Mobile robots control architectures Programming your robot

Dimitri Popov

Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Department Information Integriertes Seminar Intelligent Robotics '10

28. April 2011

Mobile robots control architectures

Question of the day

- How to write robotic software?
- How to connect sensors and actuators?

General set-up

Availible components

- Sensors & actuators
- External state
- Internal state
- Abstractly defined goals

The program logic should

- Handle all of this
- Be robust in a static or dynamic environment
- Be modular & Extensible
- Be intelligent

General set-up

Availible components

- Sensors & actuators
- External state
- Internal state
- Abstractly defined goals

The program logic should

- Handle all of this
- Be robust in a static or dynamic environment
- Be modular & Extensible
- Be intelligent

General set-up

Availible components

- Sensors & actuators
- External state
- Internal state
- Abstractly defined goals

The program logic should

- Handle all of this
- Be robust in a static or dynamic environment
- Be modular & Extensible
- Be intelligent

Deliberative architectures Reactive architectures Behavior-based architectures Hybrid architectures

Outline

1 Introduction

2 Robotic control architectures

Deliberative architectures Reactive architectures Behavior-based architectures Hybrid architectures

③ Summary & Conclusion

Deliberative architectures Reactive architectures Behavior-based architectures Hybrid architectures

"Think hard, then act."

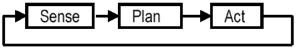


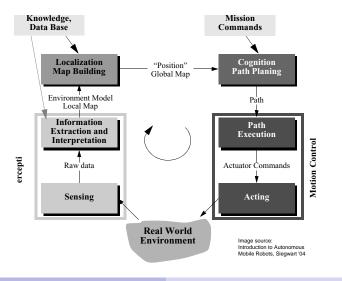
Image source: http://www.cs.brown.edu/-tid/courses/cs148/02/architectures.html

Deliberative architectures

- Also known as "Sense-(Model-)Plan-Act"
- Popular in early robotics (from 1960)
- Sequential architecture

Deliberative architectures Reactive architectures Behavior-based architectures Hybrid architectures

Deliberative architectures: Main idea


Deliberative Control: Idea

- ...is a process of manipulating explicit representations of the world
- Essential: the planning process
- Required: Knowledge about the state of the world and plan

Deliberative architectures Reactive architectures Behavior-based architectures Hybrid architectures

Deliberative architectures: Example

Deliberative architectures Reactive architectures Behavior-based architectures Hybrid architectures

Deliberative architectures: Characteristics

Advantages

- Straight-forward
- High-level intelligence is possible
- Useful in a static environment

Disadvantages

- Slow reacting to unexpected events
- Unusable in a highly dynamic environment

10

Deliberative architectures Reactive architectures Behavior-based architectures Hybrid architectures

Deliberative architectures: Characteristics

Advantages

- Straight-forward
- High-level intelligence is possible
- Useful in a static environment

Disadvantages

- Slow reacting to unexpected events
- Unusable in a highly dynamic environment

Deliberative architectures Reactive architectures Behavior-based architectures Hybrid architectures

"Don't think, react."

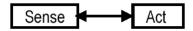


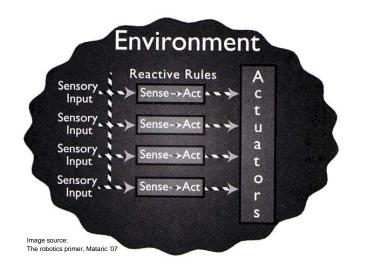
Image source: http://www.cs.brown.edu/-tid/courses/cs148/02/architectures.html

Reactive architectures

- Popular since 1980
- Highly parallel architectures
- · Basic idea: No memory, almost no states, just use reflexes

Deliberative architectures Reactive architectures Behavior-based architectures Hybrid architectures

Reactive architectures: Idea


Basic principles

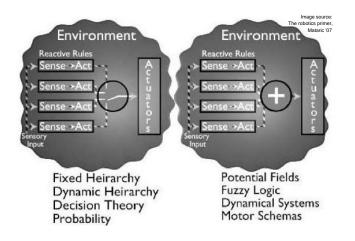
- Tight sensing-action coupling (Das in animal reflexes)
- No explicit world modelling
- Pre-computed sensors→motors function
- Small, asynchronous components

Deliberative architectures Reactive architectures Behavior-based architectures Hybrid architectures

Generic reactive architecture

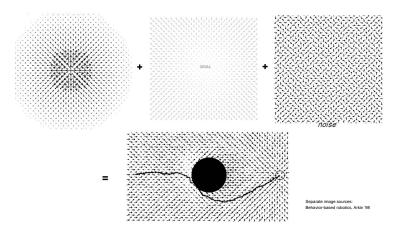
Deliberative architectures Reactive architectures Behavior-based architectures Hybrid architectures

