Aufgabenblatt 7

Ausgabe 06/12/2010, Abgabe bis 13/12/2010 12:00

Name(n):

Matrikelnummer(n):

Übungsgruppe:

Aufgabe 7.1 NAND als vollständige Basis ((2+3+5)+10 Punkte)

- a) Geben Sie an, wie die Grundfunktionen der Boole'schen Algebra (Negation, UND, ODER) durch geeignete Schaltungen nur aus (einem oder mehreren) NAND-Gattern gebildet werden können. Die Realisierung aller drei Schaltungen liefert den Nachweis, dass die NAND-Funktion eine vollständige Basismenge bildet, aus der sich beliebige Schaltungen aufbauen lassen.
- **b**) Formen Sie die folgende Schaltfunktion so um, dass Sie ausschließlich mit NAND-Schaltgliedern realisiert werden kann:

$$f(x_3, x_2, x_1) = (x_1 \vee \overline{x}_2) x_1 \vee (x_1 \vee \overline{x}_2) \overline{x}_3$$

Aufgabe 7.2 2:1-Multiplexer (20 Punkte)

Wir betrachten den 2:1-Multiplexer mit Steuereingang s und Dateneingängen a_1 und a_0 , also $MUX(s, a_1, a_0) = (s a_1) \vee (\overline{s} a_0)$.

Geben Sie eine Schaltung nur aus (mehreren) 2:1 Multiplexern an, die einen 1-bit Volladdierer mit Eingängen a, b und Carry-In c_i sowie den beiden Ausgängen s für Summe und c_o für Carry-Out realisiert. Wir nehmen dazu an, dass die Variablen sowohl direkt als auch invertiert zur Verfügung stehen (z.B. s_0 und \overline{s}_0).

Zeichnen Sie das Schaltbild.

Aufgabe 7.3 KV-Diagramme: Siebensegmentanzeige (10+20 Punkte)

Erstellen Sie die Funktionstabellen für die Segmente A (oben) und F (links oben) einer Siebensegmentanzeige. Wir codieren die Ziffern 0 bis 9 im 4-bit Dualcode als 0000 bis 1001.

Die Ausgabe für die verbleibenden Codewörter ist nicht definiert, die entsprechenden Werte in der Funktionstabelle können also als *don't-care* eingetragen und bei der Logikminimierung nach Wunsch belegt werden.

a) Geben Sie die Funktionstabellen für die beiden Funktionen an und zeichnen Sie dann die KV-Diagramme. Verwenden Sie dabei die in der Vorlesung verwendete Anordnung der Variablen:

x3 x2	00	01	11	10		
00	0	1	3	2		
01	4	5	7	6		
11	12	13	15	14		
10	8	9	11	10		

x3		x0 00	01	11	10
	00	0000	0001	0011	0010
	01	0100	0101	0111	0110
	11	1100	1101	1111	1110
	10	1000	1001	1011	1010

b) Versuchen Sie, den Realisierungsaufwand für die beiden Funktionen zu minimieren. Finden Sie dazu möglichst große Schleifen in den KV-Diagrammen und geben Sie die zugehörigen Terme in disjunktiver Form an.

Aufgabe 7.4 Notabschaltung (10+5+10+5 Punkte)

In einer Fabrikhalle stehen vier Motoren mit der folgenden Leistungsaufnahme in Kilowatt:

Motor	Leistungsaufnahme [kW]
x_0	2
x_1	5
x_2	3
x_3	1

Entwerfen Sie ein Schaltnetz mit einem Ausgang Y zur Leistungsüberwachung der Motoren. Der Ausgang Y soll genau dann den Wert 1 annehmen, wenn dem Stromnetz durch die eingeschalteten Motoren mehr als $6\,\mathrm{kW}$ entnommen werden.

- a) Erstellen Sie die Funktionstabelle für das Schaltnetz. Verwenden Sie die Variablen $\{x_3, x_2, x_1, x_0\}$, wobei der Wert 1 für einen eingeschalteten Motor und der Wert 0 für einen abgeschalteten Motor steht.
- **b**) Übertragen Sie die Funktionstabelle in ein KV-Diagramm. Verwenden Sie dabei wieder die in der Vorlesung bzw. Aufgabe 7.3 vorgegebenen Anordnung der Variablen.
- c) Überlegen Sie sich geeignete Schleifen und zeichnen Sie diese in das Diagramm ein. Geben Sie die zugehörige Schaltfunktion Y in disjunktiver Form an.
- d) Zeichnen Sie den Schaltplan für die Schaltfunktion in disjunktiver Form.
- e) (Bonus 5 Punkte) Gibt es eine effizientere Realisierung der Funktion (weniger Gattereingänge)?