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Approximation

Approximation of the relation between x and y (curve, plane,
hyperplane ) with a different function, given a limited number of
data points D = {x;,yi}\_;.
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Approximation vs. Interpolation

A special case of approximation is interpolation:
the model exactly matches all data points.

If many data points are given or measurement data is affected by noise,
approximation is preferably used.
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Approximation without Overfitting

f(x)

Zhang
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Interpolation with Polynomials

Polynomial interpolation:

» Lagrange polynomial,
» Newton polynomial,
» Bernstein polynomial,

» Basis-Splines.
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Lagrange interpolation

To match / + 1 data points (x;,y;) (i =0,1,...,/) with a polynomial of
degree | , the following approach of LAGRANGE can be used:

I
pi(x) =Y yili(x)
i—0

The interpolation polynomial in the Lagrange form is defined as follows:

(x = x0)(x = x1) -+ (x = xi—1) (X = Xi41) - - - (x — x1)

Li(x) = (xi —x0)(xi — x1) -+ (% — Xi—1) (% — xi+1) -+ (% — x1)
_Jlifx=x
o { 0if x # x;
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Newton Interpolation

Zhang

The Newton basis polynomials of degree / are constructed as follows:
pi(x) = ag+a1(x—xo)+az(x—x0)(x—x1)+- - -+a;(x—x0) (x—x1) - - - (x—x1-1)

This approach enables us to calculate the coefficients easily.
For n = 2 the following system of equations is obtained:

Pz(Xo) = 4o =Y
pa(x1) =  ao+ ai(x1 — xo) =n
p2(x2) = a0+ ai(xe —x0) + a2l —x0)(x2 —x1) =y
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Interpolation with Bernstein polynomials - |

Interpolation of two points with Bernstein polynomials:

y= XoBO71(t) + XlBL]_(t) = Xo(l — t) + X1t

1 T T T T T T T T T
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Interpolation with Bernstein polynomials - Il

Interpolation of three points with Bernstein polynomials:

y = X()Bo’2(t) + X1 Bl’z(t) + Xng,g(t) = Xo(l - l')2 + X12t(1 - l') + X2t2

Zhang (=] = = = o™ ]



UH MIN Faculty
iti Department of Informatics
L2 University of Hamburg

Introduction Function approximation

Interpolation with Bernstein polynomials - Il

Interpolation of four points with Bernstein polynomials:
y = x0Bo3(t) + x1B1 3(t) + x2B23(t)x3B3 3(t)

=x0(1 — t)* +x13t(1 — t)> + x23t%(1 — t) + x3t>
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Interpolation with Bernstein polynomials - [V
The Bernstein polynomials of degree k + 1 are defined as follows:
k k—igi :
Bik(t)=1{(.)1—=t)"t', i=0,1,....k
1

Interpolation with Bernstein polynomials B; x:

y = x0Bo k(t) + x1B1k(t) + - - - + Xk By k(1)
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B-Splines

A normalized B-Splines N;  of degree k is defined as follows: For k =1,

1 : fort; <t<tig
Ni’k(t):{ 0 : else '

and for k > 1, the recursive definition:

t—t;
Nik(t) = — N x1(t)+
tivk—1 — &
tiox—t
L/Vi+1,1<—1(7-“)
tivk — iyt

with i =0,..., m.
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B-Spline-Curve

Zhang

A B-Spline-Curve of degree k is a composite function built piecewise
from basis B-Splines resulting in a polynomial of degree (k — 1) that is
(k-2)-times continuously differentiable (class C*~2) at the borders of the
segments.

