1); /*3*/waitForCompleted (mnp2);setMod (mnp1, 'c');setTime (mnp1, F_DEFAULT, F_UNDEF);solveTrans (offset, mnpPos, offset, mnp1->t6);move (mnp1, mnpPos);setMod (mnp2, 'c');setTime (mnp2, F_DEFAULT, F_UNDEF);solveTrans (offset, mnpPos, offset, mnp2->t6);move (mnp2, mnpPos); /*4*/getCartVel (mnp1, &tval, &rval);setCartVel (obj, tval, rval);getCartAccel (mnp1, &tval, &rval);setCartAccel (obj, tval, rval); /*5*/while (1){ distance (obj, "dx", 50.0);move (obj, obj->last);distance (obj, "dz", -100.0);move (obj, obj->last);distance (obj, "dx", -100.0);move (obj, obj->last);distance (obj, "dz", 100.0);move (obj, obj->last);distance (obj, "dx", 50.0);move (obj, obj->last); /*6*/waitForCompleted (obj);setTime (obj, F_DEFAULT, 2000.0);transMotionEval (track, circleFxn, CIRCLE_RADIUS, obj);move (obj, objPos); /*7*/move (obj, obj->park); /*8*/}}
control level module
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8.3. PROGRAM EXAMPLE: “TRACKII” 179#include <rccl.h>#include <fastmath.h>#include "manex.560.h"circleFxn (t, radius, mnp)TRSF *t;int radius;MANIP *mnp;{ float scale;scale = motionScale(getActiveMotionId(mnp));t->p.y = radius * (COS (PIT2*scale) - 1.0);t->p.x = radius * (SIN (PIT2*scale));}
NOTE – this example has been coded for the PUMA 560 and lives at trackII.560.c andtrackIICtrl.560.c in $RCCL/demo.rccl. An equivalent program for the PUMA 260 lives attrackII.260.c and trackIICtrl.260.c.

OBJ OBJ

T61 T62E1 E2

OFFSET1 OFFSET2

Figure 37: Kinematic diagram for the program “trackII”.

The names of the two robots are “Rsun” and “Lsun” (/*1*/). The name of the object frame, in
keeping with tradition, is “foo” (/*2*/). The position mnpPos, defined asT6 E = OFFSET OBJ
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connects each manipulator to the object frame (/*3*/). OFFSET is set to the initial value ofT6 E.
The object frame itself is moved either with relative motions specified with respect to obj->last,
or by changing the value of TRACK in the simple target position objPos:T6 = TRACK

After the trajectory generator is started, both robots are moved to their usual starting positions.
The OFFSET transform in mnpPos is then updated for each of them, and both are bound to positionmnpPos indefinitely (/*4*/). Before each motion request is issued, the transform offset is in-
stantiated for each robot so that mnpPos defines its current location. The velocity and acceleration
limits for the object frame are then set equal to those for the first manipulator (/*5*/) (both robots
are assumed to be of the same type).

The program next executes a loop in which the object frame is made to first trace out a box,
and then a circle. The “box” motion is accomplished with a series of relative motions (/*6*/).
The “circle” motion is done by binding the transform TRACK to a circle tracing function (/*7*/).
The last motion in the loop is a move to obj->park, which ensures that the next position of the
object frame does not drift from one iteration of the loop to the next (/*8*/) (the park location for
virtual manipulators is the identity transform).
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9. Other Features

9.1 Program Modes and Options

Multi-RCCL provides several program-selectable options which will cause the program and the
manipulators to behave in different ways.

9.1.1 Options

Options are used to control behavior associated with the entire program. Each option has an asso-
ciated bit code, and may be set or read back with the routinesunsigned long rcclSetOptions (mask)unsigned long mask;unsigned long rcclClearOptions (mask)unsigned long mask;unsigned long rcclPutOptions (mask)unsigned long mask;unsigned long rcclGetOptions (mask)unsigned long mask;rcclSetOptions() and rcclClearOptions set or clear, respectively, the options indicated bymask. rcclPutOptions() loads all the options at once. rcclGetOptions() returns the settings
of the options specified by mask.

The program options currently implemented includeDefault ValueRCCL_ERROR_EXIT not setRCCL_SIMULATE not setRCCL_LEAVE_POWER_ON not setRCCL_ERROR_EXIT, if set, causes most RCCL and RCI functions to print diagnostic information
and exit the program in the event of an error. This is useful in top level applications and development
work, because it saves the programmer from having to perform explicit error checks on the routines.
If a particular function responds to this option, it will be documented as doing so in the reference
manual. Setting the option also causes the RCI option EXIT_ON_ERROR to be set.RCCL_SIMULATE, if set before the first call to rcclCreate(), will cause the program to run in
simulator mode (see section 9.3). (If it is set after the first call to rcclCreate(), it will have no
effect.)
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182 9. OTHER FEATURESRCCL_LEAVE_POWER_ONcauses the robot arm power to be left on when rcclRelease() is called,
regardless of the setting of that function’s powerOn argument. The power will still be switched off
if the control task is terminated by an RCI abort.

