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Overview (Review) SVM

Support Vector Machines

» a.k.a. maximum margin classifiers

v

a family of related

\{

supervised

v

learning methods

v

for classification and regression

v

try to minimize the classification error

v

while maximizing the geometric margin
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Overview (Review)

Support Vector Machine

» based on the linear classifier

Four new main concepts:
» Maximum margin classification

» Soft-margin classification for noisy data

v

Introduce non-linearity via feature maps

v

Kernel trick: implicit calculation of feature maps

v

use Quadratic Programming for training

v

polynomial or gaussian kernels often work well
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Overview (Review) SVM

Overall concept and architecture

> select a feature space H and a mapping function ® : x — ®(x)
> select a classification (output) function o

y(x) = (32 0i(®(x), ®(xi)))

» during training, find the support-vectors xi . .. X
» and weights 1 which minimize the classification error

map test input x to ®(x)
calculate dot-products (®(x)P(x;))
feed linear combination of the dot-products into o

vV v v Y

get the classification result
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Overview (Review) SVM

Maximum margin and support vectors

®  denotes +1

O denotes -1

» the (linear) classifier with the largest margin
» data points that limit the margin are called the support vectors
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SVM

Soft-margin classification

> allow some patterns to violate the margin constraints
» find a compromise between large margins

» and the number of violations

Idea:
» introduce slack-variables £ = (&;...&,), & >0

» which measure the margin violation (or classification error)
on pattern x;:  y(x;))(w-®(x;)+b) >1-¢

» introduce one global parameter C which controls the
compromise between large margins and the number of
violations
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Overview (Review)

Soft-margin classification

» introduce slack-variables &;
» and global control parameter C

maxy, pe P(w, b, &) = 3w? + C Y7, &

subject to:
Vi y(xi)(w-®(xj)+b) =1-¢
Vi: &>0

» problem is now very similar to the hard-margin case

» again, the dual representation is often easier to solve
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Overview (Review) SVM

Nonlinearity through feature maps

General idea:

» introduce a function ® which maps the input data into a higher
dimensional feature space

d:xeX—d(x)eH

» similar to hidden layers of multi-layer ANNs

» explicit mappings can be expensive in terms of CPU and/or
memory (especially in high dimensions)

» "“Kernel functions' achieve this mapping implicitly

» often, very good performance
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Overview (Review) SVM

Common SVM feature maps

kernels

= ( polynomial terms of x, of degree 1 to q)
( radial basis functions of x)

R‘ >\‘ 7?
I

= ( sigmoid functions of x)

combinations of the above, e.g.
K(x, z) = Ki(x, z) + Ka(x, z);
K(Xa Z) = KI(X7Z) : K2(Xaz);

YV V.V vV VvV VY

Note:
» feature map ® only used in inner products
» for training, information on pairwise inner products is sufficient
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Overview (Review) SVM

Quadratic polynomial map: scalar product

v

Calculating (®(x), ®(y)) is O(m?)

For comparison, calculate (x -y + 1)? :

v

v

(x-y +1)? = ((CZy xi - yi) +1)?

=X, Xi)’i)2 +2(3X0 xiyi) +1

=>4 jm:1 Xiyixiyj + 230 xiyi + 1

= S (i) + 2300 S xiyixgyy 2 200 xiyi + 1
= O(x) - o(y)

» We can replace (®(x), ®(y)) with (x - y + 1)2, which is O(m)
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References: web resources
» see full references in part one (AL 3a)

» L.Bottou, O.Chapelle, D. DeCoste, J. Weste (Eds), Large-Scale
Kernel Machines, MIT Press, 2007

» C.J.C.Burges, A Tutorial on Support Vector Machines for
Pattern Recognition, Data Mining and Knowledge Discovery 2,
121-167 (1998)

» A.Ben-Hur, D. Horn, H. T. Siegelmann, V. Vapnik, Support
Vector Clustering, Journal of Machine Learning Research 2,
125-137 (2001)
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Example SVM applications

Applications of SVM

» data clustering

» multi-class classification

» visual pattern (object) recognition
> text classification: string kernels
» DNA sequence classification

» function approximation

» of course, streamlined kernels for each domain

> let's take a look at a few examples. ..
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Example SVM applications - SVM for clustering SVM

SVC - support vector clustering
Ben-Hur, Horn, Siegelmann, Vapnik (2001)

» map data points to high-dimensional feature space
» using the Gaussian kernel

> look for the smallest sphere that encloses the data

» map back to data space

> to get the set of contours which enclose the cluster(s)

» identifies valleys in the data probability distribution

» use soft-margin SVM to handle outliers

o = = = o 14
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Example SVM applications - SVM for clustering SVM

SVC: Example data set and results

Gaussian kernel K(x,z) = e~ 909 radius q

-05

05

-05

Figure 1: Clustering of a data set containing 183 points using SVC with € = 1. Support
vectors are designated by small circles, and cluster assignments are represented
by different grey scales of the data points. (a): g =1 (h): ¢ = 20 (¢): g = 24 (d):
g =48
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Example SVM applications - SVM for clustering SVM

SVC: Example data set, number of support vectors

(x—z

Gaussian kernel K(x,z) = e~ 9 ’ radius q

Figure 2: Number of SVs as a function of g for the data of Figure 1. Contour splitting
points are denoted by vertical lines.
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Example SVM applications - SVM for clustering SVM

SVC: Noisy data

» Use soft-margin SVM learning algorithm
» with control parameter C
» and slack variables & > 0

» non-support vectors: inside the cluster
» support vectors: on the cluster boundary

» bounded support vectors: outside the boundary (violation)
» number of bounded support vectors is nps, < 1/C
» fraction of outliers: p =1/NC

