
University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning

Reinforcement Learning
VL Algorithmisches Lernen, Teil 13

Jianwei Zhang

University of Hamburg
MIN Faculty, Dept. of Informatics

Vogt-Kölln-Str. 30, D-22527 Hamburg
zhang@informatik.uni-hamburg.de

07/07/2010

Zhang 1

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Introduction

Reinforcement
Learning (RL)

Künstliche Intelligenz

Psychologie
Steuerungs- und
Regelungstechnik

Künstliche Neuronale Netze

Neurowissenschaft

Zhang 2

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

What is Reinforcement Learning?

I learning from interaction

I goal-oriented learning

I learning by/from/during interaction with an external
environment

I learning “what to do” — how to map situations to actions —
to maximize a numeric reward signal

Zhang 3

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Supervised Learning

trainings data = desired (target) output

Überwacht lernendes
System

Eingaben Ausgaben

error = (target output – actual system output)

Zhang 4

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Reinforcement Learning

training information = evaluation (“rewards” / “penalties”)

RL

System
Eingaben Ausgaben (“Aktionen”)

Goal: achieve as much reward as possible

Zhang 5

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Reinforcement Learning

I goal: act
”
successfully“ in the environment

I this implies: maximize the sequence of rewards Rt

�

(�	�

�� �!�	

����
�

Zhang 6

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

The complete agent

I chronologically situated

I constant learning and planning

I affects the environment

I environment is stochastic and uncertain

Umgebung

Aktion
Zustand

Reward
Agent

Zhang 7

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Elements of RL

Policy

Reward

Value
Modell der

Umgebung

I policy: what to do

I reward: what is good

I value: what is good because of expected reward

I model: what follows what

Zhang 8

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

An Extended Example: Tic-tac-toe
Ein erweitertes Beispiel: Tic-Tac-Toe

X XXO O

X

XO

X

O

XO

X

O

X

XO

X

O

X O

XO

X

O

X O

X

} x’s Zug

} o’s Zug

} x’s Zug

} o’s Zug

...

...... ...

...

x x

x

x o

x

o

xo

x

x

x
x

o

o

} x’s Zug

Requires an imperfect opponent: he / she makes mistakes

Zhang 9

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

An RL-Approach

1. Erstelle eine Tabelle mit einem Eintrag pro Zustand:

Zustand V(s) – geschätzte Wahrscheinlichkeit für den Gewinn

.5

.5

.
.
.

.
.
.

.
.
.

.
.
.

1 gewonnen

0 verloren

.
.
.

.
.
.

0 unentschieden

x

xxx

o
o

o
o

o
x

x

oo

o o
x

x
x

x
o

2. Jetzt spiele viele Spiele.

Um einen Zug zu wählen,

schaue einen Schritt nach vorne:
Momentaner Zustand

Verschiedene mögliche

nächste Zustände
*

Nehme den nächsten Zustand mit der höchsten

geschätzten Gewinnwahrscheinlichkeit — das

höchste V(s); ein greedy Zug.

Aber in 10% aller Fälle wähle einen

zufälligen Zug; ein explorierender Zug.

Zhang 10

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

RL-Learning Rule for Tic-tac-toe

Explorierender Zug

6������	�7�����	

��	������

������	�7�����	

��	������

������	�7�����	

��	������

6

6

6

6

6

"����*�	
�
��

�

�

�

�

�

�)

�)

) 	

s – Zustand vor dem greedy Zug

′ s – Zustand nach dem greedy Zug

Wir inkrementieren jedes V(s) zu V(′ s) – ein „backup“ :

kleiner positiver Wert, z.B. α = 0.1

der „Schrittweitenparameter“

Zhang 11

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Improving the Tic-tac-toe Player

I take notice of symmetries
I representation / generalization
I How can it fail?

I Do we need random moves”? Why?
I Do we always need 10 %?

I Can we learn from random moves”?
I Can we learn offline?

I Pre-learning by playing against oneself?
I Using the learned models of the opponent?