9.1.2 Modes

Modes control activity specific to a particular manipulator. They are set and read with routines sim-
ilar to those for the RCCL options:unsigned long rcclSetModes (mnp, mask)MANIP *mnp;unsigned long mask;unsigned long rcclClearModes (mnp, mask)MANIP *mnp;unsigned long mask;unsigned long rcclPutModes (mnp, mask)MANIP *mnp;unsigned long mask;unsigned long rcclGetModes (mnp, mask)MANIP *mnp;unsigned long mask;unsigned long rcclGetActiveModes (mnp, mask)MANIP *mnp;unsigned long mask;mnp is the manipulator with which the modes are associated. rcclSetModes() and rcclClear-Modes set or clear, respectively, the modes indicated by mask. rcclPutModes() loads all the modes
at once. rcclGetModes() returns the settings of the modes specified by mask. Not all mode set-
tings actually take effect immediately; some take effect only with the next requested motion. Be-
cause of this, rcclGetModes()may not necessarily return the mode settings that are currently ac-
tive; this information should instead be obtained with rcclGetActiveModes().

The following modes are currently implemented:Takes Effect Default ValueTRACKING_MODE immediately not setINTEGRATE_MODE immediately not setT6O_EVAL immediately not setCOMPLETE_AT_TB with next motion setGRAVITY_FEEDFORWARD immediately not set
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it runs out of motion requests to execute. It is useful when we don’t want a “break in the action” to
occur in the event of a time gap between successive motion requests.INTEGRATE_MODE enables integration in the PID servo loop controlling the robot’s actuators.
This option is defined only for real manipulators running on systems where the attached servo con-
troller box does in fact allow integration to be enabled or disabled. It is principally intended for
PUMA robots connected to the Unimation controller. Enabling integration reduces the steady-state
servo error but can also reduce stability, particularly in cases where a higher level feedback loop is
implemented within the trajectory generator.T6O_EVAL causes the trajectory generator to maintain the observed values of T6 and the joint
values in the t6o and j6o fields of the MANIP structure. This is normally not done because the
information is frequently not needed and is expensive to compute.COMPLETE_AT_TB tells the trajectory generator that the time at which one motion officially ends
(and another begins) is the midpoint of the transition to the next motion (except for “stop” requests;
see below). At this time, the MANIP structure’s here field is updated, the motions’ status flags are
set correctly, computations which have been requested with updateTrans() are carried out, and
any end-of-motion signal that has been requested with setMotionSig() is delivered. If this option
is not set, then the time at which a motion officially ends is the beginning of the transition to the
next motion. “stop” requests form an exception to this option: stop motions are always considered
to end at the beginning of the transition to the next motion.GRAVITY_FEEDFORWARD causes the trajectory generator to compute the gravity loading for the
manipulator and feed it forward to the servo level controllers. This option is very site specific and
was implemented specifically for the Jet Propulsion Laboratory.

9.1.3 The Parameter File

Some program control parameters are defined in an ASCII file that is read by the system each time
an RCCL program starts up. The file is named .rciparams; a standard copy exists in the directory$RCCL/conf. The user can also create a private copy of this file in her/his home directory (which
overrides the system version) or in the current directory (which overrides all other versions).

A typical .rciparams file looks like this:# system parameter defs for rciname = RCISYS ARBCLOCK=5.0## parameter set used by utility programsname=sysprogs cpus=0x01 scheduling=ON_TRIGGER interval=20## parameter set used by RCCLname=RCCL cpus=0x3 simulate=0 interval=30 timeout=10
Not all of the things in this file are relevant to RCCL; the parameter sets named RCISYS andsysprogs are used by other parts of the RCCL/RCI system. In the example here, the RCCL pa-

rameters are at the bottom and are denoted by the construction name=RCCL. All of the parameters

RCCL/RCI Release 4.2, December 12,1995



184 9. OTHER FEATURES

have the form <field>=<value>, where <field> is a field name and <value> is either an integer,
a float, or a string (delimited by either white space or by quotes ("")). In the above example, the
parameters cpus, simulate, interval, and timeout are defined.

In general, RCCL recognizes the following parameters:cpus (hex integer)interval (integer)speed (float)tvel (float)rvel (float)simulate (boolean integer OR string)timeout (integer)scheduling (string)leavePowerOn (boolean integer)cpus is a bitmask describing which CPUs can be used to run the trajectory generator tasks. On
single CPU systems, this parameter must have the value 0x1.interval defines the sample interval (in milliseconds) at which the trajectory generator is run.
It is the same quantity which can be set or obtained within the program by rcclSetInterval()
or rcclGetInterval()speed is an optional velocity scale factor; if specified, all the velocity settings in the program
are multiplied by it. For instance, setting speed=0.1will cause manipulator motions to run roughly
1/10 as fast (except for cases where the motion time is set explicitly with setTime()). This scaling
factor is applied on top of the program scaling factor controlled by setSpeed().tvel and rvel are optional parameters which define the default translational and rotational ve-
locities for Cartesian interpolated motions. These are the same quantities controlled by the prim-
itive setCartVel(). If these parameters are not set, the program uses the defined constants DE-FAULT_TRANS_VEL and DEFAULT_ROT_VEL.simulate is an optional parameter, which, if set to a non-zero integer, causes the program to run
in simulator mode (which has the same effect as setting the option RCCL_SIMULATEat the beginning
of the program). The program will attempt to connect its robots to a simulator program which is
running on the current machine and has the name of the current user. To explicitly specify either
the name of the simulator, or the machine on which it is running, the simulate parameter can be
given as a string instead. The format used by this string is described in simAddress(5).timeout is an optional parameter which defines the length of time the trajectory generator task(s)
will wait for a response from the robots before deciding something is seriously wrong and aborting
the program. The units of timeout are control cycles, so if the control level is being run at 50 msec.
(i.e., interval is 50), and timeout is set to 10, then the system will wait 500 msec. before issuing
a timeout abort. The default value of timeout is 2. If the system real-time response is poor and
this value needs to be boosted, the highest reasonable value is probably around 10.scheduling defines the scheduling discipline used by the trajectory generator task(s). The de-
fault scheduling discipline isON_TRIGGER.Other scheduling disciplines are ON_CLOCKand ON_FUNCTION.
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It is also possible to set the scheduling discipline from within an RCCL program by calling rc-clScheduling()before the first call to rcclCreate(). Consult the manual page RCCL_params(5)
for details on what these scheduling disciplines are all about.leavePowerOn causes the RCCL_LEAVE_POWER_ON option (see above) to be set during the first
call to rcclCreate(). This will cause the robot power to be left on after the program finishes,
providing the program does not terminate with an RCI abort.