The Curve is constructed by polynomials, that are defined by the
following parameters:

t = (to, t1,t2, -y tmy tmtds - - - 5 Emtk)s

where
> m: depending on the number of data-points

> k: the fixed degree of the B-Spline curve

[=] = = = o>
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Examples of B-Splines

B-Splines with degree 1, 2, 3 and 4:

\le

N,

: : ' ' >

} t

| - - >
1 t

' >Z
~¥

Between the interval of parameters k B-Splines are overlapping.
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Examples of cubic B-Splines
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B-Splines of degree k - |

The recursive definition procedure of a B-Spline basis function
N,"k(l')i
N,.(®

Py
Ni - l(t) Ni+l,k— l(t)
P
Ni,k-z(t) Nm,k-z(t) Ni*z.k—z ®)

/\ /\
Ni.z(t) Nm,z(t) Nm{-a,z(t) Niu-z,z(t)
N N TN
Ni,l(t) Nm,l(t) Nm-z,l(t) Niena(t)
: + . —+ f -
t; ti tie ks ik tin ¢
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B-Splines of degree k - Il

Current segments of B-Spline basis functions of degree 2, 3 and 4 for

ti <t < tipg:
Noa® N,
N
a)
o, y , ' Y bt
‘t‘., tiz tia t tia tia  tus bit
11 Niga®  Nopa®  Nig(®)
b)
ol } ' } >
ta  to tis t tin [P T
1 Nigo® Ny ® N @) N @®
©)
KU
tis  ti ti t; tia tiz tia  tid t
Zhang [m] = = o > 17




PROZoz0z0
UH MIN Facu!ty BRRERE
Department of Informatics :ej:é“'g‘

' Univerei =EE?
L2 University of Hamburg o

Introduc

Function approximation

Uniform B-spline of degree 1 to 4
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Non-uniform B-Splines

Degree 3:

TerLnforE- SRk o —
a3 | 4
as | 4
a4 | =
az | 4
o | L 1
o z 4 & ] o
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Properties of B-splines

Partition of unity: Zf‘(:o Nik(t) = 1.

Positivity: Ni «(t) > 0.
Local support: Ni «(t) =0 for t & [t;, titk].
Ck=2 continuity: If the knots {t;} different in pairs

then N,'7k(t) S Ck_z,
i.e. Nix(t) is (k —2) times continuously
differentiable.
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Construction of B-spline curves

Zhang

A B-spline curve can be constructed blending a number of predefined
values (data-points) with B-splines

m
r(t) = > v Njk(t)
j=0
where v; are called control points (de Boor-points).

Let t be a given parameter, then r(t) is a point of the B-spline curve.

If t varies from tx_1 to tmi1, then r(t) is a (k-2)-times continuously
differentiable function (class Ck=2).

o = = = o> 21
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Calculation of control points from data points

Zhang

The points v; are only identical with the data points if k = 2
(interpolation /otherwise approximation). The control points form a
convex hull of the interpolation curve. Two methods for the
calculation of control points from data points:

N
[N
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Calculation of control points from data points
1 Solving the following system of equations (Bohm84):
aj(t) = D> _vj- Nix(t)
j=0

where q; are the data-points for interpolation/approximation,
j=0,---,m.

2 Learning based on gradient descent(Zhang98).
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Lattice - Il
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Real-world Problems
» modeling: learning from examples, self-optimized formation,

prediction, ...

» control: perception-action cycle, state control, Identification of
dynamic systems,

Function approximation as a benchmark for the choice of a model

Zhang (=] = = = o™ 27
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Function approximation - 1D example

Zhang

An example function f(x) = 8sin(10x? + 5x + 1) with —1 < x < 1
and the correctly distributed B-Splines:
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Lattice

The B-spline model — a two-dimensional illustration.
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Lattice (cont.)

Every n-dimensional square (n > 1) is covered by the jt
multivariate B-spline M (x). Ny (x) is defined by the tensor of n
univariate B-splines:

N (x) = H e (1)

Therefore the shape of each B-spline, and thus the shape of
multivariate ones (Figure 2), is implicitly set by their order and
their given knot distribution on each input interval.
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Lattice (cont.)

Input | rel)

I;pull el nput 2
(a) Tensor of two, order

(b) Tensor of one order  (c) Tensor of two univa-
2 univariate B-splines.

3 and one order 2 univa-  riate B-splines of order
riate B-splines. 3.