I . . .

Zhang 12

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

e.g. Generalization

Tabelle Generalisierender Funktionsapproximator

Zustand VZustand V

s

s

s

.

.

.

1

2

3

N

Trainiere

hier

Zhang 13

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Why is Tic-tac-toe Simple?

I finite, small number of states,

I deterministic (one-step look ahead)

I all states are recognizable

I . . .

Zhang 14

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Some Important RL Applications

I TD-Gammon: Tesauro
I world’s best backgammon program

I Elevator control: Crites & Barto
I High Performance “down-peak” elevator control

I Warehouse management: Van Roy, Bertsekas, Lee &
Tsitsiklis
I 10–15 % improvement compared to standard industry methods

I Dynamic Channel Assignment: Singh & Bertsekas, Nie &
Haykin
I high performance assignment of channels for mobile

communication

Zhang 15

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

TD-Gammon

Tesauro, 1992–1995

Aktionsauswahl
durch 2–3 Lagensuche

Value

TD Fehler
Vt 1 Vt

Tesauro, 1992–1995

I Start with a randomly initialized network.

I Play many games against yourself.

I Learn a value function based on the simulated experience.

This probably makes the best players in the world.

Zhang 16

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Elevator Control

Crites and Barto, 1996,

10 floors, 4 cabins

Zustände: Knopfzustände; Positionen,
Richtungen, und
Bewegungszustände der Kabinen;
Personen in Kabinen & in Etagen

Aktionen: halte an X, oder fahre nach
Y, nächste Etage

Rewards: geschätzt, –1 pro Zeitschritt
für jede wartende Person

Conservative estimation: about 1022 states

Zhang 17

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Performance Comparison

Zhang 18

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

RL Timeline

Trial-and-Error
learning

Temporal-difference
learning

Optimal control,
value functions

Thorndike ()
1911

Minsky

Klopf

Barto et al.

Secondary
reinforcement ()

Samuel

Witten

Sutton

Hamilton (Physics)
1800s

Shannon

Bellman/Howard (OR)

Werbos

Watkins

Holland

Zhang 19

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

MENACE (Michie 1961)

“Matchbox Educable Noughts and Crosses Engine“

Zhang 20

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Evaluating Feedback

I Evaluate actions instead of instructing the correct action.

I Pure evaluating feedback only depends on the chosen action.
Pure instructing feedback does not depend on the chosen
action at all.

I Supervised learning is instructive; optimization is evaluating.
I Associative vs. Non-Associative:

I Associative inputs are mapped to outputs; learn the best output
for each input.

I Non-Associative:“learn”(find) the best output.

I n–armed bandit (Slot machine) (at least our view of it):
I Non-Associative
I Evaluating feedback

Zhang 21

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

The n-Armed Bandit

I Choose one of n actions repeatedly; and each selection is called
game.

I After each game at a reward rt is obtained, where:

E 〈rt |at〉 = Q∗(at)

These are unknown action values.
Distribution of rt just depends on at .

I The goal is to maximize the long-term reward, e.g. over 1000
games. To solve the task of the n-armed bandit,

a set of actions have to be explored
and the best of them will be exploited.

Zhang 22

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

The Exploration/Exploitation Problem

I Suppose values are estimated:
Qt(a) ≈ Q∗(a) Estimation of Action Values

I The greedy -action for time t is:

a∗t = arg maxa Qt(a)

at = a∗t ⇒ exploitation

at 6= a∗t ⇒ exploration

I You cannot explore all the time, but also not exploit all the time

I Exploration should never be stopped, but it should be reduced

Zhang 23

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Action − Value Method

I Methods, that only consider the estimates for action values
Suppose in the t-th game action a has been chosen ka times,
that produce the rewards r1, r2, ...,ra , then

Qt(a) =
r1 + r2 + · · ·+ rka

ka

“average reward”

I

lim
ka→∞

Qt(a) = Q∗(a)

Zhang 24

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

ε-greedy Action Selection

I greedy Action selection

at = a∗t = arg max
a

Qt(a)

I ε-greedy Action selection:

at =

{
a∗t with probability 1− ε

random action with probability ε

...the easiest way to handle exploration and exploitation.