More information about the RCCL parameters is given in the manual page RCCL_params(5).
Information about the format of the .rciparamsfile may be found in the manual page rciParam-eters(3).

9.2 Error Handling and Recovery

9.2.1 The Error Stack

Most RCCL and RCI routines return either NULL or -1 if they fail, depending on whether the routine
normally returns a pointer or an integer. Also, they will usually place diagnostic information on the
task’s error stack. This is a special buffer used for storing error codes and messages. The idea is
that when some internal routine fails, it places a code and a message on the error stack; when higher
level routines discover the error, they too can place information on the error stack. When the error
is discovered at the top level, the error stack contains a fairly complete trace of what went wrong
and where.

A typical thing for a top level application to do when it finds that a routine has returned an error
is to print the contents of the error stack and exit. This is done with the routine printErrors(),
and is commonly coded like this:if (routine() == -1) /* error indicated by -1 in this case */{ printErrors();exit(-1);}

NOTE: printErrors()must not be called from the control level. rciPrintErrors(NULL)
should be used instead. See below.

One should verify that a routine does in fact use the error stack before calling printErrors();
otherwise, the error stack is likely to be empty and nothing interesting will be printed. When in
doubt, consult the reference manual entry for the routine in question.

Application software can also add its own error codes and messages to the error stack. The
common way of doing this is to use the routine errorMsg():errorMsg (code, format, values ...)int code;char *format;
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The error code is the first argument to the routine. The message is specified by a printf() style
format string (second argument) followed by a variable number of arguments containing values
referred to by the format string. As an example of using the error stack, consider the following
program: main(){ if (routine1() == -1){ printErrors();exit (-1);}}routine1(){ char *fxnName = "routine1()";if (routine2() == -1){ errorMsg (1, "%s -- function call failed\n", fxnName);return (-1);}return (1);}routine2(){ char *fxnName = "routine2()";errorMsg (1, "%s -- not written yet!\n", fxnName);return (-1);}
Running this will produce the following output:routine1() -- function call failedroutine2() -- not written yet!

If, instead of exiting, the application software wishes to continue running, it should clear the
error stack by calling clearErrors(). Interactive programs will frequently print the error stack,
clear the errors, and continue running, as inif (routine() == -1){ printErrors();clearErrors();}

It is also possible to reference the error codes on the error stack. These are primarily intended for
use by software (versus messages, which are mainly for users to look at). In cases where software
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continues to run after detecting an error, error codes may be useful in helping the software decide
what sort of action to take. The routine getErrorCode(n) returns the error code from the n-th
position on the stack, where 0 corresponds to the information most recently added. Application
code which uses the error codes typically looks something like this:if (routine() == -1){ if (getErrorCode(0) == ENotSetup){ setUpData();}}

Error codes are also sometimes “passed on” when a calling routine adds its own information to
the error stack:if (routine() == -1){ errorMsg (getErrorCode(0), "routine() failed\n");return (-1);}

The error codes used by RCCL/RCI are defined in the file <errorCodes.h>. Error codes aren’t
used as much as the error messages.

Each RCI task has its own private error stack, which becomes the current stack when the task’s
context is invoked. If you call errorMsg() from the planning level and then from the control level,
the first message will go to the standard error stack, and the second will go to the control task’s error
stack.

To explicitly reference the error stack for an RCI task from outside that task’s context, one may
use the routinesrciPrintErrors (td)rciErrorMsg (td, code, fmt, ...)rciClearErrors (td);rciGetErrorCode (td, n)
These behave identically to the error stack routines described above, except that they use the error
stack of the RCI task whose descriptor is specified by the additional first argument. If the supplied
task descriptor is NULL, then the current error stack is used. rciPrintErrors() can also be called
from the control level, whereas printErrors() cannot. Recall that to get the descriptor for the
RCI task associated with a particular manipulator mnp, one may use the macro MANIP_TASK(mnp).

When an error occurs at the control level, and one wishes to exit the program, it is necessary
to call rciAbort() instead of exit() (see section 9.2.2). There is a special form of rciAbort(),
called rciAbortErrors(), which transfers the messages on the error stack into the abort message
buffer and then calls rciAbort() itself. A piece of code that invokes this looks like:if (routine() == -1){ rciAbortErrors();return;}
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Care should be taken to not let errors from routines that use the error stack go undetected, or
information will collect on the stack. The error stacks for the control tasks are cleared automatically
at the start of every control cycle. For more information on the error stack, see the manual pageserrorStack(3) and rciErrorStack(3), or the RCI User’s Guide.