Bivariate B-splines formed by taking the tensor of two univariate
B-splines.
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General requirements for an approximator

» Universality: Approximation of arbitrary functions

v

Generalization: good approximation without Overfitting

v

Adaptivity: on the basis of new data

v

Parallelism: Computing based on biological models

v

Interpretability: at least “Grey-box” instead of “Black-box”
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Importance of the Interpretability of a Model

Richard P. Feynman: “the way we have to describe nature is
generally incomprehensible to us”.

Albert Einstein: "“it should be possible to explain the laws of
physics to a barmaid”.
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Importance of the Interpretability of a Model (cont.)

Important reasons for the symbolic interpretability of an
approximator:

» Linguistic modeling is a basis of skill transfer from an expert to
a computer or robot .

» Automated learning of a transparent model facilitates the
analysis, validation and monitoring in the development cycle of
a model or a controller.

» Transparen models provide diverse applications in
Decision-Support Systems.
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B-Spline ANFIS

In a B-Spline ANFIS with n inputs x1, x, ..., x,, the rules are used

the following form:
{Rule(i1, iz, ..., in): IF (x1 1S N} k) AND (x2 IS N,%’kZ) AND ...

n,

AND (x, IS Nf ) THEN y IS Yy, i},
where

> xiiinput j (j=1,...,n),

> k;: degree of B-spline basis function for x;,

> ij’kj: with the i-th linguistic term for the x;j-associated B-spline

function,

v

ij =0,..., m;, partitioning of input j,

Yii...i,: control points for Rule(iy, iz, . .., in)-

v

the "AND"-operator: product

Zhang [m] = = = o™ 35
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B-Spline ANFIS (cont.)

Then the output y of the MISO control system is:

n

y= Z Z i [TV 16 09)

in=1 j=1

This is a general B-spline model that represents the hyperplane ( it
NUBS (nonuniform B-spline)).
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Architecture of B-Spline ANFIS

Netzwerk

Ausgabe
L]
M Gewichts-
vektor
r_10rm1erter mehrdimensionale
Eingaberaum 7,5 srigkeits funktionen
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MF(membership function)-Formulation - Tensor

Tensor of 2D-Splines:
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B-Spline ANFIS: example

An example with two input variables (x und y) and one Output z.

The parameters of the THEN-clauses are 73, 2>, Z3, Z4.
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B-Spline ANFIS: example (cont.)

The linguistic terms of inputs (IF-clauses):

X (1,.2),Y_(1,2)
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B-Spline ANFIS: example (cont.)

The parameters of the THEN-clauses:

Z1 Z2 Z4 Z3
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Example: control basis

The sample control basis consists of four rules:

Rule
1) IF xis X; and yis Yy THEN zis Z
2) IF xis Xy and yis Yo THEN zis 2
3) IF xis Xy and yis Yy THEN zis 2
4) IF xis Xo and yis Yo THEN zis Z

Zhang (=] = = = o™ 43
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lllustration of the fuzzy inference

Z 1

IF (xis X_1) and (yis Y_1) THEN zis Z. 1
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UH MIN Faculty [
iti Department of Informati
L2 University of Hamburg

Introduction Function approximation

lllustration of the fuzzy inference (2)

IF (xis X_1) and (yis Y.2) THEN zis Z.2
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lllustration of the fuzzy inference (3)

IF (xis X 2) and (yis Y_1) THEN z is Z_3
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lllustration of the fuzzy inference (4)

IF (xis X.2) and (yis Y.2) THEN z is Z 4
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lllustration of the fuzzy inference (5)

VAET:S

zl

Z1=Z_1%(xy1)

xy3

Qutput z

z=zl4z22+23+z4
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zl +22+23 + z4

48



UH MIN Faculty [
iti Department of Informati
L2 University of Hamburg

Introduction

Function approximation

Algorithms for Supervised Learning - |

Zhang

Let {(X, yq)} be a set of training data, where

» X = (x1,x2,...,Xpn) : the vector of input data,
> yq : the desired output for X.
The LSE is:
1 2
E= S0 —ya)", (2)

where y, is the current real output value during the training cycle.
Goal is to find the parameters Y; ; ;. that minimize the error in