Reactive architectures: Example

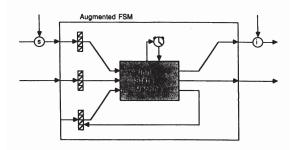

Example rules & actions

- "If nothing is in front of you, move forward"
- "Start a counter. After 30 seconds turn randomly left/right 30 degrees"
- "If sonar nr. 42 is in a safe-zone, turn right"
- "If you are in front of a soda can and the arm is not extended yet, extend it"
- "If you are in front of the can ant the arm is extended, close the gripper"

Deliberative architectures Reactive architectures Behavior-based architectures Hybrid architectures

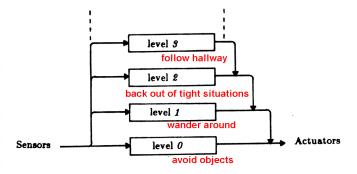

Reactive architectures: Combining rules

Deliberative architectures Reactive architectures Behavior-based architectures Hybrid architectures


Reactive architectures: Motor schema example

Deliberative architectures Reactive architectures Behavior-based architectures Hybrid architectures

Subsumption architecture


Structure of one reactive element

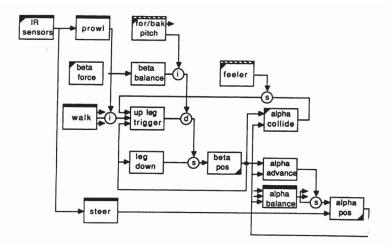
- Element = final state machine + simple transforming function
- Inputs can be suppressed and outputs can be inhibited

Deliberative architectures Reactive architectures Behavior-based architectures Hybrid architectures

Subsumption architecture

http://www.cs.brown.edu/~tid/courses/cs148/02/architectures.html

Combinations of elements with layers


Hierarchical layering is used.

D. Popov 28. April 2011 - Mobile robots control architectures

Deliberative architectures Reactive architectures Behavior-based architectures Hybrid architectures

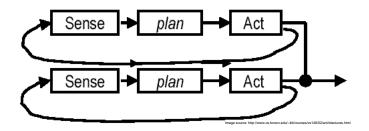
Subsumption architeture: Six-legged robot example

Deliberative architectures Reactive architectures Behavior-based architectures Hybrid architectures

Reactive architectures: Characteristics

Advantages

- Simplicity and robustness possible
- Timely responses in dynamic, unstructured worlds will be produced
- Never out of date
- Subsumption architecture: testing is relatively easy


Disadvantages

- Intelligent behavior is difficult to implement
- Robot will not be able to learn
- Sequencing is difficult

Deliberative architectures Reactive architectures Behavior-based architectures Hybrid architectures

"Think the way you act."

Behavior-based architectures

- Can be seen as enhancement of reactive architectures
- Highly modular
- Reminds me of multi agent systems

Deliberative architectures Reactive architectures Behavior-based architectures Hybrid architectures

Behavior-based control architectures – Characteristics

Behavior-based control

- Reactive systems with memory
- Consists of so-called "behavior"-modules
- Task-oriented decomposition
- Highly parallel system
- Information is not centralized
- Alternative to hybrid systems (see later)

Deliberative architectures Reactive architectures Behavior-based architectures Hybrid architectures

Behaviors: definition and classification

Behaviors...

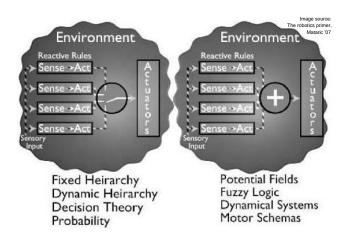
- ...can be more complex than actions
- ...achieve or maintain goals
- ...are time-extended
- ...can take inputs from actions and other behaviors and
- ...send outputs to effectors and other behaviors
- ...can be added at runtime
- ...have to be on compatible time-scales

24

Deliberative architectures Reactive architectures Behavior-based architectures Hybrid architectures

Behaviors: Some examples

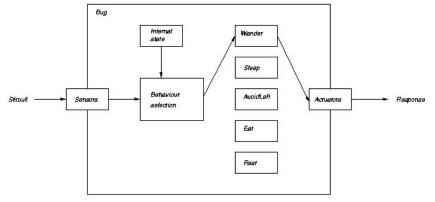
Example behaviors...


. . .