[m] = = = o 17
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Example SVM applications - SVM for clustering SVM
SVC: Noisy data and bounded support vectors
Soft-margin SVM learning with control parameter C
tay ()
ap ap
ey = 5 B ) ey = ) 3 3
Figure 3: Clustering with and withont BSVs. The inner cluster is composed of 50 points
generated from a Gaussian distribution. The two concentric rings contain 150,/300
polnts, generated from a uniform angular distribution and radial Gaussian dis-
tribution. (a) The rings cannot be distinguished when € = 1. Shown here is
g = 3.5, the lowest g value that leads to separation of the inner cluster. (b)
Outliers allow easy clustering, The parameters are p = 0.3 and ¢ = 1.0,
[m] = Q™ 18
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Example SVM applications - SVM for clustering

SVC: Noisy data and bounded support vectors

Soft-margin SVM learning with control parameter C

0 02
0.15 015
01 01
0.05 0.05 BSVs S! BSVs
0 0
5 0 5 5 0 5
(a) ()

Figure 4: Clusters with overlapping density functions require the introduction of BSVs.

» Remember: larger C implies larger margin
» at the cost of more bounded support vectors

> with yj(w;,x;) > 1§
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Example SVM applications - SVM for clustering SVM

SVC: Strongly overlapping clusters

Figure 5: In the case of significant overlap between clusters the algorithm identifies clusters
according to dense cores, or maxima of the underlying probability distribution.
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Example SVM applications - SVM for clustering SVM

SVC: Comparison with classical clustering

Figure 6: Ripley’s crab data displayed on a plot of their 2nd and 3rd principal compo-
nents: (a) Topographic map of F,,.(x] and SVC cluster assignments. Cluster
core houndaries are denoted by hold contours; parameters were g = 4.8, p=0.7.
{b) The Parzen window topographic map F,(x) for the same g value, and the
data represented by the original classification given by Ripley (1996).
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Example SVM applications - SVM for clustering SVM

Selecting the control parameter

> training result depends on the specified control parameter C

how to select the value of C?

v

v

depends on the application and training data

v

Numerical Recipes recommends the following

» start with C =1

> then try to increase or decrease by powers of 10

» until you find a broad plateau where the exact value of C doesn't
matter much

» a good SVM solution should classify most patterns correctly,

» with many «; = 0 and many «; = C, but only a few in between

N
N}
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Example SVM applications - SVM for multi-class classification

Multi-class classification

» many practical classification problems involve more than just
two classes!

> for example, clustering (see above), object recognition,
handwritten digit and character recognition, audio and natural
speach recognition, etc.

» but standard SVM handles only exactly two classes
» “hard-coded” in the SVM algorithm

» What to do?

[=] = = = o
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Example SVM applications - SVM for multi-class classification SVM

Example: multi-class classification

D ciosse 1
slasse 2

® classe 3

» exmulticlassall from SVM-KM toolbox (3 classes)
» demo

o & - = DAl 24
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Example SVM applications - SVM for multi-class classification SVM

One versus the rest classification

To get an M-class classifier:
» construct a set of M binary classifiers f1,... M
» each trained to separate one class from the rest

» combine them according to the maximal individual output
before applying the sgn-function

argj_maxM g/(x), where g/(x)= Z (y;oz{k(x,x,—) + b’)

Bt R .
i=1

» the winner-takes-all approach

[m] = = = o 25
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Example SVM applications - SVM for multi-class classification SVM

One versus the rest: winner takes all

» the above algorithm looks for arg max g/(x)

» the M different classifiers have been trained
» on the same training data
» but with different binary classification problems

» unclear whether the g/(x) are on comparable scales
» a problem, when several (or none) classifiers claim the pattern
> try to balance/scale the g/(x)

» all classifiers trained on very unsymmetrical problems
> many more negative than positive patterns
> (e.g. digit-7 vs. all handwritten characters and digits)

o = = = o 26
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Example SVM applications - SVM for multi-class classification SVM

One versus the rest: reject decisions

» The values of g/(x) can be used for reject decisions in the
classification of x

» consider the difference between the two largest g/(x) as a
measure of confidence

» if the measure falls short of a threshold 6, the classifier rejects
the pattern

» can often lower the error-rate on other patterns

» can forward un-classified patterns to human experts

o = = = o 27
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Example SVM applications - SVM for multi-class classification SVM

Pairwise classification

v

train a classifier for each possible pair of classes
for M classes, requires M(M — 1)/2 binary classifiers
» digit-0-vs-digit-1, digit-O-vs-digit-2, ..., digit-8-vs-digit-9

v

v

(many) more classifiers than one-vs-the-rest for M > 3

v

and probably, longer training times

v

but each individual pairwise classifier is (usually) much simpler
than each one-vs-the-rest classifier

o = = = o 28
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Example SVM applications - SVM for multi-class classification SVM

Pairwise classification: tradeoff

v

requires (M — 1)M /2 classifiers vs M one-vs-the-rest

v

each individual classifier much simpler

v

smaller training sets (e.g. digit-7 vs. digit-8)
» for super-linear learning complexity like O(n®), the shorter
training times can outweigh the higher number of classifiers

v

usually, fewer support vectors

> training sets are smaller
> classes have less overlap

o = = = o 29
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Example SVM applications - SVM for multi-class classification SVM

Pairwise classification: tradeoff

v

requires (M — 1)M /2 classifiers vs M one-vs-the-rest

v

but fewer support vectors per classifier

v

if M is large, will be slower than M one-vs-the-rest

v

example: digit-recognition task and the following scenario:
> after evaluating the first few classifiers,
» digit 7 and digit 8 seem unlikely (“lost” in the first rounds)
> rather pointless to run the digit-7-vs-digit-8 classifier

v

embed the pairwise classifiers into a directed acyclic graph

» each classification run corresponds to a graph traversal
» much faster than running all pairwise classifiers

[m] = = = o 30
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Example SVM applications - SVM for multi-class classification SVM

Error-correcting output coding

v

train a number of L binary classifiers f1, ..., ft
» on subproblems involving subsets of the M classes
> e.g. separate digits 0..4 from 5..9, 0..2 from 3..9, etc.

