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What is Reinforcement Learning?

I learning from interaction

I goal-oriented learning

I learning by/from/during interaction with an external
environment

I learning “what to do” — how to map situations to actions —
to maximize a numeric reward signal
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Supervised Learning

training data = desired (target) output

Überwacht lernendes
System

Eingaben Ausgaben

error = (target output – actual system output)
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Reinforcement Learning

training information = evaluation (“rewards” / “penalties”)

RL

System
Eingaben Ausgaben (“Aktionen”)

Goal: achieve as much reward as possible
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Reinforcement Learning

I goal: act
”
successfully“ in the environment

I this implies: maximize the sequence of rewards Rt
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The complete agent

I chronologically situated

I constant learning and planning

I affects the environment

I environment is stochastic and uncertain

Umgebung

Aktion
Zustand

Reward
Agent

Zhang 7



University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Elements of RL

Policy

Reward

Value
Modell der

Umgebung

I policy: what to do

I reward: what is good

I value: what is good because of expected reward

I model: what follows what
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An Extended Example: Tic-tac-toe
Ein erweitertes Beispiel: Tic-Tac-Toe
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Requires an imperfect opponent: he / she makes mistakes
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An RL-Approach

1. Erstelle eine Tabelle mit einem Eintrag pro Zustand:

Zustand V(s) – geschätzte Wahrscheinlichkeit für den Gewinn
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2. Jetzt spiele viele Spiele.

Um einen Zug zu wählen, 

schaue einen Schritt nach vorne:
Momentaner Zustand

Verschiedene mögliche

nächste Zustände
*

Nehme den nächsten Zustand mit der höchsten

geschätzten Gewinnwahrscheinlichkeit — das

höchste V(s); ein greedy Zug.

Aber in 10% aller Fälle wähle einen

zufälligen Zug; ein explorierender Zug.
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RL-Learning Rule for Tic-tac-toe

Explorierender Zug
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s   –   Zustand vor dem greedy Zug

′ s   –   Zustand nach dem greedy Zug

Wir inkrementieren jedes V(s)  zu V( ′ s ) –  ein „backup“ :

kleiner positiver Wert, z.B. α = 0.1

der „Schrittweitenparameter“ 
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Improving the Tic-tac-toe Player

I take notice of symmetries
I representation / generalization
I How can it fail?

I Do we need random moves”? Why?
I Do we always need 10 %?

I Can we learn from random moves”?
I Can we learn offline?

I Pre-learning by playing against oneself?
I Using the learned models of the opponent?

I . . .
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e.g. Generalization

Tabelle                   Generalisierender Funktionsapproximator

Zustand      VZustand     V
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Why is Tic-tac-toe Simple?

I finite, small number of states,

I deterministic (one-step look ahead)

I all states are recognizable

I . . .
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Some Important RL Applications

I TD-Gammon: Tesauro
I world’s best backgammon program

I Elevator control: Crites & Barto
I High Performance “down-peak” elevator control

I Warehouse management: Van Roy, Bertsekas, Lee &
Tsitsiklis
I 10–15 % improvement compared to standard industry methods

I Dynamic Channel Assignment: Singh & Bertsekas, Nie &
Haykin
I high performance assignment of channels for mobile

communication
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TD-Gammon

Tesauro, 1992–1995

Aktionsauswahl
durch 2–3 Lagensuche

Value

TD Fehler
Vt 1 Vt

Tesauro, 1992–1995

I Start with a randomly initialized network.

I Play many games against yourself.

I Learn a value function based on the simulated experience.

This probably makes the best players in the world.
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Elevator Control

Crites and Barto, 1996,

10 floors, 4 cabins

Zustände: Knopfzustände; Positionen, 
Richtungen, und 
Bewegungszustände der Kabinen; 
Personen in Kabinen & in Etagen

Aktionen:  halte an X, oder fahre nach
Y, nächste Etage

Rewards: geschätzt, –1 pro Zeitschritt
für jede wartende Person

Conservative estimation: about 1022 states
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Performance Comparison
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RL Timeline

Trial-and-Error
learning

Temporal-difference
learning

Optimal control,
value functions

Thorndike ( )
1911

Minsky

Klopf

Barto et al.

