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What is Reinforcement Learning?

I learning from interaction

I goal-oriented learning

I learning by/from/during interaction with an external
environment

I learning “what to do” — how to map situations to actions —
to maximize a numeric reward signal
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Supervised Learning

trainings data = desired (target) output

Überwacht lernendes
System

Eingaben Ausgaben

error = (target output – actual system output)
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Reinforcement Learning

training information = evaluation (“rewards” / “penalties”)

RL

System
Eingaben Ausgaben (“Aktionen”)

Goal: achieve as much reward as possible
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Reinforcement Learning

I goal: act
”
successfully“ in the environment

I this implies: maximize the sequence of rewards Rt
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The complete agent

I chronologically situated

I constant learning and planning

I affects the environment

I environment is stochastic and uncertain

Umgebung

Aktion
Zustand

Reward
Agent
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Elements of RL

Policy

Reward

Value
Modell der

Umgebung

I policy: what to do

I reward: what is good

I value: what is good because of expected reward

I model: what follows what
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An Extended Example: Tic-tac-toe
Ein erweitertes Beispiel: Tic-Tac-Toe
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Requires an imperfect opponent: he / she makes mistakes
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An RL-Approach

1. Erstelle eine Tabelle mit einem Eintrag pro Zustand:

Zustand V(s) – geschätzte Wahrscheinlichkeit für den Gewinn
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2. Jetzt spiele viele Spiele.

Um einen Zug zu wählen, 

schaue einen Schritt nach vorne:
Momentaner Zustand

Verschiedene mögliche

nächste Zustände
*

Nehme den nächsten Zustand mit der höchsten

geschätzten Gewinnwahrscheinlichkeit — das

höchste V(s); ein greedy Zug.

Aber in 10% aller Fälle wähle einen

zufälligen Zug; ein explorierender Zug.
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RL-Learning Rule for Tic-tac-toe

Explorierender Zug
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s   –   Zustand vor dem greedy Zug

′ s   –   Zustand nach dem greedy Zug

Wir inkrementieren jedes V(s)  zu V( ′ s ) –  ein „backup“ :

kleiner positiver Wert, z.B. α = 0.1

der „Schrittweitenparameter“ 
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Improving the Tic-tac-toe Player

I take notice of symmetries
I representation / generalization
I How can it fail?

I Do we need random moves”? Why?
I Do we always need 10 %?

I Can we learn from random moves”?
I Can we learn offline?

I Pre-learning by playing against oneself?
I Using the learned models of the opponent?

I . . .
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e.g. Generalization

Tabelle                   Generalisierender Funktionsapproximator

Zustand      VZustand     V

s

s
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N

Trainiere

hier
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Why is Tic-tac-toe Simple?

I finite, small number of states,

I deterministic (one-step look ahead)

I all states are recognizable

I . . .
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Some Important RL Applications

I TD-Gammon: Tesauro
I world’s best backgammon program

I Elevator control: Crites & Barto
I High Performance “down-peak” elevator control

I Warehouse management: Van Roy, Bertsekas, Lee &
Tsitsiklis
I 10–15 % improvement compared to standard industry methods

I Dynamic Channel Assignment: Singh & Bertsekas, Nie &
Haykin
I high performance assignment of channels for mobile

communication
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TD-Gammon

Tesauro, 1992–1995

Aktionsauswahl
durch 2–3 Lagensuche

Value

TD Fehler
Vt 1 Vt

Tesauro, 1992–1995

I Start with a randomly initialized network.

I Play many games against yourself.

I Learn a value function based on the simulated experience.

This probably makes the best players in the world.

Zhang 16



University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Elevator Control

Crites and Barto, 1996,

10 floors, 4 cabins

Zustände: Knopfzustände; Positionen, 
Richtungen, und 
Bewegungszustände der Kabinen; 
Personen in Kabinen & in Etagen

Aktionen:  halte an X, oder fahre nach
Y, nächste Etage

Rewards: geschätzt, –1 pro Zeitschritt
für jede wartende Person

Conservative estimation: about 1022 states
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Performance Comparison
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RL Timeline

Trial-and-Error
learning

Temporal-difference
learning

Optimal control,
value functions

Thorndike ( )
1911

Minsky

Klopf

Barto et al.