9.2.2 Aborting

It is illegal to call exit() from the control level. Instead, RCI provides an abort utility which allows
a program to be aborted (from anywhere) by calling the following routine:rciAbort (code, format, values ...)int code;char *format;
The first argument specifies a code associated with the abort, while the second and following ar-
guments specify an abort message using a printf() style format string and a variable number of
value arguments.

Internally, rciAbort() causes a SIGHUP signal to be sent to the planning level, where it is
caught by RCI system software. All control tasks are released, which (for RCCL) means the tra-
jectory generator is switched off. The default action is then to print the abort message, along with
some other information (which RCI task called the abort, what CPU was it running on, how many
control cycles had elapsed) and exit the program.

As an example, consider the following simple program:#include <rccl.h>abortAtOnce (arg, mnp)int arg;MANIP *mnp;{ rciAbort (10, "Aborting for fun, arg=%d\n", arg);}main(){ MANIP *mnp;mnp = rcclCreate ("foo", 0);rcclStart();printf ("Here we go ...\n");runMonitorFxn (mnp, abortAtOnce, 123);while(1);}
This will produce the following output and exit:
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9.2. ERROR HANDLING AND RECOVERY 189Here we go ...RCI ABORT: task 'RCCL1' on cpu 1, cycle 6Aborting for fun, arg=123
Aborts may be issued by the application code at any time. They may also be issued by the trajec-

tory generator if the manipulator hits a joint limit or encounters a singularity, or some other aspect
of the control process fails. Aborts will also be issued sometimes in the case of internal software
failure.

More information on rciAbort() may be found in the manual pages, or in the RCI User’s
Guide.

9.2.3 Catching Aborts Yourself

As seen in the previous section, the default action for an abort handler to is to print information
about the abort and exit the program. This is often satisfactory, but for some applications the user
may wish to catch aborts and process them within the program.

The RCI routine(*rciAbortHandler)(handlerFxn)int (*handlerFxn)();
specifies an application defined function to be called when an abort occurs and returns a pointer
to the previous handler. The system will still catch the abort signal and shut down the trajectory
generator and other RCI tasks, but it will call the handler function instead of printing the abort in-
formation and exiting. The handler is called with the following arguments:handler (code, msg, td)int code;char *msg;RCI_DESC *td;{ ...}code and msg are the code and message specified by the call to rciAbort(). td points to the de-
scriptor of the RCI task which initiated the abort.

The handler can do various things. For example, it can print out the abort information and exit
the program, similar to what the default handler does (although establishing the handler might then
be somewhat pointless). It might be used to print out extra debugging information before exiting;
this is a common application when systems are under development. Or it might just return, in which
case the program goes on as before, except the trajectory generator has been shut off and must be
started again by calling rcclStart().

Usually, if it desirable to keep executing the program after an abort, the best way to do this is
to longjmp() out of the abort handler to some defined checkpoint and restart the trajectory gener-
ator from there. If you don’t know what longjmp() is, then you should find out (check either a C
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programming guide or the UNIX manual page for longjmp(3), or ask whichever programmer at
your site has the longest hair).

An example of using an abort handler with longjmp is given by the following program:#include <rccl.h>#include <setjmp.h>jmp_buf env;handleAbort (code, msg, td)int code;char *msg;RCI_DESC *td;{ printf ("\nABORT called\n");rcclAbortReset();longjmp (env, 1);}doAbort (arg, mnp)int arg;MANIP *mnp;{ rciAbort (10, ""); /*1*/}main(){ MANIP *mnp;int first = YES;rciAbortHandler (handleAbort);mnp = rcclCreate ("foo", 0);if (setjmp (env)){ first = NO;}printf ("Starting ...\n");rcclStart();if (first == YES){ runMonitorFxn (mnp, doAbort, 123);}while(1);}
The program starts, aborts itself, catches the abort with its own handler, and then starts up again.
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Notice that the call to rciAbort() gives a null message, since no use is made of the message by
the handler (/*1*/). Another discussion of using longjmp()with rciAbort() is found in the RCI
User’s Guide.

There are several caveats that should be observed when doing things with abort handlers. The
first is that many of the RCCL routines are not re-entrant (if you don’t know what re-entrant is,
consult your local system guru). Basically, this means that things might fail if you call an RCCL
or RCI routine from a handler while another (or perhaps the same) RCCL or RCI function is in
progress in the main program. For instance, consider what might happen if the main program is
inside a call to allocTrans()when an abort fires. If the handler “long jumps” out to a catch point,
the original call to allocTrans()will never return properly and some of its internal data structures
could be left in an undefined state. Technically, this is a problem with most UNIX packages as well;
for instance, the stdio library is not guaranteed to function correctly if its routines are exited in this
way. Similar problems can occur if one tries to call library routines inside a signal handler.

The RCCL routine rcclAbortReset() should be called before doing a longjmp() out of a
handler. This does a few things to try and fix up the system state, although it is not guaranteed to
be perfect. In general, care should be taken not to longjmp() out of routines that allocate memory
or manipulator objects, such as allocTrans(),allocMem(), rcclCreate(), etc. Motion request
primitives are generallysafer because the motion queue is reset when rcclStart() is called.

9.2.4 Program Crashes

When you run a regular UNIX program and an exception occurs like a divide by zero or a memory
fault, you generally get a message likeFloating exception (core dumped)%
or Segmentation fault (core dumped)%
The same thing will happen with an RCCL program, if the exception occurs within the planning
task. If instead the exception occurs in one of the control tasks, then what happens depends on the
host system.