Secondary 
reinforcement ( )

Samuel

Witten

Sutton

Hamilton (Physics)
1800s

Shannon

Bellman/Howard (OR)

Werbos

Watkins

Holland
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MENACE (Michie 1961)

“Matchbox Educable Noughts and Crosses Engine“

Zhang 20



University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Evaluating Feedback

I Evaluate actions instead of instructing the correct action.

I Pure evaluating feedback only depends on the chosen action.
Pure instructing feedback does not depend on the chosen
action at all.

I Supervised learning is instructive; optimization is evaluating.
I Associative vs. Non-Associative:

I Associative inputs are mapped to outputs; learn the best output
for each input.

I Non-Associative:“learn”(find) the best output.

I n–armed bandit (Slot machine) (at least our view of it):
I Non-Associative
I Evaluating feedback
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The n-Armed Bandit

I Choose one of n actions repeatedly; and each selection is called
game.

I After each game at a reward rt is obtained, where:

E 〈rt |at〉 = Q∗(at)

These are unknown action values.
Distribution of rt just depends on at .

I The goal is to maximize the long-term reward, e.g. over 1000
games. To solve the task of the n-armed bandit,

a set of actions have to be explored
and the best of them will be exploited.
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The Exploration/Exploitation Problem

I Suppose values are estimated:
Qt(a) ≈ Q∗(a) Estimation of Action Values

I The greedy -action for time t is:

a∗t = arg maxa Qt(a)

at = a∗t ⇒ exploitation

at 6= a∗t ⇒ exploration

I You cannot explore all the time, but also not exploit all the time

I Exploration should never be stopped, but it should be reduced
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Action − Value Method

I Methods, that only consider the estimates for action values
Suppose in the t-th game action a has been chosen ka times,
that produce the rewards r1, r2, ...,ra , then

Qt(a) =
r1 + r2 + · · ·+ rka

ka

“average reward”

I

lim
ka→∞

Qt(a) = Q∗(a)
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ε-greedy Action Selection

I greedy Action selection

at = a∗t = arg max
a

Qt(a)

I ε-greedy Action selection:

at =

{
a∗t with probability 1− ε

random action with probability ε

...the easiest way to handle exploration and exploitation.
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10-armed Testing Environment

I n = 10 possible actions

I Every Q∗(a) is chosen randomly from the normal distribution:
η(0, 1)

I Every rt is also normally distributed: η(Q∗(at), 1)

I 1000 games

I Repeat everything 2000 times and average the results.
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ε-greedy Method for the 10-armed Testing Environment
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Softmax Action selection

I Softmax-action selection method defines action probabilities
with approximated values

I The most usual softmax-method uses a Gibbs- or a
Bolzmann-distribution:
Chose action a in game t with probability

eQt(a)/τ∑n
b=1 e

Qt(b)/τ
,

where τ is the “temperature”.
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Binary Bandit-Task

Assume there are only two actions:at = 1 or at = 2 and only two
Rewards : rt = Success or rt = Error

Then we could define a goal- or target-action:

dt =

{
at if success

The other Action if error

and choose always the action, that lead to the goal most often.

This is a supervised algorithm.
If works well for deterministic problems. . .
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Random Space

The space of all possible binary bandit-tasks:
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Linear Learning Automata

Let be πt(a) = Pr{a1 = a} the only parameter to be adapted:

LR−I (Linear, reward -inaction):

On success: πt+1(at) = πt(at) + α(1− πt(at)) 0 < α < 1

On failure: no change
LR−P (Linear, reward -penalty):

On success: πt+1(at) = πt(at) + α(1− πt(at)) 0 < α < 1

On failure: πt+1(at) = πt(at) + α(0− πt(at)) 0 < α < 1

I After each update the other probabilities get updated in a way that

the sum of all probabilities is 1.
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Performance of the Binary Bandit-Tasks A and B
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Incremental Implementation

Remember the evaluation-method for the average rewards:

The average of the k first rewards is (neglecting the dependency on a):

Qk =
r1 + r2 + · · ·+ rk

k

can this be built incrementally (without saving all rewards)?

We could use the running average:

Qk+1 = Qk +
1

k + 1
[rk+1 − Qk ]

This is a common form for update-rules:

NewEstimation = OldEstimation + Stepwidth [Value - OldEstimation]
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Non-Stationary Problems

Using Qk as the average reward is adequate for a stationary
problem, i.e. if no Q∗(a) changes with time.