Secondary 
reinforcement ( )

Samuel

Witten

Sutton

Hamilton (Physics)
1800s

Shannon

Bellman/Howard (OR)

Werbos

Watkins

Holland
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MENACE (Michie 1961)

“Matchbox Educable Noughts and Crosses Engine“
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Evaluating Feedback

I Evaluate actions instead of instructing the correct action.

I Pure evaluating feedback only depends on the chosen action.
Pure instructing feedback does not depend on the chosen
action at all.

I Supervised learning is instructive; optimization is evaluating.
I Associative vs. Non-Associative:

I Associative inputs are mapped to outputs; learn the best output
for each input.

I Non-Associative:“learn”(find) the best output.

I n–armed bandit (Slot machine) (at least our view of it):
I Non-Associative
I Evaluating feedback
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The n-Armed Bandit

I Choose one of n actions repeatedly; and each selection is called
game.

I After each game at a reward rt is obtained, where:

E 〈rt |at〉 = Q∗(at)

These are unknown action values.
Distribution of rt just depends on at .

I The goal is to maximize the long-term reward, e.g. over 1000
games. To solve the task of the n-armed bandit,

a set of actions have to be explored
and the best of them will be exploited.
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The Exploration/Exploitation Problem

I Suppose values are estimated:
Qt(a) ≈ Q∗(a) Estimation of Action Values

I The greedy -action for time t is:

a∗t = arg maxa Qt(a)

at = a∗t ⇒ exploitation

at 6= a∗t ⇒ exploration

I You cannot explore all the time, but also not exploit all the time

I Exploration should never be stopped, but it should be reduced
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Action − Value Method

I Methods, that only consider the estimates for action values
Suppose in the t-th game action a has been chosen ka times,
that produce the rewards r1, r2, ...,ra , then

Qt(a) =
r1 + r2 + · · ·+ rka

ka

“average reward”

I

lim
ka→∞

Qt(a) = Q∗(a)
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ε-greedy Action Selection

I greedy Action selection

at = a∗t = arg max
a

Qt(a)

I ε-greedy Action selection:

at =

{
a∗t with probability 1− ε

random action with probability ε

...the easiest way to handle exploration and exploitation.
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10-armed Testing Environment

I n = 10 possible actions

I Every Q∗(a) is chosen randomly from the normal distribution:
η(0, 1)

I Every rt is also normally distributed: η(Q∗(at), 1)

I 1000 games

I Repeat everything 2000 times and average the results.
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ε-greedy Method for the 10-armed Testing Environment
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Softmax Action selection

I Softmax-action selection method defines action probabilities
with approximated values

I The most usual softmax-method uses a Gibbs- or a
Bolzmann-distribution:
Chose action a in game t with probability

eQt(a)/τ∑n
b=1 e

Qt(b)/τ
,

where τ is the “temperature”.
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Binary Bandit-Task

Assume there are only two actions:at = 1 or at = 2 and only two
Rewards : rt = Success or rt = Error

Then we could define a goal- or target-action:

dt =

{
at if success

The other Action if error

and choose always the action, that lead to the goal most often.

This is a supervised algorithm.
If works well for deterministic problems. . .
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Random Space

The space of all possible binary bandit-tasks:
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Linear Learning Automata

Let be πt(a) = Pr{a1 = a} the only parameter to be adapted:

LR−I (Linear, reward -inaction):

On success: πt+1(at) = πt(at) + α(1− πt(at)) 0 < α < 1

On failure: no change
LR−P (Linear, reward -penalty):

On success: πt+1(at) = πt(at) + α(1− πt(at)) 0 < α < 1

On failure: πt+1(at) = πt(at) + α(0− πt(at)) 0 < α < 1

I After each update the other probabilities get updated in a way that

the sum of all probabilities is 1.
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Performance of the Binary Bandit-Tasks A and B
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Incremental Implementation

Remember the evaluation-method for the average rewards:

The average of the k first rewards is (neglecting the dependency on a):

Qk =
r1 + r2 + · · ·+ rk

k

can this be built incrementally (without saving all rewards)?

We could use the running average:

Qk+1 = Qk +
1

k + 1
[rk+1 − Qk ]

This is a common form for update-rules:

NewEstimation = OldEstimation + Stepwidth [Value - OldEstimation]
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Non-Stationary Problems

Using Qk as the average reward is adequate for a stationary
problem, i.e. if no Q∗(a) changes with time.