» If the set of binary classifiers is chosen correctly,

> their responses {+1}! determine the output class of a test
pattern

> e.g., logy(M) classifiers on binary-encoding ...

> use error-correcting codes to improve robustness against
individual mis-classifications

> note: newest schemes also use the margins of the individual
classifiers for decoding

[m] = = = o 31
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Example SVM applications - SVM for multi-class classification

Error-correcting output coding

» example: Hamming (7,4) code
» linear error-correcting block-code
4 databits, 3 parity bits
detects and corrects 1-bit errors
generator matrix G and decoding matrix H

v vyy

» more efficient codes
» BCD (Bose, Chaudhuri, Hocquenghem)
e.g. BCH(15,7,5) corrects 2-bit errors
» RS (Reed-Solomon)

>

> large block-sizes required for low overhead
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Example SVM applications - SVM for multi-class classification

SVM

Multi-class objective functions
LWK p.213

> re-design the SVM algorithm to directly handle multi-classes
» yi € {1,... M} the multi-class label of pattern x;
» me{l,...,M}

M m
e . 1 2 C r
m1n1m1zeW,eH,§;eIR'n,b,eR§ Z [wr[|* + ‘m Z Z §i
r=1 i=1 ry;

subject to (wy,, x;) + by, > (w, x;) + by +2 — &7, with £/ > 0.
» optimization problem has to deal with all SVMs at once
» large number of support vectors

» results comparable with one-vs-the-rest approach

o = = = o 33)
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Example SVM applications - SVM for multi-class classification SVM

Summary: multi-class classification
LWK p.214

» Basic SVM algorithm only supports binary classifications

» Several options for M-class classification

1 M one-versus-the-rest classifiers

2 M(M —1)/2 pairwise binary classifiers

3 suitably chosen subset classifiers (at least, log, M),
plus error-correcting codes for robustness

4 redesigned SVM with multi-class objective function

» no approach outperforms all others
» often, one-vs-the-rest produces acceptable results

[m] = = = o 34
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SVM for visual pattern recognition

» one very popular application of SVMs
» can work on raw pixels

» or handcrafted feature maps

» MNIST handwritten digit recognition
» NORB object recognition

» histogram based classification

[m] = = = o
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Example SVM applications - SVM for visual pattern recognition SVM

MNIST handwritten characters data set

» set of handwritten digits

» based on NIST database 1 and -3 (b&w)

» 20x20 pixel grayscale images (interpolated from 28x28 b&w)
> used as a benchmark for (multi-class) classifiers

> training set with 60.000 patterns

» test set with 10.000+ patterns

» http://yann.lecun.com/exdb/mnist/
» current best classifier achieves 0.38% error

[m] = = = o 36
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Example SVM applications - SVM for visual pattern recognition

MNIST data set: example '4’

FRAIITIFIFTITSITTTIITYI T
TFrTFT LTI IINT I
FSPARAIT TR F Y
ITFTARITTF>IFPITI2ET
TRTITFTTTIFFTTT>>T>y
FIPFred Tt Frw
oS RTTITT AT IT N
S o g il i i i I g i = ol gl gl
AT FRIRNERNRTFIPTITITT
SRIRI R rAF TR
TR T IT ST T
FRT RS IFENRN NN TR
AX2TRITART IS aan
TEITIINIdr st
TTRETTIINTIT AR+
TIIIFITI>TO>ITIPFIT I

http:/ /www.cvl.isy.liu.se/ImageDB /images/external_images/MNIST _digits/mnist_train4.jpg
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Example SVM applications - SVM for visual pattern recognition SVM

MNIST benchmark

v

typical published results on raw MNIST

» 0% percent errors on training set
» about 3% errors on the test set

v

apparently, training and test set don't match perfectly

v

some test patterns quite different from training patterns

v

difficult to achieve very good error rates

v

several approaches based on extra training patterns

[m] = = = o 38
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Example SVM applications - SVM for visual pattern recognition SVM
MNIST results overview

Table 14.1 Test error rates of various learning models on the MNIST
dataset. Many results obtained with deslanted images or hand-designed
feature extractors were left out. NN: fully connected neural network:
ConvNN: convolutional neural network; k-NN: k-nearest neighbors.

Classifier Error Reference
Knowledge-free methods

2-layer NN, 800 hidden units 1.60%  Simard et al. 2003

3-layer NN, 5004300 units 1.53%  Hinton et al. 2006

SVM, Gaussian kernel 1.40%  DeCoste and Schélkopf 2002

EVM, Gaussian kernel 1.03%  Haffner 2002

DBM + final b i 0.95%  Hinton et al. 2006
Convolutional networks

ConvNN LeNet-5 0.80%  Ranzato et al. 2007

ConvNN LeNet-6 0.70%  Ranzato et al. 2007

ConvNN LeNet-6 + unsupervised learning _ 0.60% _ Ranzato et al. 2007
Training set augmented with affine distortions

2-layer NN, 800 hidden units 1.10%  Simard et al. 2003

Virtual SVM, degree 9 polynomial kernel ~ 0.80%  DeCoste and Schélkopf 2002

ConvNN, 0.60%  Simard et al. 2003
Training set augmented with elastic distortions

2-layer NN, 800 hidden units 0.70%  Simard et al. 2003

SVM Gaussian Kernel + online training 0.67%  this book, chapter 13

Shape context features + elastic k-NN 0.63%  Belongie et al. 2002

ConvNN 0.40%  Simard et al. 2003

ConvNN LeNet-6 0.49%  Ranzato et al. 2007

ConvNN LeNet-6 + unsupervised learning _ 0.39% _ Ranzato et al. 2007

o> 39




UH MIN Faculty
iti Department of Informatics
L2 University of Hamburg

Example SVM applications - SVM for visual pattern recognition SVM

MNIST experiments with SVMs

» G.Loosli, L. Bottou, S. Canu, Training Invariant SVMs Using
Selective Sampling, in Large-Scale Kernel Machines, 2007

» an approach to improve the classification error rate
» by increasing the training set
» with automatically synthesized patterns

» derived from the original training patterns

» 100 random deformations of each original image

v

6 million training images. . .