Zhang 25

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

10-armed Testing Environment

I n = 10 possible actions

I Every Q∗(a) is chosen randomly from the normal distribution:
η(0, 1)

I Every rt is also normally distributed: η(Q∗(at), 1)

I 1000 games

I Repeat everything 2000 times and average the results.

Zhang 26

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

ε-greedy Method for the 10-armed Testing Environment

Zhang 27

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Softmax Action selection

I Softmax-action selection method defines action probabilities
with approximated values

I The most usual softmax-method uses a Gibbs- or a
Bolzmann-distribution:
Chose action a in game t with probability

eQt(a)/τ∑n
b=1 e

Qt(b)/τ
,

where τ is the “temperature”.

Zhang 28

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Binary Bandit-Task

Assume there are only two actions:at = 1 or at = 2 and only two
Rewards : rt = Success or rt = Error

Then we could define a goal- or target-action:

dt =

{
at if success

The other Action if error

and choose always the action, that lead to the goal most often.

This is a supervised algorithm.
If works well for deterministic problems. . .

Zhang 29

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Random Space

The space of all possible binary bandit-tasks:

Zhang 30

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Linear Learning Automata

Let be πt(a) = Pr{a1 = a} the only parameter to be adapted:

LR−I (Linear, reward -inaction):

On success: πt+1(at) = πt(at) + α(1− πt(at)) 0 < α < 1

On failure: no change
LR−P (Linear, reward -penalty):

On success: πt+1(at) = πt(at) + α(1− πt(at)) 0 < α < 1

On failure: πt+1(at) = πt(at) + α(0− πt(at)) 0 < α < 1

I After each update the other probabilities get updated in a way that

the sum of all probabilities is 1.

Zhang 31

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Performance of the Binary Bandit-Tasks A and B

Zhang 32

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Incremental Implementation

Remember the evaluation-method for the average rewards:

The average of the k first rewards is (neglecting the dependency on a):

Qk =
r1 + r2 + · · ·+ rk

k

can this be built incrementally (without saving all rewards)?

We could use the running average:

Qk+1 = Qk +
1

k + 1
[rk+1 − Qk]

This is a common form for update-rules:

NewEstimation = OldEstimation + Stepwidth [Value - OldEstimation]

Zhang 33

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Non-Stationary Problems

Using Qk as the average reward is adequate for a stationary
problem, i.e. if no Q∗(a) changes with time.

But not for a non-stationary problem.

Better in case of a non-stationary problem is:

Qk+1 = Qk + α [rk+1 − Qk] for constant α, 0 < α ≤ 1

= (1− α)kQ0 +
k∑

i=1

α(1− α)k−i ri

exponential, recency-weighted average

Zhang 34

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Optimistic Initial Values

I All previous methods depend on Q0(a) , i.e., they are biasedbiasedbiased .

I Given that we initialize the action-values optimistically, e.g. for the
10-armed testing environment: Q0(a) = 5 for all a

Zhang 35

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Reinforcement-Comparison

I Compare rewards with a reference-reward r̄t , e.g. the average
of all possible rewards.

I Strengthen or weaken the chosen action depending on rt − r̄t .

I Let pt(a) be the preference for action a.

I Preference determine the action-probabilities, e.g. by a
Gibbs-distribution:

πt(a) = Pr{at = a} =
ept(a)∑n
b=1 e

pt(b)

I Then: pt+1(at) = pt(a) + β [rt − r̄t] and r̄t+1 = r̄t + α [rt − r̄t]

Zhang 36

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Performance of Reinforcement-Comparison-Methods

Zhang 37

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Pursuit Methods

I Incorporate both estimations of action values as well as action
preferences.

I “Pursue” always the greedy -action, i.e. make the greedy -action
more probable in the action selection.

I Update the action values after the t-th game to obtain Qt+1.