But not for a non-stationary problem.

Better in case of a non-stationary problem is:

Qk+1 = Qk + α [rk+1 − Qk ] for constant α, 0 < α ≤ 1

= (1− α)kQ0 +
k∑

i=1

α(1− α)k−i ri

exponential, recency-weighted average
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Optimistic Initial Values

I All previous methods depend on Q0(a) , i.e., they are biasedbiasedbiased .

I Given that we initialize the action-values optimistically, e.g. for the
10-armed testing environment: Q0(a) = 5 for all a
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Reinforcement-Comparison

I Compare rewards with a reference-reward r̄t , e.g. the average
of all possible rewards.

I Strengthen or weaken the chosen action depending on rt − r̄t .

I Let pt(a) be the preference for action a.

I Preference determine the action-probabilities, e.g. by a
Gibbs-distribution:

πt(a) = Pr{at = a} =
ept(a)∑n
b=1 e

pt(b)

I Then: pt+1(at) = pt(a) + β [rt − r̄t ] and r̄t+1 = r̄t + α [rt − r̄t ]
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Performance of Reinforcement-Comparison-Methods
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Pursuit Methods

I Incorporate both estimations of action values as well as action
preferences.

I “Pursue” always the greedy -action, i.e. make the greedy -action
more probable in the action selection.

I Update the action values after the t-th game to obtain Qt+1.

I The new greedy-action is a∗t+1 = argmax
a

Qt+1(a)

I Then: πt+1(a∗t+1) = πt(a
∗
t+1) + β

[
1− πt(a∗t+1)

]
and the probabilities of the other actions are reduced to keep
their sum 1.
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Performance of a Pursuit-Method
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Conclusions

I These are all quite simple methods,
I but they are complex enough - that we can build on them
I Ideas for improvements:
I estimation of uncertainties . . . Interval estimation
I approximation of Bayes optimal solutions
I Gittens indices (classical solution for n-armed bandits for

controlling exploration and exploitation)

I The complete RL problem has some approaches for a
solution.. . .
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The Reinforcement-Learning Problem

Description of the RL-Problem:

I Presentation of an idealized form of the RL problem which can
be described theoretically.

I Introduction of the most important mathematical components:
value-functions and Bellman-equation.

I Description of the trade-off between applicability and
mathematical linguistic.
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The learning agent in an environment

agent and environment interact at discrete times: t = 0,1,2. . . K
agent observed state at the time t: st ∈ S
executes action at the time t: at ∈ A(st)
obtains reward : rt+1 ∈ R
and the following state: st+1

Zhang 42



University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

The Agent Learns a Policy

policy at time t, πt :

mapping of states to action-probabilities
πt(s, a) = probability, that at = a if st = s

I Reinforcement learning methods describe how an agent updates
its policy as a result of its experience.

I The overall goal of the agent is to maximize the long-term sum
of rewards.
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Degree of Abstraction
I Time steps do not need to be fixed intervals of real time.

I Actions can be lowlevel (e.g., Voltage of motors), or highlevel (e.g.,
take a job offer), “mental” (z.B., shift in focus of attention), etc.

I States can be lowlevel “perception”, abstract, symbolic,
memory-based, or subjective (e.g. the state of being surprised).

I An RL-agent is not comparable to a whole animal or robot, because
the consist of multiple agents and other parts.

I The environment is not necessarily unknown to the agent, it is
incompletely controllable.

I The reward-calculation is done in the environment, that the agent
cannot modify arbitrarily.
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Goals and RewardsRewardsRewards

I Is a scalar reward signal an adequate description for a goal? –
Perhaps not, but it is surprisingly flexible.

I A goal should describe what we want to achieve and not how
we want to achieve it.

I A goal must be beyond the control of the agent – therefore
outside the agent itself.

I The agent needs to be able to measure success:
I explicit;
I frequently during its lifetime.
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ReturnsReturnsReturns

A sequence of rewards after time t is:

rt+1, rt+2, rt+3, . . .
What do we want to maximize?