[m] = = = o 40
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Example SVM applications - SVM for visual pattern recognition

Virtual training set

» synthesize new training patterns

» by applying deformations on each original pattern

> affine transformations (sub-pixel accuracy)
translations, rotations, scaling

> deformation-fields (elastic transformation)

> thickening

>

Goal:

» a transformation invariant classifier

» more robust to slight variations in the test patterns

» but handling transformations can also increase the test set error
» of course, much higher training effort and time

[=] = = = o
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Example SVM applications - SVM for visual pattern recognition SVM

MNIST modified training patterns

Figure 13.4 This figure shows 16 variations of a digit with all the trans-
formations cited here.

o
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Example SVM applications - SVM for vi

MNIST effect of transformations

ual pattern recogn

Effects of transformations, trained on 5000 points with 10 deformations each

26

~

Error rate on independant validation set

=9 -2 pixels wih thickening
| A~ 1 pixel with thickening
| = @=no translation with thickening
~8- o ransiation non thinckening
=~ 1 pixel no thekening
-2 pixels no thickening

IO TP

B =
‘.2-%::0'

L -
-

15 2 25 3 35 4
Strength of coefiicient .

Figure 13.5 Effects of transformations on the performance. This graph is
obtained on a validation set of 10,000 points, trained on 5000 points and 10
transformations for each (55,000 training points in total) with an RBF kernel
with bandwidth 5 = 0.006. The best configuration is elastic deformation
without thickening, for 7 = 2 and one-pixel translations, which gives 1.28%.
Note that 7 = 0 is equivalent to no elastic deformation. The baseline result

for the validation sef

s thus 2.52%.
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Example SVM applications - SVM for visual pattern recognition SVM

LASVM training algorithm

» due to the problem size, training is done using an iterative
algorithm, one pattern a time.
» several choices to select the next training pattern:
» random selection: picks a random unseen training example
» gradient selection: pick the most poorly classified example
(smallest value of y,f(xx) among 50 randomly selected unseen
training examples)
> active selection: pick the training example that is closest to the
decision boundary (smallest value of |f(xx)|) among 50 randomly
selected unseen training examples)
> autoactive selection: randomly sample at most 100 unseen
training examples, but stop as soon as 5 fall inside the margins
(will become support vectors). Pick the one closest to the
decision boundary.

=} =& = = o 44
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MNIST benchmark results

ual pattern recogn
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Example SVM applications - SVM for visual pattern recognition

SVM

MNIST benchmark results explanation

Figure 13.6 This figure compares the error rates (left), the numbers of
support vectors (center), and the training times (right) of different LASVM
runs. The first bar of each graph corresponds to training a regular SVM on the
original 60,000 MNIST examples (NT: no transformation). The other three
bars were obtained using 100 random deformations of each MNIST example,
that is, 6 millions points. The second columns reports results for random
selection (RS), the third for active selection (AS), and the last for auto-active
selection (AAS). The deformation settings are set according to previous results
(figure 13.5). The autoactive run gives the best compromise.
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Example SVM applications - SVM for visual pattern recognition SVM

MNIST evolution of training and test errors

Error Rate during training (class two against all)

08—
£ 06
s ]
E
Eocr
X /..‘,—;; :_.:':r_\_\‘._‘!}m_,w TIPS
0.2
1 iTrain error
o T T T T 1
0 250405 52405 7.56405 1e+06 136406

Number of training examples

Figure 13.8 This figure shows the evolution of the training error on the
60,000 original points and the test error during training. The results are
shown for class 2 against the others. We observe that training on deformed
examples does not affect the performance on orginal examples but increases
the performance on unseen data.
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Example SVM applications - SVM for visual pattern recognition SVM

MNIST SVM experiment results

G. Loosli, L. Bottou, S. Canu, Training Invariant SVMs Using Selective Sampling

Table 13.2 Summary of our final experiment.

Number of binary classifiers 10

Number of examples for each binary classifier 8,100,000
Thickening transformation no
Additional translations 1 pixel

RBF kernel bandwidth () 0.006
Example selection criterion auto-active
Finishing step every 600,000 examples
Full training time 8 days

Test set error 0.67%
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Example SVM applications - SVM for visual pattern recognition SVM

NORB

» Natural images of 3D-objects, 96x96 pixels
» 50 different toys in 5 categories
» 25 objects for training, 25 for testing

» each object captured in stereo from 162 viewpoints
(9 elevations, 18 azimuths)

» objects in front of uniform background

» or in front of cluttered background (or missing object)

> http://www.cs.nyu.edu/"ylclab/data/norb-v1.0/
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NORB normalized-uniform training set
o e D e A
2 &£ R &5
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Figure 14.6 The 25 testing objects in the normalized-uniform NORB set.
The testing objects are unseen by the trained system.
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NORB jittered-cluttered training set

Figure 14.7 Some of the 291,600 examples from the jittered-cluttered
training set (left camera images).
gory. A 6-th background category is

ch column shows images from one cate-
added
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NORB data set

» recognition basically can only rely on the shape of the object

> all other typical clues eliminated or unusable

» different orientations (viewing angles)
» different lighting conditions

» no color information (grayscale only)
» no object texture

» different backgrounds (cluttered set)

» no hidden regularities

[m] = = = o
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Error rates: normalized uniform set

Table 14.2 Testing error rates and training/testing timings on the
normalized-uniform dataset of different methods. The timing is normalized
to hypothetical 1GHz single CPU. The convolutional nets have multiple re-
sults with different training passes due to their iterative training procedure.