(2)

E= (i~ y) = MIN. 3)

o & - = DAl )
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Algorithms for Supervised Learning - Il

Each control point Yj _; can be improved with the following
gradient descend algorithm:

OE
AYiin = —€g5y—— (4)
115--5In
= elyr—ya) [[M 4 (%) (5)
j=1

where 0 < ¢ < 1.
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Algorithms for Supervised Learning - Il

The gradient descend algorithm ensures that the learning algorithm
converges to the global minimum of the LSE-function, because the
second partial derivative of Y(il, b, hdots, i,) is constant:

2y, . = I Ni i (X)) = 0. (6)
yeensin j=1

This means that the LSE-function ( ref (error)) is convex
Y(i1, h, dots, i, is) and therefore has only one (global) minimum.

Zhang [m] = = = o™ 51
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Symbol Transformation of the Core Functions

Zhang

Positive, convex core functions can be considered as Fuzzy sets, for

example:
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Membership-functions
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0 o
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(c) @
1 1
0 0
5 0
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Introduction to fuzzy sets

» fuzzy natural-language gradations of terms like “big",
“beautiful”, “strong” ...

» human thought and behavior models using the one-step logic:

(Driving: “IF-THEN"-clauses)

[Car parking: With millimeter accuracy? ]
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Introduction to Fuzzy sets

» Use of fuzzy language instead of numerical description:

(brake 2.52 m before the curve)

— only in machine systems

(brake shortly before the curveJ

— in natural language

Zhang (=] = = = o>

55



UH
Department of Informatic:
L2 University of Hamburg

Introduction

Function approximation

Definitions

Fuzzy: indistinctive, vague, unclear.

Fuzzy sets / fuzzy logic as a mechanism for

» fuzzy natural-language gradations of terms like “big",
“beautiful”, “strong” ...

» usage of fuzzy language instead of numerical description:.
» abstraction of unnecessary / too complex details.

» human thought and behavior models using the one-step logic.

Zhang [m] = = = o>
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Characteristic function vs. Membership function

For Fuzzy-sets A we used a generalized characteristic function p4 that
assigns a real number from [0, 1] to to each member x € X — the
“degree” of membership of x to the fuzzy set A:

pa: X —[0,1]

1a is called membershop-function.

A= {(x; pa(x)Ix € X}

Zhang (=] = = = o™ 57



UH
Department of Informatic:
L2 University of Hamburg

Introduction Function approximation

Membership function

A Scharfe MengeA , Fuzzy Menge A
10 10
9
5 //\
170 Gréfte 170 180 GréBe
(cm) (cm)

Characteristic of the continuous membership function
» Positive, convex functions (some important core functions).
» Subjective perception

» no probabilistic functions

Zhang (=] = = = o™ 58
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Membership function types - |

Triangle: trimf(x; a, b, ¢) = max (min (X - a’ c— x) ,0)

b—a c—b»b

1

0

-5

Trapeze: trapmf(x; a, b, ¢, d) <m|n (X_ 2 l,u) ,0)
a’ld—c
0

Zhang (=] = = = Q> 59
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Membership function types - |l

—c\2
Gaussian: gaussmf(x; c,0) = e=2 (%)

1

0

-5 0 5

B-Splines: bsplinemf (x, xi, Xi+1,*** , Xi+k)

Xj Xj+1 Xjs2 Xj+3 Xj+a
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Linguistic variables

A numeric variable has numerical values:
age =25

A linguistic variable has linguistic values (terms):
age : young

A linguistic value is a fuzzy set.

Zhang (=] = = = o™ 61
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Fuzzy-Partition

Fuzzy partition of the linguistic values “young”, “average” and
“old":
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Fuzzy Logic: inference mechanisms

Zhang

A fuzzy rule is formulated as follows:
“IF A THEN B”
with Fuzzy-sets A, B and the universes X, Y.