But not for a non-stationary problem.

Better in case of a non-stationary problem is:

Qk+1 = Qk + α [rk+1 − Qk ] for constant α, 0 < α ≤ 1

= (1− α)kQ0 +
k∑

i=1

α(1− α)k−i ri

exponential, recency-weighted average
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Optimistic Initial Values

I All previous methods depend on Q0(a) , i.e., they are biasedbiasedbiased .

I Given that we initialize the action-values optimistically, e.g. for the
10-armed testing environment: Q0(a) = 5 for all a
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Reinforcement-Comparison

I Compare rewards with a reference-reward r̄t , e.g. the average
of all possible rewards.

I Strengthen or weaken the chosen action depending on rt − r̄t .

I Let pt(a) be the preference for action a.

I Preference determine the action-probabilities, e.g. by a
Gibbs-distribution:

πt(a) = Pr{at = a} =
ept(a)∑n
b=1 e

pt(b)

I Then: pt+1(at) = pt(a) + β [rt − r̄t ] and r̄t+1 = r̄t + α [rt − r̄t ]
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Performance of Reinforcement-Comparison-Methods
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Pursuit Methods

I Incorporate both estimations of action values as well as action
preferences.

I “Pursue” always the greedy -action, i.e. make the greedy -action
more probable in the action selection.

I Update the action values after the t-th game to obtain Qt+1.

I The new greedy-action is a∗t+1 = argmax
a

Qt+1(a)

I Then: πt+1(a∗t+1) = πt(a
∗
t+1) + β

[
1− πt(a∗t+1)

]
and the probabilities of the other actions are reduced to keep
their sum 1.
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Performance of a Pursuit-Method
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Conclusions

I These are all quite simple methods,
I but they are complex enough - that we can build on them
I Ideas for improvements:
I estimation of uncertainties . . . Interval estimation
I approximation of Bayes optimal solutions
I Gittens indices (classical solution for n-armed bandits for

controlling exploration and exploitation)

I The complete RL problem has some approaches for a
solution.. . .
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The Reinforcement-Learning Problem

Description of the RL-Problem:

I Presentation of an idealized form of the RL problem which can
be described theoretically.

I Introduction of the most important mathematical components:
value-functions and Bellman-equation.

I Description of the trade-off between applicability and
mathematical linguistic.
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The learning agent in an environment

agent and environment interact at discrete times: t = 0,1,2. . . K
agent observed state at the time t: st ∈ S
executes action at the time t: at ∈ A(st)
obtains reward : rt+1 ∈ R
and the following state: st+1
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The Agent Learns a Policy

policy at time t, πt :

mapping of states to action-probabilities
πt(s, a) = probability, that at = a if st = s

I Reinforcement learning methods describe how an agent updates
its policy as a result of its experience.

I The overall goal of the agent is to maximize the long-term sum
of rewards.
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Degree of Abstraction
I Time steps do not need to be fixed intervals of real time.

I Actions can be lowlevel (e.g., Voltage of motors), or highlevel (e.g.,
take a job offer), “mental” (z.B., shift in focus of attention), etc.

I States can be lowlevel “perception”, abstract, symbolic,
memory-based, or subjective (e.g. the state of being surprised).

I An RL-agent is not comparable to a whole animal or robot, because
the consist of multiple agents and other parts.

I The environment is not necessarily unknown to the agent, it is
incompletely controllable.

I The reward-calculation is done in the environment, that the agent
cannot modify arbitrarily.
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Goals and RewardsRewardsRewards

I Is a scalar reward signal an adequate description for a goal? –
Perhaps not, but it is surprisingly flexible.

I A goal should describe what we want to achieve and not how
we want to achieve it.

I A goal must be beyond the control of the agent – therefore
outside the agent itself.

I The agent needs to be able to measure success:
I explicit;
I frequently during its lifetime.
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ReturnsReturnsReturns

A sequence of rewards after time t is:

rt+1, rt+2, rt+3, . . .
What do we want to maximize?