SVM  Convolutional network Hybrid

Test error 11.6% 10.4% 6.0% 6.2% 5.9%

Train time (minxGHz) 480 64 448 3200 50+

Test time per sample (minxGHz) 0.95 0.03 0.04+

Fraction of SV 28% 28%

Parameters o=2000 Step size dim=80

C=40 2x107° -2 x 1077 o=5 C=40

» five binary SVMs, one for each class
» trained on the raw pixel images (d = 96 - 96 - 2 = 18432)
» convolutional network uses handcrafted feature map
» hybrid system trains SVMs on those features
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Feature functions for the NORB set

24@18x18

)
8@92x92 4@66 o

2@96x96 8@23x23

YFully connected

- 500 weights)

5x5 4x4 6x6 - :"6
5x$ , subsampling convolution 3 ’
convolution (96 kernels) o convolution

(12 kernels) subsampling (2400 kernels)

Figure 14.5 The architecture of the convolutional net used for the NORB
experiments. The input is an image pair, the system extracts 8 feature maps
of size 92 x 92, 8 maps of 23 x 23, 24 maps of 18 x 18, 24 maps of 6 x 6, and
a 100-dimensional feature vector. The feature vector is then transformed into
a 5-dimensional vector in the last layer to compute the distance with target
vectors.
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SVM

Some feature functions for the NORB set

[0z a7 sl e 7 8 90 ]2 130 15 a6 1 [is a8 ) 21 2 2
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Figure 14.8 The learned convolution kernels of the C3 layer. The columns
correspond to the 24 feature maps output by C3, and the rows correspond to
the 8 feature maps output by the S2 layer. Each feature map draws from 2
monocular maps and 2 binocular maps of S2. Ninety-six convolution kernels
are used in total.

[m] = = = A 55



UH MIN Faculty
iti Department of Informatics
L2 University of Hamburg

Example SVM applications - SVM for visual pattern recognition

SVM

Error rates: jittered cluttered set

Table 14.3 Testing error rates and training/testing timings on the jittered-
cluttered dataset of different methods. The timing is normalized to hypo-
thetical 1GHz single CPU. The convolutional nets have multiple results with
different training passes due to their iterative training procedure.

SVM  Convolutional network Hybrid

Test error 43.3% 16.38% 7.5% 7.2% 5.9%
Train time (minxGHz) 10,944 420 2100 5880 330+
Test time per sample (minx GHz) 2.2 0.04 0.06+
Fraction of SV 5% 2%
Parameters o =10* Step size dim=100
C=40 2x107°-1x107° o=5 C=1

» again, SVM trained on raw pixels
» convolutional network uses handcrafted feature maps

> hybrid system trains SVM on those feature maps
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Error

v

v

v

v

rates: SVM training and setup

SVM with 43% error-rate?

six one-vs-the-rest binary SVMs (one per catogory)
training samples are raw 108x108 pixel images

>

>
>
>
>
>

again, use a virtual training set

+3 pixel translations

scaling from 80% to 110%

rotations +5°

changed brightness +£20 and contrast
a total of 291.600 images

overall, a 23 328-dimensional input vector

only the Gaussian width o as a free parameter
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Poor performance of SVM on raw pixels?

» Gaussian kernel basically computers matching score (based on
Euclidean distance) between training templates and the test
pattern

> very sensitive to variations in registration, pose, illumination
» most of the pixels in NORB are background clutter

» hence, template matching dominated by background
irregularities

» a general weakness of standard kernel methods: their inability
to select relevant input features

» feature maps must be hand-crafted by experts
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Example: Histogram correlation kernel
A.Barla et.al., Image Kernels, LNCS 2388, 83-96

» calculate image histograms
» use histogram intersection as the feature

» instead of in addition to raw pixels

» applied to indoor/outdoor image classification

» e.g. for improved color image printing

> test set with 300 indoor and outdoor test images each
» http://www.benchathlon.net/img/todo/
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Histogram intersection kernel

> histograms A and B of images A, and Bj, with N pixels
» each histogram has m bins, A; (i =1,...,m)
» histogram intersection:

Kint(A, B) me{A,,B}

» note: this can be written as a kernel

» represent A as an N x m vector A defined as A :=
Ay Az Am

——— —— ——
(1,1,...,1,0,0,...,0,1,1,...,1,0,0,...,0, ..., 1,1,...,1,0,0,...,0)
—— ~—— ——
N—A; N—Ay N—Am

> Then Kint(A,B) = A-B
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Histogram kernel: recognition results

kernel r.r.(%)
histogram intersection 93.1
linear 38.8
2-nd deg polynomial 89.2
3-rd deg polynomial 89.4
4-rd deg polynomial 88.1
Gaussian (o =0.1) 89.1
Gaussian (o = 0.3) 86.5
Gaussian (o = 0.5) 87.8

» 600 training images, 123 indoor and 260 outdoor test images
> histogram used 15 x 15 x 15 bins in HSV colorspace
» other kernels trained on pixel data
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Summary: visual pattern recognition

» SVM can be trained on and applied to raw pixel data
» use virtual training set for better generalization

» but no performance guarantees

» good results on MNIST
» but total breakdown on NORB

» must use appropriate feature maps

» or hybrid architectures
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Text classification
LSKM p0.41

» another high dimensional problem...
» e.g. Reuters RCV1 text corpus

» 810.000 news stories from 1996,/1997
» partitioned and indexed in 135 categories
> http://trec.nist.gov/data/reuters/reuters.html

» represent word frequencies, e.g. bag of words
» or represent substring correlations
» train a SVM on the corpus

» classify the given input texts
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Bag of words representation
LWK 13.2

Sparse vector kernel
» map the given text into a sparse vector
» where each component corresponds to a word
» and component is set to one when the word occurs