- "Do not collide with anyting"
- "Regulary recharge battery"
- "Go to the opposite edge of the room"
- "Construct a partial map and associate it with this room"

Deliberative architectures Reactive architectures Behavior-based architectures Hybrid architectures

Behavior assembly



Deliberative architectures Reactive architectures Behavior-based architectures Hybrid architectures

Behavior-based control architectures – an example

Image Source: http://legolab.daimi.au.dk/Projects/JungleCube.dir/Chapter.htm

Deliberative architectures Reactive architectures Behavior-based architectures Hybrid architectures

Behavior-based control architectures – Characteristics

Advantages

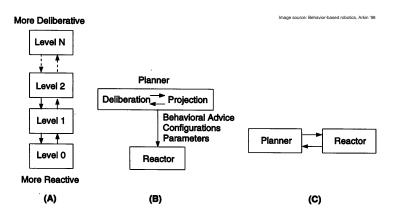
- Fast real-time responses
- Modularity
- Possible to handle complex tasks

Disadvantages

- A difficult-to-comprehend approach
- Design could result in too many modules

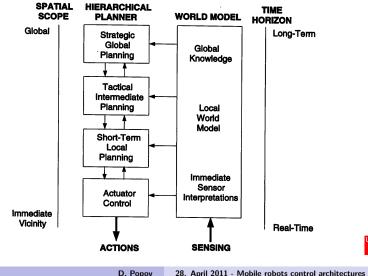
Deliberative architectures Reactive architectures Behavior-based architectures Hybrid architectures

"Think and act independently, in parallel."


Hybrid architectures

Trying to combine deliberative and reactive controls

Deliberative architectures Reactive architectures Behavior-based architectures Hybrid architectures


Hybrid architectures: possible three-layer systems

Deliberative architectures Reactive architectures Behavior-based architectures Hybrid architectures

Hybrid architectures: Zoomin (A)

28. April 2011 - Mobile robots control architectures

Deliberative architectures Reactive architectures Behavior-based architectures Hybrid architectures

Hybrid architectures: Zoomin (B)

Communication Strategies

- Selection
- Advising
- Adaption
- Postponing
- Configuration

Deliberative architectures Reactive architectures Behavior-based architectures Hybrid architectures

Hybrid architectures: Characteristics

Hybrid architectures

- ...try to combine both deliberative and reactive architectures
- There are many quite different attempts to do so.

Advantages

• Both intelligence, learning and fast reaction are possible at the same time

Disadvantages

• It's hard to design a good middle layer.

Deliberative architectures Reactive architectures Behavior-based architectures Hybrid architectures

Hybrid architectures: Characteristics

Hybrid architectures

- ...try to combine both deliberative and reactive architectures
- There are many quite different attempts to do so.

Advantages

 Both intelligence, learning and fast reaction are possible at the same time

Disadvantages

• It's hard to design a good middle layer.

Deliberative architectures Reactive architectures Behavior-based architectures Hybrid architectures

Hybrid architectures: Characteristics

Hybrid architectures

- ...try to combine both deliberative and reactive architectures
- There are many quite different attempts to do so.

Advantages

 Both intelligence, learning and fast reaction are possible at the same time

Disadvantages

• It's hard to design a good middle layer.

Deliberative architectures Reactive architectures Behavior-based architectures Hybrid architectures

Even more architectures

Some design ideas...

- Force control
 - ...as opposed to position control
- Agent-based architectures
 - Defined protocols between agents
 - Agent ≡ Coordination(Agent₁, Agent₂, ..., Agent_i)

Outline

1 Introduction

2 Robotic control architectures

③ Summary & Conclusion

Summary & Conclusion

Summary & Conclusion

- A control structure is essential.
- There exist 4 basic ones:
 - Deliberative
 - Reactive
 - Hybrid
 - Behavior-based
- ... as well as many specificities of them.
- The choice isn't always easy.

Further reading

Introduction to robotic and architectures

- Matarić, The robotics primer, MIT Press, 2007
- Siegwart et al., Introduction to autonomous mobile robots, The MIT Press, 2004
- Arkin, Behavior-based robotics, MIT Press, 1998

Subsumption architecture well explained

 Brooks, A Robot that Walks; Emergent Behaviors from a Carefully Evolved Network, A. I. Memo 1091, February 1989

More Literature

- Van Breemen, Agent-Based Multi-Controller Systems A design framework for complex control problems, Twente University Press, 2001
- Hybrid & multiagent systems: There is a big number of papers available showing custom realizations of such systems, but there is almost no literature to cover the basic principles. However, Siegwart'04 and Arkin'98 cover hybrid systems.

Thank you for your attention!