On MicroVAX and Sun4 systems, the exception results in a signal being sent to the RCI planning
level, which then prints out some diagnostic information and exits the program. The information
printed includes the CPU on which the exception occurred, some information about the type of
exception, a pc (program counter), and a stack trace. A program crash for a divide by zero on CPU
1 might look like this:Program Crash on CPU 1arithmetic trap, pc = 0x68 (floating divide by zero fault)Stack trace follows --
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The pc and the stack trace are useful in deciding where the crash occurred. The pc is the exact
place where the program was executing when the exception happened. The stack trace lists the call
addresses (on the left) and arguments (on the right) for the routines leading up to the exception point.
The deepest routines are listed in top. Although this is not a symbolic stack dump, one can use the
UNIX debugger adb to find out what routine names correspond to the indicated addresses.

A word of caution regarding stack dumps on SPARC machines: all the routines will be listed as
though they were called with six arguments, even if they were not. This is an artifact of the SPARC
hardware. If the routine was called with more than six long words of argument, only the first six
will be printed. If fewer than six long words of argument were used, then one should just ignore
the remaining words.

There is insufficient space here to go into great detail about interpreting stack dumps. One can
look at the document doc/stacktrace.doc, which describes how to do this for VAXen (the idea
for other machines is similar). You might ask why a core dump is not created instead of a simple
stack trace. The reason is that the control level may be executing on another CPU, and uploading
a core dump from the remote CPU was just a bit too complicated to implement right now.

On SGI systems, a crash at the control level will generate a core file for the RCI control level.
A signal is sent to the RCI planning level, which then prints a message similar toProgram crash in RCI control level. Check core file.
and forces a program exit.

On VxWorks systems, a crash at the control level will result in the usual VxWorks exception
message and the suspension of the VxWorks task, called rciCtrl, which implements the RCI con-
trol level. The RCI planning level is not notified. However, when the planning level exits, the taskrciCtrl is not deleted (as normally happens), but is left around for examination by VxWorks de-
bugging primitives.

9.3 The Simulator

RCCL/RCI supplies a program, named robotsim, that provides 3D graphic simulation for one or
more robots. These robots can be “connected to” and controlled by an RCCL program. The sim-
ulator provides a way to graphically preview programs, single step individual control cycles, and
provide simulated sensor inputs.

To use robotsim, the user needs to do two things:
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1. Start the simulator program running, using a command like% robotsim <robotName>
It may be preferable to do this in a separate window, since the simulator normally prints mes-
sages while it operates (although this can be suppressed with the -s option).

2. Set the RCCL program itself to run in simulator mode. There are several ways of doing this,
as discussed in the following section.

9.3.1 Making RCCL Use the Simulator

An RCCL program will run in simulator mode ifrcclSetOptions (RCCL_SIMULATE)
is called at the very beginning of the program (before the first call to rcclCreate()), or if the RCCL
parameter simulate is set to a non-zero value in the .rciparams file (see section 9.1.3). RCCL
will then connect its robots to a simulator program instead of to a real robot controller.

Simulator programs have “names” so as to distinquish them from one another and allow dif-
ferent ones to be run on the same system at the same time. The program robotsim, for example,
normally sets its name to the user name under which it is invoked. Unless told otherwise, RCCL
will try to connect its robots to a simulator program which is running on the current machine and
has the name of the current user. To specify a simulator running on a different machine or with a dif-
ferent name, the simulate parameter can be set to a simulator address string instead of a non-zero
integer. Similarly, the routinercclSetSimulator("<address string>")
can be called in place of rcclSetOptions(RCCL_SIMULATE). In both cases the address string can
specify the desired simulator name, and/or the host machine on which it is running. The format of
the address string is described in the manual page simAddress(5).

When running the simulator, particularly on the same machine, it may be desirable to “turn
down” the RCCL sample interval, because of the computational load introduced by the simulator.
When doing simulation runs, this author usually sets the trajectory generator to run at 100 msec., ei-
ther by using the interval parameter in the .rciparamsfile, or by calling rcclSetInterval().

In simulation mode, the trajectory generator is run off of SIGALRM instead of a kernel level inter-
rupt. The advantage of this is that the “control level” is now run in UNIX user mode. In particular,
it is possible to set breakpoints in the control level functions and step through them with a debug-
ger. This capability proved invaluable when developing the RCCL system code, particularly the
trajectory generator.

One problem is that the simulator’s use of SIGALRM prevents application software from using
this signal. Specifically, it means that application software must not call sleep() (which usesSIGALRM), but must use nap() instead.
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9.3.2 Simulator Features

By default, the simulator will create a graphics window containing a representation of the robot(s)
being simulated. Graphics are available on systems with Xwindows, SunView, or GL (the SGI
graphics library). Xwindows and SunView use wireframe graphics (with backface removal), while
GL uses full shaded graphics.

Specific features of the simulator program presently include:} the ability to “simulate” more than one robot;} a configuration file that can be used to define other graphic objects to be displayed in addition
to the robot;} an interactive mode which allows the user to single step through control cycles and set various
“inputs” to the simulated robot controller;} the ability to control the graphics view point by moving a mouse cursor across the window;} an optional graphic “teach pendant”, attached to the graphics window, which can be used to
simulate teach pendant inputs to the RCCL or RCI application.