I The new greedy-action is a∗t+1 = argmax
a

Qt+1(a)

I Then: πt+1(a∗t+1) = πt(a
∗
t+1) + β

[
1− πt(a∗t+1)

]
and the probabilities of the other actions are reduced to keep
their sum 1.

Zhang 38

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Performance of a Pursuit-Method

Zhang 39

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Conclusions

I These are all quite simple methods,
I but they are complex enough - that we can build on them
I Ideas for improvements:
I estimation of uncertainties . . . Interval estimation
I approximation of Bayes optimal solutions
I Gittens indices (classical solution for n-armed bandits for

controlling exploration and exploitation)

I The complete RL problem has some approaches for a
solution.. . .

Zhang 40

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

The Reinforcement-Learning Problem

Description of the RL-Problem:

I Presentation of an idealized form of the RL problem which can
be described theoretically.

I Introduction of the most important mathematical components:
value-functions and Bellman-equation.

I Description of the trade-off between applicability and
mathematical linguistic.

Zhang 41

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

The learning agent in an environment

agent and environment interact at discrete times: t = 0,1,2. . . K
agent observed state at the time t: st ∈ S
executes action at the time t: at ∈ A(st)
obtains reward : rt+1 ∈ R
and the following state: st+1

Zhang 42

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

The Agent Learns a Policy

policy at time t, πt :

mapping of states to action-probabilities
πt(s, a) = probability, that at = a if st = s

I Reinforcement learning methods describe how an agent updates
its policy as a result of its experience.

I The overall goal of the agent is to maximize the long-term sum
of rewards.

Zhang 43

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Degree of Abstraction
I Time steps do not need to be fixed intervals of real time.

I Actions can be lowlevel (e.g., Voltage of motors), or highlevel (e.g.,
take a job offer), “mental” (z.B., shift in focus of attention), etc.

I States can be lowlevel “perception”, abstract, symbolic,
memory-based, or subjective (e.g. the state of being surprised).

I An RL-agent is not comparable to a whole animal or robot, because
the consist of multiple agents and other parts.

I The environment is not necessarily unknown to the agent, it is
incompletely controllable.

I The reward-calculation is done in the environment, that the agent
cannot modify arbitrarily.

Zhang 44

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Goals and RewardsRewardsRewards

I Is a scalar reward signal an adequate description for a goal? –
Perhaps not, but it is surprisingly flexible.

I A goal should describe what we want to achieve and not how
we want to achieve it.

I A goal must be beyond the control of the agent – therefore
outside the agent itself.

I The agent needs to be able to measure success:
I explicit;
I frequently during its lifetime.

Zhang 45

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

ReturnsReturnsReturns

A sequence of rewards after time t is:

rt+1, rt+2, rt+3, . . .
What do we want to maximize?

In general, we want to maximize the expected returnreturnreturn,E{Rt} at each
time step t.
Episodic task : Interaction splits in episodes,
e.g. a game round,
passes through a labyrinth

Rt = rt+1 + rt+2 + · · ·+ rT
where T is a final time where a final state is reached and the episode

ends.

Zhang 46

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

ReturnsReturnsReturns for Continuous Tasks

continuous tasks: Interaction has no episodes.

discounted returnreturnreturn :

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑
k=0

γk rt+k+1,

where γ, 0 ≤ γ ≤ 1, is the discount ratediscount ratediscount rate.

nearsighted” 0← γ → 1 farsighted”

Zhang 47

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

An example

Avoid Failure: the pole turns

over a critical angle or the

waggon reaches the end of

the track

As an episodic task where episodes end on failure:

Reward = +1 for every step before failure
⇒ Return = number of steps to failure

As continuous task with discounted Return:

Reward = −1 on failure; 0 otherwise
⇒ Return = −γk , for k steps before failure

In both cases, the return is maximized by

avoiding failure as long as possible.

Zhang 48

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

A further example

Drive as fast as possible to the top of the mountain.

Reward = −1 for each step where the top of the mountain is not reached

Return = −number of steps before reaching the top of the mountain.