» dot products between such vectors are fast

» but ignores the ordering of the words
» no vicinity information (e.g. words in one sentence)

» only detects exact matches (e.g. mismatch on mathces)
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String kernel

» efficient kernel that computes the dot product
> in the feature space spanned by all substrings of documents

» compuational complexity is linear in the document length and
the length of the substring

> allows to classify texts on similarity of substrings
» the more substrings match, the higher the output value

» use for text classification, DNA sequence analysis, ...
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String kernel: definitions

>

>

>

>

a finite alphabet ¥, so X" the set of all string of length n
Y* = J;2 o X" the set of all finite strings

length of a string s € ¥* is |s|

string elements are s(1)...s(]s|)

s t is the string concatenation of s and ¢

subsequences u of strings:

index sequence i := (i1, ..., /) with 1 < i < dots < i, < |s|
define u := s(i) := s(i1)...s(j,)

I(i) := i}y — i1 + 1 the length of the subsequence in s
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String kernel: feature space

» feature space H := IR™*") built from strings of length n

» one dimension (coordinate) for each element of X"

» feature map

[@n(s)]u = D AO

i:s(i)=u
» with decay parameter A\, 0 < A < 1

> the larger the length of the subsequence in s, the smaller its
contribution to [®,(s)]y-

» sum over all subsequences of s which equal u
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String kernel: the actual kernel

v

consider the dimension of H for the string asd

v

[®n(Nasdaq)]asa = A3 (one exact match of length 3)

[®,(lass das)]asa = 2A°  (two matches of length 5:
UasUUdUL and UaUsLidLIL)

v

v

kernel corresponding to the map ®(n) is:

k(s,t) = D [@n(s)]u[®n(t)]u = D Z NG
uexn ueX” (ij):s(i)=t(j)=u

» normalize: use k(s,t)/\/k(s,s)k(t,t)
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DNA sequence classification
LWK table 13.2 p.417

» DNA sequence contains coding sequences which encode
proteins, but also untranslated sequences

» find the start points of proteins (TIS: translation initiation sites)
» out of {A, C, G, T}, typically an ATG triplet

» certain local correlations are typical

» match,j(x,x) is 1 for matching nucleotides at position p + J,
0 otherwise

» construct kernel that rewards nearby matches

winp(x, x') = ( j':’_/ujmatchp+j(x,xl)) @

k(x,x") = (Zfazl Winp(x,x’)) %
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WK kernel with shifts

k(Xl.Xz)— Y63 Ye3 T ’?34

CTACGTATT CGG
Xo—>»—T CCTGAAGA

Figure 4.2 Given two sequences x; and xz of equal length, the WD kernel
with shifts consists of a weighted sum to which each match in the sequences
makes a contribution vk, depending on its length k and relative position p,
where long matches at the same position contribute most significantly. The
+’s can be computed from the ’s and &’s in (4.4). The spectrum kernel is
based on a similar idea, but it only considers substrings of a fixed length and
the contributions are independent of the relative positions of the matches to
each other.
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SVM-based regression

» use SVMs for function approximation?

» especially, for high-dimensional functions?

basic idea is very similar to classification:

>

>

estimate linear functions f(x) = (w,x) + b

based on (x1,y1),--., (Xm,¥ym) € H xR

use a ||w||? regularizer (“maximum margin")

use optimization algorithm similar to SVM training

use feature-maps to generalize to the non-linear case

[m] = = = o
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e-insensitive loss function
Vapnik 1995

» need a suitable cost-function

» define the following e-insensitive loss function:

ly = F(X)|e = max{0, |y — f(x)| — €}

» threshold € > 0 is chosen a-priori
» small e implies high approximation accuracy

» no penalty, when error below some threshold

» similar to classification loss-function: no penalty for
correctly-classified training patterns
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The e-tube

around the e-insensitive loss function

SVM

e-tube

» geometrical interpretation: allow a tube

» of width € around the given function values
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Goal of the SVR learning

SVM

Given:
» a dot product space H
> (mapped) input patterns (x1,y1), .., (Xm, ¥m) € H x R

Goal:

» find a function f with a small risk (or test error),

R[f] = [ c(f,x,y)dP(x,y)
» where P is the probability measure for the observations
» and c is a loss function, e.g. c(f,x,y) = (f(x) — y)?

» loss function can be chosen depending on the application

o & - = DAl 74



UH MIN Faculty
iti Department of Informatics
L2 University of Hamburg

Example SVM applications - SVM for function approximation SVM

Regularized risk functional

» find a function f with a small risk (or test error),

R[f] = [ c(f,x,y)dP(x,y)
» where P is the probability measure for the observations
» and c is a loss function, e.g. c(f,x,y) = (f(x) — y)?
» cannot minimize c¢ directly, because P is not known

> Instead, minimize the regularized risk functional
1 2 €
§||W|| +C- Rempa where emp == Z |yl - f XI

> Remp Measures the e-insensitive training error
» C controls the trade-off between margin and training error
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Main idea

» minimize the regularized risk functional

emp

1
SlIwl?+ ¢ R

> where RS, = LS |vi — f(x;)|e measures the training error

» constant C determines the trade-off

To obtain a small risk
» control both the training error (Rg,,,)
» and the model complixity (||w||?)