One of the most important inference mechanisms is the generalized
Modus-Ponens (GMP):

Implication: IF xis A THEN y is B
Premise: xis A/

Conclusion: y is B’
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Fuzzy systems for function approximation

Basic idea:

» Description of the desired control behavior through natural
language, qualitative rules.
» Quantification of linguistic values by fuzzy sets.

» Evaluation by methods of fuzzy logic or interpolation.
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Fuzzy systems for function approximation

Zhang

Fuzzy-rules:
»IF (a set of conditions is met)

THEN

(a set of consequences can be determined)"

In the premises (Antecedents) of the IF-part: linguistic variables
from the domain of process states;

In the conclusions (Consequences) of the THEN-part:
linguistic variables from the system domain.

x? Unbekanntes Zielsystem» y
xn Fuzzy Inferenz System » y*
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Adaptive networks

[},

]

Architecture:

Feedforward networks with different node functions
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Rule Extraction

The Fuzzy-Patches (Kosko):
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Rule Extraction

A Fuzzy-Rule-Patch:

A
Y IF X=A, THEN Y = B,

Zhang 68
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Additive Systeme

Zhang

An additive fuzzy controller adds the “THEN"-Parts of the fired
rules.

Fuzzy-Approximations-Rule:

An additive Fuzzy controller can approximate any continuous
function f : X — Y if X is compact

[m] = = = o>

Function approximation
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Optimal Fuzzy-Rule-Patches

Optimal fuzzy rule patches cover the extrema of a function:
Y A

Zhang 70
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Optimal Fuzzy-Rule-Patches

Projection of the ellipsoids on the input and output axis:
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Optimal Fuzzy-Rule-Patches

The size of an ellipsoid depends on the training data.

Zhang
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Optimal Fuzzy-Rule-Patches

Visualization of the input-output space:

Qutput

Input
w
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Optimal Fuzzy-Rule-Patches

An example for interpolation:

H

jus
Yo
up

11

g
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Optimal Fuzzy-Rule-Patches

Data cluster along the function:

Y
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Optimal Fuzzy-Rule-Patches

Zhang
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Optimal Fuzzy-Rule-Patches

Approximation with Fuzzy-sets using the projections of extremes:

TA
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Approximation of a 2D-function

z =f(x,y)

2 2 X 1 2
=3(1 — x)2e X U7 _ 10(g — 3 B X YT L S )Ty
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Approximation of a 2D-function

Derivatives of the function:
% = —6(1— x)e U’ _6(1 — x)2xe X U+

2

1 1
— 10(5 —3x%) % e 4 20(§X —x3 = y5)xe_"2_y

_ 1(_2)( _ 2)6—(X+1)2—y2
3

o 31— xfi(-2y ~ e

1
+ 50y4e*"2*y2 + 20(§X —x3 - yE‘)ye*"z’y2
—(x+1)*—y?

+2e
3}’
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Approximation of a 2D-function

d
C;_d_i =36xe X "D’ _ 1852 ()’ _ 0gy3e (1)
x

+12x%e X0’ L 70xe= XY’ _ 148x3eX Y
—20y%e Y 4 40x5e Y £ 40x%e YR
2 4

- Ze _§e—(x+1)2—y2 2 _ 8 (-2,

(x+1)*—y? - e

Zhang (=] = = = o™ 80



UH MIN Faculty [
iti Department of Informati
L2 University of Hamburg

Introduction Function approximation

Approximation of a 2D-function

dz
4(5) =—6(1— x)2e*"27y(+1)2 +3(1 — x)*(—2y — 2)2e*"2*(y+1)2

<

1
+200y3e X" — 200y5e " + 20(gx =~ y)e Y
- 40(%x —x* - }/5))’26_)(2_}’2 + %e_("*l)z_yz

4 2 —(X+1)2—y2

—§ye
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Global Overview of the Statistical Learning Theory - |

Zhang

Let {(x;,y;)}!_; be a set of data points/examples. We are searching for a
function f , which minimizes the following equation:

i
HIF = 737 Vi F)) + Al

i=1

where V/(-,-) is a loss function and ||f||% is a norm in the Hilbert space
‘H , which is defined by a positive kernel K , and A is the regularization
parameter.