For detailed information about the simulator program, the manual page robotsim(1) should
be consulted. The simulator is still in a state of development, and new features are frequently ap-
pearing.

If the simulator is run interactively, then there are commands which allow the operator to set
sensors to specific values. The interactive mode also allows the operator to single-step through
different control cycles, setting different sensor values at different points. This can be useful, but
is also tedious, and many applications involving real-world input can be debugged more easily by
using rciPrintf() on-line.

The limitation of the simulator is that it simulates only arm movements: it has no knowledge of
the workspace around it or real-world events. Dynamics are only roughly simulated in the form of
gravity loadings. However, adding modules to do dynamic modeling or collision detection should
not be difficult.

9.3.3 A Sample Program Running in Simulation

The best way to learn about the simulator is to run it, so to this end the reader is encouraged to run
the following example program.

planning level module#include <rccl.h>#include <stdio.h>
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9.3. THE SIMULATOR 195extern simMonitor();extern FILE *setpClf;extern FILE *setpJlf;FILE *clf;FILE *jlf;main(){ TRSF_PTR t;POS_PTR p0;MANIP *mnp;JNTS rcclpark;char *robotName;rcclSetOptions (RCCL_ERROR_EXIT | RCCL_SIMULATE); /*(1)*/rcclSetInterval (100); /*(2)*/robotName = getDefaultRobot();if (!getRobotPosition (rcclpark.v, "rcclpark", robotName)){ printf ("position 'rcclpark' not defined for robot\n");exit(-1);}t = allocTrans (NULL, UNDEF);p0 = makePosition (NULL, T6, EQ, t, TL, T6);mnp = rcclCreate (robotName, 0);rcclStart();runMonitorFxn (mnp, simMonitor, 0); /*(3)*/movej (mnp, &rcclpark);waitForCompleted (mnp);readTrans (mnp->here, t); /*(4)*/if ((clf = fopen ("clf", "w")) == NULL) /*(5)*/{ printf ("Can't open Cartesian log file 'clf'\n");exit (-1);}if ((jlf = fopen ("jlf", "w")) == NULL){ printf ("Can't open joint log file 'clf'\n");exit (-1);}setpJlf = jlf;setpClf = clf;rcclBlock(); /*(6)*/setMod (mnp, 'c');t->p.x += 100.0;move (mnp, p0);stop (mnp, 1000.0);movej (mnp, &rcclpark);stop (mnp, 1000.0);
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196 9. OTHER FEATURESwaitForCompleted (mnp); /*(7)*/setpJlf = NULL; /*(8)*/setpClf = NULL;fclose (clf);fclose (jlf);rcclRelease (YES);}
control level module#include <rccl.h>simMonitor (arg, mnp)int arg;MANIP *mnp;{ int sigma, tau;getActiveMotionCounts (mnp, &tau, &sigma);}
NOTE – this example should run on all PUMA robots. It lives at sim.c and simCtrl.c in$RCCL/demo.rccl.

This program is essentially the same as the program “simple”, except that a few changes have
been made to demonstrate the simulator features.

Before running the program, the user needs to set the simulator program running. This is best
done with the command% robotsim <robotName> -p rcclpark<robotName> should be the name of the default system robot. The option -p rcclpark tells
the simulator to start with the robot in the rcclpark position. This is not essential, but it saves
the program from having to first move the robot there. As was indicated above, it is desirable to
run the simulator on a separate terminal or in another window, since it will try to print things. To
some extent, the simulator emulates the moper program that is normally loaded into Unimatation
controllers, and so when it starts up it prints the same messages as moper:<robotName> Moper started<robotName> listening
Although the simulator handles robots other than PUMAs, it acts as though they all have a Unimate
controller.

RCCL/RCI Release 4.2, December 12,1995



9.3. THE SIMULATOR 197

If running the simulator in another window is impossible, then you probably want to run it in
the background, in silent mode so it won’t print anything. Do this with the commandrobotsim <robotName> -p rcclpark -s &

The simulator is now running and waiting for a connection from an RCCL (or RCI) program.
To put itself into simulation mode, the example program here explicitly sets the RCCL_SIMULATE
option and sets the control interval to 100 msec. (/*1*/, /*2*/), so there is no need to make any
changes in the .rciparams file. When the program starts up, the simulator will come alive by
printing <robotName> active (slave)
The program moves the manipulator to an initial position, does a straight line motion to a point 100
mm. along the x axis, stops, and returns to the initial position. When the program calls rcclRe-lease(), the simulator will print<robotName> released<robotName> listening
and go back to waiting for another program to connect to it. In particular, the above program can be
run again without having to restart the simulator – the simulator program, as a separate process, acts
like a running robot controller and responds to whatever RCCL or RCI program tries to connect to
it. To exit from the simulator, simply break out of it using the interrupt character.

The simulator allows the RCCL system to create trajectory log files in either joint or Cartesian
coordinates. This is the purpose of the variables setpJlf (for “setpoint joint log file”) and set-pClf (“setpoint Cartesian log file”). Whenever either of these is set to a valid file pointer, and the
trajectory generator is running in simulation mode, then the output setpoints for each control cycle
are printed into the respective file. Information is printed to setpJlf in joint coordinates, using the
format <mcount>[T] <jval1> <jval2> <jval3> ...
where mcount is the motion count for that cycle, 'T' is printed if the motion is in transition, and
the <jvaln> are the joint values (degrees for rotational joints and millimeters for prismatic joints).
Information is printed to setpClf in Cartesian coordinates, for which the format is similar:<mcount>[B] <px> <py> <pz> <ang> <ux> <uy> <uz>px, py, and pz are the translational coordinates, in millimeters, ang is the equivalent angle of rota-
tion, in degrees, and ux, uy, and uz are the normalized coordinates of the equivalent axis of rotation.
This representation is used for rotations because it is less ambiguous than Euler angles. A special
line is also printed into each log file every time a new motion segment begins, giving information
about what sort of motion segment it is and what some of its parameters are. Trajectory logging
continues until the file pointers are cleared by the planning level.