» in short, “explain the data with a simple model”

[m] = = = o
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e-SVR objective function
> again, rewrite as (soft-margin) optimization problem:

L Lo -
mlnlleeWIE'H,g(*)ERm,bemE | | W|| + E Z(€I + 5*)
i=1

subject to

> ((x,x,') + b) —yi<e+&
> yi— ((w,x) +b) <e+&F
» ¢ >0

» where (*) means both the variables with and without asterisks.
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¢-SVR dual problem

SVM

» introduce two sets of Lagrange multipliers «;; ” and 7,
» and minimize

1 C & o e .
L= 5||W||2+Ei§(§,-+§)—iz:;(n,f,-JH?,-i;)
—Za;(6+€i+yi—<W7Xi>—b)

i=1

= ai(e+& +yi— (w,x) — b)

i=1
> subject to a,(-*),nf*) > 0.
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SV expansion
For the whole details, see LWK 9.2 (p. 254ff)

» solution of the optimization problem results in the SV expansion

m

F(x)=> (af — a){xi,x) + b

i=1

» w can be written as a linear combination
» of a subset of the training patterns x;

» algorithm can be desribed in terms of dot products between the
data

» when evaluating f(x), we need not to compute w explicitly
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Example: function approximation

Support Vestor Macking Regression

» exregldls from SVM-KM toolbox (gaussian basis function)
» only a few support-vectors
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Example: function approximation

Support Vestor Macking Regression

» exregldls from SVM-KM toolbox (4th-order polynom)
» fails to approximate the target function sin(exp(x))
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Example: function approximation

Support Vestor Macking Regression

» exregldls from SVM-KM toolbox (ht radial basis function)
> very many support-vectors, but good approximation
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SVM complexity analysis

what is the complexity of SVM classification?
» n examples (training patterns)
» soft-margin control parameter C

» S support vectors, R free support vectors

two intuitive bounds:
» O(nS) when few support vectors (C small)
» O(R3) if many support vectors (C large)

» so, both quadratic and cubic terms
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Number of support vectors

assume an oracle which tells us
» the patterns that are not support vectors («; = 0)

> and the bounded support vectors (a; = C)
» remaining R free support vectors are determined by R linear

equations (representing the derivatives of the object function)

» solving this system takes O(R3) operations
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Verifying a solution

» n examples

» S support vectors

verification that vector « is a solution

\{

v

compute the gradient g of the dual

v

and check the optimality conditions

v

requires O(n - S) operations
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SVM training time: example
LSKM: SVM training with primal and dual represenations

10
—LIBSVM
- == Newton - primal
10} | g x10
8
2
o
£y
2
£
8
= 1
10
2| e
10
10° 100 10*
Training set size

Figure 2.8 Time comparison between LIBSVM and Newton optimization.
Here ns, has been computed from LIBSVM (note that the solutions are not
exactly the same). For this plot, h = 27°.
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Computation of Kernel values?

» computing kernels can be expensive,
e.g. consider images with thousands of pixels
e.g. consider documents with thousands of words

» computing the full kernel matrix is wasteful

» gradient computation only depend on Kj; which invole support
vectors (otherwise multiplied by zero)

» the kernel matrix does not fit in memory

» use special caching, or re-compute on-the-fly
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Efficient algorithms?
See LSKM p.12ff

» use traditional QP solver: works, but

> kernel-matrix is seldom sparse (only the SVs are)
> kernel-matrix rarely fits in memory
» high-accuracy solution not required
» use “chunking”: guess the support-vectors
> select a “working set” and solve
» usually works well, due to generalization
» misclassified patterns are SV candidates

» use efficient direction search to improve the «;
> to speed up the training
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Decomposition method
LSKM p. 17

Algorithm 1.2 Decomposition method

1: Vke{l...n} ar<0 % Initial coefficients

2 Vke{l...n} g1 % Initial gradient

3: loop

4: G™** « max; yigi subject to yiai < Bi

5 G™" «— min; y;g; subject to A; <y;a;

6 if G™** < G™" stop. % Optimality criterion (1.11)

7 Select a working set B C {1...n} % See text

1
8 o — arg max Zai l_yizyjaj Kij —522%011}:“; Ki;
« i€B J€B i€B j€B
subject to Vi€ B 0<a; <C and Zy,-a: =- Zy]aj
i€B i€B
9: Vke{l...n} gk —gr—yk Zy,(a: — i) Kix % Update gradient
i€B
10: VieB i+ aj % Update coefficients
11: end loop
[m] = = o> 89
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SMO with maximum violating pair
LSKM p. 19

The sequential minimal optimization (SMO) algorithm 1.3 selects working sets
using the maximum violating pair scheme. Working set selection schemes are
discussed more thoroughly in section 1.7.2. Each subproblem is solved by performing
a search along a direction u containing only two nonzero coefficients: u; = y; and
uj = —y;. The algorithm is otherwise similar to algorithm 1.2. Implementation

issues are discussed more thoroughly in section 1.7.

Algorithm 1.3 SMO with maximum violating pair working set selection

1: Vke{l...n} ar+<0 % Initial coefficients
2 Vke{l...n} gr—1 % Initial gradient
3: loop

4: i« argmax; y;g: subject to y;a; < B;

5 J < argmin; y;g; subject to A; < y;a; % Mazimal violating pair
6 if yigi <y;g; stop. % Optimality criterion (1.11)

Yigi — Y595 }

7 Ahmin{B,—y,a,,y]aj—Aj, Kot K =2k
i+ Ky i

8: Vke{l...n} gk — gr — Ayk Kix + Ayx Kji % Update gradient
9: @i — a; + YA aj — aj — YA % Update coefficients
10: end loop

% Direction search

MIN Faculty 39
Department of Informatics

PDDIX
RDDD
0205~}

DK
SO

SVM

90



UH MIN Faculty
iti Department of Informatics
L2 University of Hamburg

Algorithms and complexity SVM

SVM primal training

LSKM p. 41

Algorithm 2.1 SVM primal training by Newton optimization

Function: 8 = PRIMALSVM(K,Y,A)
n « length(Y) % Number of training points
if n > 1000 then
ng «— n/2 % Train first on a subset to estimate the decision boundary
B +— PRIMALSVM(K1..n,1..n2, Yi..na, A)]
sv < nonzero components of 3
else
sv e {1,...,n}.
end if
repeat
B, — (K + Aln,) 'Y
Other components of 3 «— 0
sv — indices ¢ such that y;[K8]; < 1
until sv has not changed
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Sparse vector and matrix representation
LSKM chapter 3, p. 51ff