In general, we want to maximize the expected returnreturnreturn,E{Rt} at each
time step t.
Episodic task : Interaction splits in episodes,
e.g. a game round,
passes through a labyrinth

Rt = rt+1 + rt+2 + · · ·+ rT
where T is a final time where a final state is reached and the episode

ends.
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ReturnsReturnsReturns for Continuous Tasks

continuous tasks: Interaction has no episodes.

discounted returnreturnreturn :

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑
k=0

γk rt+k+1,

where γ, 0 ≤ γ ≤ 1, is the discount ratediscount ratediscount rate.

”
nearsighted“ 0← γ → 1

”
farsighted“
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An example

Avoid Failure: the pole turns

over a critical angle or the

waggon reaches the end of

the track

As an episodic task where episodes end on failure:

Reward = +1 for every step before failure
⇒ Return = number of steps to failure

As continuous task with discounted Return:

Reward = −1 on failure; 0 otherwise
⇒ Return = −γk , for k steps before failure

In both cases, the return is maximized by

avoiding failure as long as possible.
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A further example

Drive as fast as possible to the top of the mountain.

Reward = −1 for each step where the top of the mountain is not reached

Return = −number of steps before reaching the top of the mountain.

The return is maximized by minimizing the number of steps to
reach the top of the mountain.
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Unified notation

I In episodic tasks, we number the time steps of each episode starting
with zero.

I In general, we do not differentiate between episodes. We write s(t)
instead of s(t, j) for the state at time t in episode j .

I Consider the end
of each episode as an absorbing state that always returns a reward of 0:

I We summarize all cases:

Rt =
∞∑
k=0

γk rt+k+1,

where γ can only be 1 if an absorbing state is reached.
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The Markov Probability

I The “state” at time t includes all information that the agent has
about its environment.

I The state can include instant perceptions, processed perceptions and
structures, that are built on a sequence of perceptions.

I Ideally the state should conclude previous perceptions, to contain all
“relevant” information; this means it should provide the Markov
Probability:

Pr {st+1 = s ′, rt+1 = r |st , at , rt , st−1, at−1, . . . , r1, s0, a0} =

Pr {st+1 = s ′, rt+1 = r |st , at}

For all s ′, r ,and histories st , at , rt , st−1, at−1, . . . , r1, s0, a0.
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Markov decision processes

I If a RL-task provides a Markov Probability, it is mainly a Markov
decision process.

I If state and action spaces are finite, it is a finite MDP.

I To define a finite MDP, we need:

I state and action spaces
I one-step-”dynamic”defined by the transition probabilities:

Pa
ss′ = Pr {st+1 = s ′|st = s, at = a} ∀s, s ′ ∈ S , a ∈ A(s).

I rewardrewardreward probabilities:

Ra
ss′ = E {rt+1|st = s, at = a, st+1 = s ′} ∀s, s ′ ∈ S , a ∈ A(s).

Zhang 52



University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

An example for a finite MDP

recycling-robot

I In each step the robot decides, whether it (1) actively searches
for cans, (2) waiting for someone bringing a can, or (3) drives
to the basis for recharge.

I Searching is better, but uses battery; if the batteries run empty
during searching, it needs to be recovered (bad).

I Decisions are made based on the current battery level: high,
low

I reward = number of collected cans.

Zhang 53



University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Recycling-Robot MDP

S = {high, low}
A (high) ={search, wait}
A (low) ={search, wait, recharge}
Rsearch = expected number of cans during search
Rwait = expected number of cans during wait
Rsearch > Rwait
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Value Function

I The value of a state is the expected return beginning with this
state; depends on the policy of the agent:

state-value-function Policy πPolicy πPolicy π :

V π(s) = Eπ {Rt |st = s} = Eπ

{ ∞∑
k=0

γk rt+k+1|st = s

}

I The action value of an action in a state under a policy πpolicy πpolicy π is the
expected return beginning with this state, if this action is chosen and
π is pursued afterwards. Action Value for Policy πPolicy πPolicy π:

Qπ(s, a) = Eπ {Rt |st = s, at = a} = Eπ

{ ∞∑
k=0

γk rt+k+1|st = s, at = a

}
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Bellman-Equation for Policy πPolicy πPolicy π

Basic Idea:

Rt = rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 + . . .

= rt+1 + γ
(
rt+2 + γrt+3 + γ2rt+4 + . . .