The program opens the files "jlf" and "clf" at (/*5*/); the setpJlf and setpClf variables
are set at (/*6*/). The call to rcclBlock() makes sure that the trajectory generator has noticed
that they are set and has started recording before the program proceeds further. When the program
has finished executing, the files should be in the current directory waiting for examination.
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9.4 General Notes on the Environment

This section describes how to compile and run RCCL programs. Some of the description is im-
plementation specific. The information given here is supplied in greater depth in the RCCL/RCI
Startup and Installation Guide. In case of conflict, the latter should take priority.

9.4.1 The User’s UNIX Environment

The first thing an RCCL/RCI user must do is set up an environment. This is best done by making
a few entries in her/his .cshrc file. The basic set of entries is illustrated by this example:setenv RCCL /u1/rcclsetenv MANPATH $RCCL/man:/usr/mansetenv C_LD $RCCL/bin/ld # for MicroVAX systems onlyset path=(. $RCCL/bin ... ... )#alias talkRobotX 'termlink -d /dev/RobotX -s 9600'alias loadRobotX 'down -d /dev/RobotX -e 10000 -a 10000 \$RCCL/lsi11/RobotX -t'
Each of these will be described below.

The environment variable RCCL should be set to the root directory of the RCCL system (which
is /u1/rccl in the example). All further references to the root directory can now be made relative
to this.

The environment variable MANPATH should be set to a list of directories used by the UNIX man
program when looking for entries. It should contain $RCCL/man in addition to the usual directory/usr/man; this will make RCCL reference manual pages available on-line. MANPATH may have a
different name on some UNIX systems.

On MicroVAX systems only, the environment variable C_LD must be set to $RCCL/bin/ld.

The user’s path should be set to contain $RCCL/bin, ahead of /bin and /usr/bin.

The aliases loadRobotX and talkRobotX are specific to systems interfaced to the Unimate
PUMA controller. They are used to load and talk to the interface software that runs in the controller
box, and are described in the next section.

9.4.2 Starting Things Up

The information in this section is mostly specific to systems interfaced to Unimate Mark X con-
trollers. Again, more detailed information is given in the RCCL/RCI Startup and Installation Guide.
This section will review the basic steps.

1. Check that the robot controller is powered up. If not, turn it on. In the case of the Unimate
controller, get out of VAL and into ODT (the LSI11 prom monitor), which is easily done by
toggling the controller’s “run/halt” switch.
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2. Check that the necessary RCI interface software is running on the robot controller (for Uni-
mation controllers, this software is bundled into a program called moper). The easiest way to
tell if this is true is to try and run the RCCL program and see if the system complains about
not being able to connect to the controller. If there is a problem, the program will abort with
a set of messages that look something like:RCI ABORT: task 'RCCL1' on cpu 1, cycle 0rbtStartup() -- cannot connect to robotpriAttach() -- other end not listening
A similar thing will happen if the program is being run in simulator mode and the simulator
program is not running.

The moper program used on Unimation controllers is downloaded from the host machine
through the controller’s serial console line, using a program called down. The controller is
assumed to be initially in ODT. down takes several arguments describing the entry point, the
load address, the name of the UNIX file containing the moper executable, the UNIX serial de-
vice connected to the controller console line, and a flag telling down to exit after it has startedmoper up. These arguments are usually bundled into an alias called loadRobotX, such as
the one defined in the above .cshrc example. The .cshrcfile in $RCCL contains the sample
load aliases load260, load560, and load760, which load the default moper programs (de-
fined in $RCCL/lsi11) for typical PUMA 260, 560, and 760 robot/controller combinations.
Another alias, talkRobotX, is usually defined as well; this invokes the program termlink
and is used to create a virtual terminal interface to moper (over the controller’s serial line)
once it is loaded.

3. Check that the robot is calibrated. Again, if it is not, the RCCL program will exit with an error
saying so. To calibrate the PUMA robots, one usually uses the program pumacal, which is
described in the manual pages.

In summary, a typical startup procedure will be given as an example. The example system con-
sists of a PUMA 560 with a Unimation Mark II controller connected to the RCCL host system.
Assume that the robot is named Fred and that all of its aliases are set up accordingly.# Turn on robot controller and toggle the run/halt switch# to force an exit from VAL.# Download moper using the alias loadFred:% loadFreddisabled loginsa.text 19760, a.data 3056, a.bss 1334Starting address is 4096Entry address is 4096Loading 24150 bytes ...Loading completed.
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You should now be able to run RCCL applications indefinitely, until the controller is powered

off; moper will remain up and the robot should stay calibrated even if the host system crashes.