In general, we want to maximize the expected returnreturnreturn,E{Rt} at each
time step t.
Episodic task : Interaction splits in episodes,
e.g. a game round,
passes through a labyrinth

Rt = rt+1 + rt+2 + · · ·+ rT
where T is a final time where a final state is reached and the episode

ends.
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ReturnsReturnsReturns for Continuous Tasks

continuous tasks: Interaction has no episodes.

discounted returnreturnreturn :

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑
k=0

γk rt+k+1,

where γ, 0 ≤ γ ≤ 1, is the discount ratediscount ratediscount rate.

nearsighted” 0← γ → 1 farsighted”
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An example

Avoid Failure: the pole turns

over a critical angle or the

waggon reaches the end of

the track

As an episodic task where episodes end on failure:

Reward = +1 for every step before failure
⇒ Return = number of steps to failure

As continuous task with discounted Return:

Reward = −1 on failure; 0 otherwise
⇒ Return = −γk , for k steps before failure

In both cases, the return is maximized by

avoiding failure as long as possible.
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A further example

Drive as fast as possible to the top of the mountain.

Reward = −1 for each step where the top of the mountain is not reached

Return = −number of steps before reaching the top of the mountain.

The return is maximized by minimizing the number of steps to
reach the top of the mountain.
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Unified notation

I In episodic tasks, we number the time steps of each episode starting
with zero.

I In general, we do not differentiate between episodes. We write s(t)
instead of s(t, j) for the state at time t in episode j .

I Consider the end
of each episode as an absorbing state that always returns a reward of 0:

I We summarize all cases:

Rt =
∞∑
k=0

γk rt+k+1,

where γ can only be 1 if an absorbing state is reached.
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The Markov Probability

I The “state” at time t includes all information that the agent has
about its environment.

I The state can include instant perceptions, processed perceptions and
structures, that are built on a sequence of perceptions.

I Ideally the state should conclude previous perceptions, to contain all
“relevant” information; this means it should provide the Markov
Probability:

Pr {st+1 = s ′, rt+1 = r |st , at , rt , st−1, at−1, . . . , r1, s0, a0} =

Pr {st+1 = s ′, rt+1 = r |st , at}

For all s ′, r ,and histories st , at , rt , st−1, at−1, . . . , r1, s0, a0.
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Markov decision processes

I If a RL-task provides a Markov Probability, it is mainly a Markov
decision process.

I If state and action spaces are finite, it is a finite MDP.

I To define a finite MDP, we need:

I state and action spaces
I one-step-”dynamic”defined by the transition probabilities:

Pa
ss′ = Pr {st+1 = s ′|st = s, at = a} ∀s, s ′ ∈ S , a ∈ A(s).

I rewardrewardreward probabilities:

Ra
ss′ = E {rt+1|st = s, at = a, st+1 = s ′} ∀s, s ′ ∈ S , a ∈ A(s).
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An example for a finite MDP

recycling-robot

I In each step the robot decides, whether it (1) actively searches
for cans, (2) waiting for someone bringing a can, or (3) drives
to the basis for recharge.

I Searching is better, but uses battery; if the batteries run empty
during searching, it needs to be recovered (bad).

I Decisions are made based on the current battery level: high,
low

I reward = number of collected cans.
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Recycling-Robot MDP

S = {high, low}
A (high) ={search, wait}
A (low) ={search, wait, recharge}
Rsearch = expected number of cans during search
Rwait = expected number of cans during wait
Rsearch > Rwait
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Value Function

I The value of a state is the expected return beginning with this
state; depends on the policy of the agent:

state-value-function Policy πPolicy πPolicy π :

V π(s) = Eπ {Rt |st = s} = Eπ

{ ∞∑
k=0

γk rt+k+1|st = s

}

I The action value of an action in a state under a policy πpolicy πpolicy π is the
expected return beginning with this state, if this action is chosen and
π is pursued afterwards. Action Value for Policy πPolicy πPolicy π:

Qπ(s, a) = Eπ {Rt |st = s, at = a} = Eπ

{ ∞∑
k=0

γk rt+k+1|st = s, at = a

}
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Bellman-Equation for Policy πPolicy πPolicy π

Basic Idea:

Rt = rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 + . . .

= rt+1 + γ
(
rt+2 + γrt+3 + γ2rt+4 + . . .