)
= rt+1 + γRt+1

Thus:

V π(s) = Eπ {Rt |st = s}
= Eπ {rt+1 + γV (st+1)|st = s}

Or, without expectation operator:

V π(s) =
∑
a

π(s, a)
∑
s′

Pa
ss′ [Ra

ss′ + γV π(s ′)]
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More about the Bellman-Equation

V π(s) =
∑
a

π(s, a)
∑
s′

Pa
ss′
[
Ra
ss′ + γV π(s ′)

]
These are a set of (linear) equations, one for each state. The
value-function for π is an unique solution.

Backup-Diagrams :

for V π for Qπ
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Gridworld

I Actions: up , down , right , left ; deterministic.

I If the agent would leave the grid: no turn, but reward = −1.

I Other actions reward = 0, except actions that move the agent
out of state A or B.

State-value-function for the uniform random-policy ; γ = 0.9
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Golf

I State is the position of the ball
I Reward is -1 for each swing until the ball is in the hole
I Value of a State?
I Actions: putt (use putter) driver (use driver)
I putt on the “green”area always successful (hole)
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Optimal Value Function

I For finite MDPs, the policies can be partially ordered

π ≥ π′ if V π(s) ≥ V π′(s) ∀s ∈ S

I There is always at least one (maybe more) policies that are better than or
equal all others. This is an optimal policypolicypolicy . We call it π∗.

I Optimal policies share the same ,optimal state-value-function:

V ∗(s) = max
π

V π(s) ∀s ∈ S

I Optimal policies also share the same ,optimal action-value-function:

Q∗(s, a) = max
π

Qπ(s, a) ∀s ∈ S and a ∈ A(s)

This is the expected return after choosing action a in state s an continuing to

pursue an optimal policy .
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Optimal Value-Function for Golf

I We can strike the ball further with the driver than with the
putter, but with less accuracy.

I Q *(s,driver) gives the values for the choice of the driver, if
always the best action is chosen.
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Optimal Bellman-Equation for V ∗V ∗V ∗

The Value of a state under an optimal policy is equal to the expected returns
for choosing the best actions from now on.

V ∗(s) = max
a∈A(s)

Qπ∗(s, a)

= max
a∈A(s)

E {rt+1 + γV ∗(st+1)|st = s, at = a}

= max
a∈A(s)

∑
s
′

Pa
ss
′

[
Ra
ss
′ + γV ∗(s

′
)
]

The backup diagram:

V ∗ is the unique solution of this system of nonlinear equations.
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Optimal Bellman-Equation for Q∗

Q∗(s, a) = E

{
rt+1 + γmax

a′
Q∗(st+1, a

′
)|st = s, at = a

}
=

∑
s′

Pa
ss′

[
Ra
ss′

+ γmax
a′

Q∗(s
′
, a
′
)

]
The backup diagram:

Q∗ is the unique solution of this system of nonlinear equations.
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Why Optimal State-Value Functions are Useful

A policy that is greedy with respect to V ∗, is an optimal policy .

Therefore,given V ∗, the ( it one-step-ahead)-search produces
optimal actions in the long time. e.g., in the gridworld:
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What about Optimal Action-Values Functions?

Given Q∗, the agent does not need to perform the
one-step-ahead-search:

π∗(s) = arg max
a∈A(s)

Q∗(s, a)
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Solving the optimal Bellman-Equation

I To be able to determine an optimal policy policy by solving the
optimal Bellman-equation we need the following:
I exact knowledge of the dynamics of the environment;
I enough storage space and computation time;
I the Markov probability

I How much space and time do we need?
I polynomially with the number of states (with

dynamic programming , later lecture)
I BUT, usually the number of states is very large (e.g.,

backgammon has about 1020 states).

I We usually have to resort to approximations.

I Many RL methods can be understood as an approximate
solution to the optimal Bellman equation.
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Summary

I agent-environment interaction

I states
I actions
I rewards

I policypolicypolicy : stochastic action selection rule

I returnreturnreturn: the function of the rewards, that the agent tries to maximize

I Episodic and continuing tasks

I Markov probability

I Markov decision process

I transition probabilities
I expected rewards
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Summary (cont.)

I Value functions

I state-value function for a policy
I action-value function for a policy
I optimal state-value function
I optimal action-value function

I optimal policies

I Bellman-equation

I the need for approximation
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