The return is maximized by minimizing the number of steps to
reach the top of the mountain.

Zhang 49

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Unified notation

I In episodic tasks, we number the time steps of each episode starting
with zero.

I In general, we do not differentiate between episodes. We write s(t)
instead of s(t, j) for the state at time t in episode j .

I Consider the end
of each episode as an absorbing state that always returns a reward of 0:

I We summarize all cases:

Rt =
∞∑
k=0

γk rt+k+1,

where γ can only be 1 if an absorbing state is reached.
Zhang 50

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

The Markov Probability

I The “state” at time t includes all information that the agent has
about its environment.

I The state can include instant perceptions, processed perceptions and
structures, that are built on a sequence of perceptions.

I Ideally the state should conclude previous perceptions, to contain all
“relevant” information; this means it should provide the Markov
Probability:

Pr {st+1 = s ′, rt+1 = r |st , at , rt , st−1, at−1, . . . , r1, s0, a0} =

Pr {st+1 = s ′, rt+1 = r |st , at}

For all s ′, r ,and histories st , at , rt , st−1, at−1, . . . , r1, s0, a0.

Zhang 51

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Markov decision processes

I If a RL-task provides a Markov Probability, it is mainly a Markov
decision process.

I If state and action spaces are finite, it is a finite MDP.

I To define a finite MDP, we need:

I state and action spaces
I one-step-”dynamic”defined by the transition probabilities:

Pa
ss′ = Pr {st+1 = s ′|st = s, at = a} ∀s, s ′ ∈ S , a ∈ A(s).

I rewardrewardreward probabilities:

Ra
ss′ = E {rt+1|st = s, at = a, st+1 = s ′} ∀s, s ′ ∈ S , a ∈ A(s).

Zhang 52

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

An example for a finite MDP

recycling-robot

I In each step the robot decides, whether it (1) actively searches
for cans, (2) waiting for someone bringing a can, or (3) drives
to the basis for recharge.

I Searching is better, but uses battery; if the batteries run empty
during searching, it needs to be recovered (bad).

I Decisions are made based on the current battery level: high,
low

I reward = number of collected cans.

Zhang 53

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Recycling-Robot MDP

S = {high, low}
A (high) ={search, wait}
A (low) ={search, wait, recharge}
Rsearch = expected number of cans during search
Rwait = expected number of cans during wait
Rsearch > Rwait

Zhang 54

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Value Function

I The value of a state is the expected return beginning with this
state; depends on the policy of the agent:

state-value-function Policy πPolicy πPolicy π :

V π(s) = Eπ {Rt |st = s} = Eπ

{ ∞∑
k=0

γk rt+k+1|st = s

}

I The action value of an action in a state under a policy πpolicy πpolicy π is the
expected return beginning with this state, if this action is chosen and
π is pursued afterwards. Action Value for Policy πPolicy πPolicy π:

Qπ(s, a) = Eπ {Rt |st = s, at = a} = Eπ

{ ∞∑
k=0

γk rt+k+1|st = s, at = a

}

Zhang 55

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Bellman-Equation for Policy πPolicy πPolicy π

Basic Idea:

Rt = rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 + . . .

= rt+1 + γ
(
rt+2 + γrt+3 + γ2rt+4 + . . .

)
= rt+1 + γRt+1

Thus:

V π(s) = Eπ {Rt |st = s}
= Eπ {rt+1 + γV (st+1)|st = s}

Or, without expectation operator:

V π(s) =
∑
a

π(s, a)
∑
s′

Pa
ss′ [Ra

ss′ + γV π(s ′)]

Zhang 56

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

More about the Bellman-Equation

V π(s) =
∑
a

π(s, a)
∑
s′

Pa
ss′
[
Ra
ss′ + γV π(s ′)

]
These are a set of (linear) equations, one for each state. The
value-function for π is an unique solution.

Backup-Diagrams :

for V π for Qπ

Zhang 57

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Gridworld

I Actions: up , down , right , left ; deterministic.