)
= rt+1 + γRt+1

Thus:

V π(s) = Eπ {Rt |st = s}
= Eπ {rt+1 + γV (st+1)|st = s}

Or, without expectation operator:

V π(s) =
∑
a

π(s, a)
∑
s′

Pa
ss′ [Ra

ss′ + γV π(s ′)]
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More about the Bellman-Equation

V π(s) =
∑
a

π(s, a)
∑
s′

Pa
ss′
[
Ra
ss′ + γV π(s ′)

]
These are a set of (linear) equations, one for each state. The
value-function for π is an unique solution.

Backup-Diagrams :

for V π for Qπ
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Gridworld

I Actions: up , down , right , left ; deterministic.

I If the agent would leave the grid: no turn, but reward = −1.

I Other actions reward = 0, except actions that move the agent
out of state A or B.

State-value-function for the uniform random-policy ; γ = 0.9
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Golf

I State is the position of the ball
I Reward is -1 for each swing until the ball is in the hole
I Value of a State?
I Actions: putt (use putter) driver (use driver)
I putt on the “green”area always successful (hole)
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Optimal Value Function

I For finite MDPs, the policies can be partially ordered

π ≥ π′ if V π(s) ≥ V π′(s) ∀s ∈ S

I There is always at least one (maybe more) policies that are better than or
equal all others. This is an optimal policypolicypolicy . We call it π∗.

I Optimal policies share the same ,optimal state-value-function:

V ∗(s) = max
π

V π(s) ∀s ∈ S

I Optimal policies also share the same ,optimal action-value-function:

Q∗(s, a) = max
π

Qπ(s, a) ∀s ∈ S and a ∈ A(s)

This is the expected return after choosing action a in state s an continuing to

pursue an optimal policy .
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Optimal Value-Function for Golf

I We can strike the ball further with the driver than with the
putter, but with less accuracy.

I Q *(s,driver) gives the values for the choice of the driver, if
always the best action is chosen.
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Optimal Bellman-Equation for V ∗V ∗V ∗

The Value of a state under an optimal policy is equal to the expected returns
for choosing the best actions from now on.

V ∗(s) = max
a∈A(s)

Qπ∗(s, a)

= max
a∈A(s)

E {rt+1 + γV ∗(st+1)|st = s, at = a}

= max
a∈A(s)

∑
s
′

Pa
ss
′

[
Ra
ss
′ + γV ∗(s

′
)
]

The backup diagram:

V ∗ is the unique solution of this system of nonlinear equations.
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Optimal Bellman-Equation for Q∗

Q∗(s, a) = E

{
rt+1 + γmax

a′
Q∗(st+1, a

′
)|st = s, at = a

}
=

∑
s′

Pa
ss′

[
Ra
ss′

+ γmax
a′

Q∗(s
′
, a
′
)

]
The backup diagram:

Q∗ is the unique solution of this system of nonlinear equations.
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Why Optimal State-Value Functions are Useful

A policy that is greedy with respect to V ∗, is an optimal policy .

Therefore,given V ∗, the ( it one-step-ahead)-search produces
optimal actions in the long time. e.g., in the gridworld:
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What about Optimal Action-Values Functions?

Given Q∗, the agent does not need to perform the
one-step-ahead-search:

π∗(s) = arg max
a∈A(s)

Q∗(s, a)
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Solving the optimal Bellman-Equation

I To be able to determine an optimal policy policy by solving the
optimal Bellman-equation we need the following:
I exact knowledge of the dynamics of the environment;
I enough storage space and computation time;
I the Markov probability

I How much space and time do we need?
I polynomially with the number of states (with

dynamic programming , later lecture)
I BUT, usually the number of states is very large (e.g.,

backgammon has about 1020 states).

I We usually have to resort to approximations.

I Many RL methods can be understood as an approximate
solution to the optimal Bellman equation.
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Summary

I agent-environment interaction

I states
I actions
I rewards

I policypolicypolicy : stochastic action selection rule

I returnreturnreturn: the function of the rewards, that the agent tries to maximize

I Episodic and continuing tasks

I Markov probability

I Markov decision process

I transition probabilities
I expected rewards
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Summary (cont.)

I Value functions

I state-value function for a policy
I action-value function for a policy
I optimal state-value function
I optimal action-value function

I optimal policies

I Bellman-equation

I the need for approximation
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