9.4.3 Compiling RCCL programs

9.4.3.1 Using non-ansi compilers

If you are compiling RCCL applications using a non-ansi C compiler, you may need to define some
special preprocessor symbols so that the compiler can handle the RCCL/RCI include files.#define NO_PROTOTYPES 1

Define this if your compiler does not understand prototypes (which applies
to some compilers on SunOS and BSD systems).#define const
Define this if your compiler does not understand const (which applies to
some compilers on SunOS and BSD systems).#define void int
Define this if your compiler does not understand void (which applies to some
compilers on BSD systems).

If made inside the application source code, these definitions should precede the inclusion of any
RCCL/RCI header files. You may want to put whatever definitions you use in an include file of their
own.

Alternatively, the definitions can be made directly on the command line forcc (or rcc, described
in the next section). Usually the -D option is used to do this. The arguments to define everything
would look likecc file.c -DNO_PROTOTYPES -Dconst= -Dvoid=int
9.4.3.2 The rcc command

RCCL programs should be compiled with the special rcc command instead of cc (the usual UNIX
command for the C compiler). rcc is a front end to ccwhich functions identically except that (1) it
automatically references the necessary RCCL libraries and include directories (including the math
library lm), (2) it automatically names its output file after the first distinct module that appears in its
argument list, and (3) it takes the necessary steps to ensure that code in the control level modules is
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loaded contiguously and can hence be easily locked down (or loaded into an auxiliary CPU) when
necessary.

When using the rcc command, all modules containing code or data referenced by the control
level should be grouped together and placed on the command line to the right of the special keyword
argument “CTRL”:% rcc <planning level files> CTRL <control level files>
Other than this, rcc accepts all the usual arguments used by cc, including -c, which suppresses the
link phase to permit separate compilation.

We will now present a couple of examples. The example program in section 1.5 is contained in
the single file simple.560.c. There are no control level modules. To compile it, we simply do% rcc simple.560.c
The necessary libraries and include directories will be referenced automatically, and the executable
will be placed in the file simple.560. To name the executable something else, just the usual -o
option can be used:% rcc simple.560.c -o a.out

As a more complicated example, consider the example program in section 5.2. This is contained
in two files, zigzag.560.c and zigzagCtrl.560.c. The second module contains control level
code, so the compilation command looks like this:% rcc zigzag.560.c CTRL zigzagCtrl.560.c
The executable will be placed in the file zigzag.560. The modules could also be compiled sepa-
rately, as follows:% rcc -c zigzag.560.c% rcc -c CTRL zigzagCtrl.560.c% rcc zigzag.560.o CTRL zigzagCtrl.560.o

As a last example, suppose we have the planning level files plan1.c and plan2.c, the control
level files ctrl1.c and ctrl2.c, and a library mylib.a, which contains code that will be executed
by both the planning and control levels. This can be compiled with the command% rcc -c plan1.c plan2.c CTRL ctrl1.c ctrl2.c myLib.a

More information on the rcc command can be found in the manual pagercc(1), and the RCCL/RCI
Startup and Installation Guide.
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9.4.4 The Utility Programs

There are a set of programs available for moving the robot arm around (move), calibrating it (pumacal),
putting its joints in limp, or “free” mode (free), putting the joints in weightless mode (zerograv),
and measuring calibration parameters (primecal and potcal). These programs are not written
using RCCL; instead, they are written using a separate, joint-level-only, trajectory generator called
CHASE, which lives in the directory $RCCL/chase. Each of these programs is described in the RCI
User’s Guide, as well as in individual manual pages.

In general, the utility programs take the name of the robot to be controlled as an argument. If no
name is given, then the name of the system default robot, defined in the file conf/defaultRobot,
is assumed.

There is also a general purpose calculator program, called arc (which stands rather lamely for
“A Robotics Calculator”). It is something of a cross between a basic infix calculator, RCCL, and
“Matlab”. It permits evaluation of arithmetic expressions (including matrices), variable assign-
ment, and various functions, including many of the RCCL functions for manipulating transforms
and vectors, as well as the kinematic functions for specific robots.

9.4.5 The Utility Routines

RCI provides some utility routines which may used by RCCL applications. Only a couple of the
more useful ones will be described here. More information may be obtained from either the RCI
Reference Manual or the RCI User’s Guide.

The routinechar *getDefaultRobot()
reads the file $RCCL/conf/defaultRobot to obtain the name of the default system robot. This is
mainly useful for sites which make predominant use of one robot.

The routinegetRobotPosition (jvalues, posName, robotName)float *jvalues;char *posName;char *robotName;
reads the file $RCCL/conf/<robotName>.pos and looks for a set of joint values named posName.
If found, they are returned in the array jvalues.

9.4.6 Limitations

There are a few things RCCL users should avoid, or at least be wary of:

control level syscalls –
System calls should be avoided from the control level. This restriction is
mandatory on Sun4 and MicroVAX systems, where system calls will result
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in a program crash. On systems such as VxWorks and the SGI machines,
where the real-time support is provided directly by the host operating system,
system calls are possible but care should be used because they are often time
consuming and may interfere with the control level timing.

signals – Do not use the UNIX signals SIGHUP or SIGXCPU. These have been expro-
priated by RCI for signaling abort and crash conditions. Also, when running
with the simulator, do not use the signal SIGARLM. The simulator uses this
to control the trajectory task. This also means that one cannot use sleep()
when running an RCCL program under the simulator, since this uses SIGALRM.
Instead, the routines delay() or nap() may be used.

forking – Sun4 systems do not tolerate a call to fork() or vfork() from the planning
level while the trajectory generator is turned on.
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