The problems in modeling, data regression and pattern classification are
each based on a kind of V(,-).
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Global Overview of the Statistical Learning Theory - Il

L V(i f(x) = (v = £(x))*
(vi € R, V: square error function)
= Regularization Networks, RN

2. V(yi, f(xi)) = lyi — f(xi)]e
(yi € RY, | - |c: eine e-unempfindliche Norm)
= Support Vector Machines Regression, SVMR
3. V(yi, f(xi)) = 11— yif (xi)]+
(yi € {-1,1}, |x]+ = x fur x 2 0, else |x|+ = 0)
= Support Vector Machines Classification, SVMC
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Introduction

Global Overview of the Statistical Learning Theory - Il

L V(i f(x)) = (vi — f(x)))?
(yi: a real number, V: square error function)
= Regularization Networks, RN

2. V(yi £(xi)) = lyi — F(xi)le
(y;: a real number, |- |c: an e-independent norm)
= Support Vector Machines Regression, SVMR

3. V(yi f(xi)) = |1 = yif (xi) |+
(yi: -1 oder 1, |x|+ = x fir x 2 0, sonst |x|+ = 0)
= Support Vector Machines Classification, SVMC

For modeling and control tasks, the first definition is most
important.
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Universelal Function Approximation - |

A control-network can approximate all smooth functions with an
arbitrary precision.
The general solution of this problem is:

/
f(x)= Z ciK(x; x;i)
i=1

where ¢; are the coefficients.
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Function approximation

85



UH MIN Faculty
iti Department of Informatics
L2 University of Hamburg

Introduction Function approximation

Universelal Function Approximation - |l

Proposition of the approximation:

For any continuous function Y that is defined on the compact
subset R™ and the core function K, there is a function
y*(x) = Zle ¢iK(x; x;) that fulfills for all x and any e:

[Y(x) —y"(x)] < e
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Universal Function Approximation - |l

Using different kernel functions leads to different models:

K(x — x;) = exp(—||x — x;|?) Gaussian RBF

K(x —x;) = (|Ix — xi||*> + cz)_% Inverse multiquadratic functions

K(x — x;) = tanh(x - x; — 0) Multilayer perceptron

K(x —x;) = (14+x-x;)? Polynomial of degree d

K(x — x;) = Bant1(x — x;) B-Splines

K(x —x;) = sin(dg—: (%x)—(ii)_ ) Trigonometric polynomial
n
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Problems

1. “Curse of dimensionality” because of the exponential
dependency between the memory requirements and the
dimension of input space.

2. Aliasing within the feature extraction

3. Not available target data (y).

4. Not available input factors.

Zhang (=] = = = o>
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Learning from DJ-Data
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Department of Informatics

T T
Dow Jones

9000 L s L L L L
Jan99  Apro9 Jul99 Oct99  Jan00  Apr 00 Jul 00

Date

Dow-Jones-Index: can the function be modeled?
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Example: Image Processing in Local Observation scenarios

A sequence of gray scale images of an object is acquired by the
movement along a fixed location:
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Example: Extraction of Eigenvectors

The first 6 Eigenvectors:
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Example: Eigenvectors and Eigenvalues
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Combination of Dimension Reduction with B-Spline Model

Eigenvectors can be partitioned by linguistic terms.
Such a combination of PCA and B-spline model can be considered as a

Neuro-Fuzzy model.

paftern pattern rule firing
coding matching & synthesis
%= Q Py | ; n i
S )
o P2 o
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X \
m n i
. output
input
o wre® yles vector
eigenvectors principal
components
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The Neuro-Fuzzy Model

State pattern rule firing
coding matching & synthesis
X; >
extracting
position
featurs
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coding
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input
vector state variables rules output
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The Training and Application Phases
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