I If the agent would leave the grid: no turn, but reward = −1.

I Other actions reward = 0, except actions that move the agent
out of state A or B.

State-value-function for the uniform random-policy ; γ = 0.9

Zhang 58

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Golf

I State is the position of the ball
I Reward is -1 for each swing until the ball is in the hole
I Value of a State?
I Actions: putt (use putter) driver (use driver)
I putt on the “green”area always successful (hole)

Zhang 59

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Optimal Value Function

I For finite MDPs, the policies can be partially ordered

π ≥ π′ if V π(s) ≥ V π′(s) ∀s ∈ S

I There is always at least one (maybe more) policies that are better than or
equal all others. This is an optimal policypolicypolicy . We call it π∗.

I Optimal policies share the same ,optimal state-value-function:

V ∗(s) = max
π

V π(s) ∀s ∈ S

I Optimal policies also share the same ,optimal action-value-function:

Q∗(s, a) = max
π

Qπ(s, a) ∀s ∈ S and a ∈ A(s)

This is the expected return after choosing action a in state s an continuing to

pursue an optimal policy .

Zhang 60

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Optimal Value-Function for Golf

I We can strike the ball further with the driver than with the
putter, but with less accuracy.

I Q *(s,driver) gives the values for the choice of the driver, if
always the best action is chosen.

Zhang 61

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Optimal Bellman-Equation for V ∗V ∗V ∗

The Value of a state under an optimal policy is equal to the expected returns
for choosing the best actions from now on.

V ∗(s) = max
a∈A(s)

Qπ∗(s, a)

= max
a∈A(s)

E {rt+1 + γV ∗(st+1)|st = s, at = a}

= max
a∈A(s)

∑
s
′

Pa
ss
′

[
Ra
ss
′ + γV ∗(s

′
)
]

The backup diagram:

V ∗ is the unique solution of this system of nonlinear equations.

Zhang 62

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Optimal Bellman-Equation for Q∗

Q∗(s, a) = E

{
rt+1 + γmax

a′
Q∗(st+1, a

′
)|st = s, at = a

}
=

∑
s′

Pa
ss′

[
Ra
ss′

+ γmax
a′

Q∗(s
′
, a
′
)

]
The backup diagram:

Q∗ is the unique solution of this system of nonlinear equations.

Zhang 63

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Why Optimal State-Value Functions are Useful

A policy that is greedy with respect to V ∗, is an optimal policy .

Therefore,given V ∗, the (it one-step-ahead)-search produces
optimal actions in the long time. e.g., in the gridworld:

Zhang 64

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

What about Optimal Action-Values Functions?

Given Q∗, the agent does not need to perform the
one-step-ahead-search:

π∗(s) = arg max
a∈A(s)

Q∗(s, a)

Zhang 65

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Solving the optimal Bellman-Equation

I To be able to determine an optimal policy policy by solving the
optimal Bellman-equation we need the following:
I exact knowledge of the dynamics of the environment;
I enough storage space and computation time;
I the Markov probability

I How much space and time do we need?
I polynomially with the number of states (with

dynamic programming , later lecture)
I BUT, usually the number of states is very large (e.g.,

backgammon has about 1020 states).

I We usually have to resort to approximations.

I Many RL methods can be understood as an approximate
solution to the optimal Bellman equation.

Zhang 66

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Summary

I agent-environment interaction

I states
I actions
I rewards

I policypolicypolicy : stochastic action selection rule

I returnreturnreturn: the function of the rewards, that the agent tries to maximize

I Episodic and continuing tasks

I Markov probability

I Markov decision process

I transition probabilities
I expected rewards

Zhang 67

University of Hamburg

MIN Faculty

Department of Informatics

Introduction Reinforcement Learning

Summary (cont.)

I Value functions

I state-value function for a policy
I action-value function for a policy
I optimal state-value function
I optimal action-value function

I optimal policies

I Bellman-equation

I the need for approximation

Zhang 68

	Introduction