» basic SVM training and classification algorithms:

> loops over weighted scalar products «;(x;, x)
» for all training patterns x;

v

but after training, most weights o; =0

v

only the support vectors have a; gy # 0

v

study sparse representations of vectors and matrices

v

to reduce the storage requirements

> to improve performance
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Sparse matrix by vector multiplication

Algorithm 3.1 Sparse matrix-vector multiplication

sMxV (M, x)
for (i=0; i<Nr; i++) do
| y[il = DOT(M[il, x);

return y

DOT(v1, v2)
dot = 0;
for (j=0; j<lvil; j++) do

dot += vi[jl.val * v2[v1[j].idx];
L DOT_ACCESS++;
DOT_MULADD++;

return dot

» vector v; stored as sorted table of (index,value) pairs
» complexity of DOT is O(|v1]|)

> memory accesses more expensive than the multiply-add
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Sparse sparse dot product

Algorithm 3.2 Sparse-sparse dot product

SDOT(v1, v2)
dot = 0, j1 = 0, j2 = 0;
while (j1 < |vi| and j2 < [v2]|) do
idx1 = v1[j1].idx;
idx2 = v2[j2].idx;
SDOT_ACCESS++;
if (idx1 == idx2) then
dot += vi[j1].val * v2[j2].val;
Jle+, 24+
SDOT_MULADD++;
else if (j1 > j2) then
| j2++;
else
L ji++;

return dot
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Sparse matrix vector product
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Sparse matrix vector product

Figure 3.1 Visual description of the matriz-vector multiplication. The
matrix has are six rows corresponding to vectors {X1,...,X6} and six columns
corresponding to features {F1,...,F6}. Nonzero elements have value 1 and are
represented by a circle. The result Y of the multiplication appears in the
right column, where each element is a dot product that counts the number
of circles shared by X and Xi. Both the DOT and SDOT dot products need to
access every nonzero feature in each vector, even when this feature is not used
by the other vector and when the product of the two features is zero. The
transpose approach only considers columns F1 and F4: the six dot products
in column Y are obtained by merging the lists represented by columns F1
and F4. The total number of operations is only proportional to the number of
(full) circles in these columns. Compare this with the traditional dot product
algorithm that has to access every single circle. Note that while SDOT will not
apply multiply-add to white circles, an access operation is still needed.
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Transpose matrix vector product

Algorithm 3.3 Transpose matrix-vector multiplication
TsMxV (M, x)
y=0;

for (i=0; i<|x|; i++) do
| y = TADD(y, M[.][x[i].idx], x[i].val);

return y

TADD(v1, v2, w)
for (j=0; j<lv2l; j++) do
vi[v2[j].idx] += w * v2[j].val;
]\ TADD_ACCESS++;
TADD_MULADD++;

return v1

Algorithm 3.4 Dense vector to index-value table
VEC2LIST(y)

(i=0; i<N._r; i++) do

VEC2LIST_ACCE.SS¢+

if (y[il != 0) then
y’[pos].idx = i;
y’ [pos].val = y[il;
pos++;

return y’
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Algorithm 3.5 Sparse list-merging algorithm

TMRG(VI v2, w)
j1=032=0, j =0;
y' = 0
while (j1 < |vi| and j2 < |v2]) do
idx1 = v1[j1].idx;
1dx2 = v2[j2].idx;
TMRG_ACCESS++;
if (idx1 == idx2) then
y’[j1.val = vi[ji].val + w * v2[j2].val;
y?[j].1idx = idx1;
JHt, Jis, 24+
TMRG_MULADD++;
else if (j1 > j2) then
vy’ [j1.val = w * v2[j2].val;
y’ [§].idx = idx2;
j+f' J2§+;
TMRG_MULADD++;
else
y’[j]1.val = vi[j1].val;
y’ [3].4ddx = idx1;
Jt, jive;
TMRG_COPY++;

return y’

Q>
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Training time on large data set
LSKM p0.41
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Figure 3.3 Evolution of learning time with the training set size on the
VoiceTone data. TCACH indicates LLAMA with the transpose cache algorithm.
The matrix multiplication in LLAMA is performed using the SDOT, TADD, or
THRG algorithms. FSEL indicates the optional feature selection algorithm.
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VC dimension

Vapnik-Chervonenkis dimension

» a measure of the capacity

» of a statistical classification algorithm

» defined as the cardinality of the largest set of points

» that the algorithm can shatter

» Informally, the capacity of a classification model is related to
how complicated it can be.

> higher capacity: can handle complicated situations,

» but might overfit
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VC dimension: example
LWK p.20

Figure 1.4 A simple VC dimension example. There are 2° = 8 ways of assigning 3 points
to two classes. For the displayed points in R?, all 8 possibilities can be realized using
separating hyperplanes, in other words, the function class can shatter 3 points. This would
not work if we were given 4 points, no matter how we placed them. Therefore, the VC
dimension of the class of separating hyperplanes in R? is 3.
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VC dimension vs. test errors

LWK p.20
average VC dimension bound total # of test errors
A
2000 !
+ 300
1000

degree: 2

Figure 5.5 Average VC dimension (solid), and total number of test errors, of ten two-
class-classifiers (dotted) with polynomial degrees 2 through 7, trained on the USPS set of
handwritten digits. The baseline 174 on the error scale, corresponds to the total number
of test errors of the ten best binary classifiers, chosen from degrees 2 through 7. The graph
shows that for this problem, which can essentially be solved with zero training error for all
degrees greater than 1, the VC dimension allows us to predict that degree 4 yields the best
overall performance of the two-class-classifier on the test set (from [470, 467]).
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VC dimension: Gaussian kernels

» SVM with Gaussian kernel can classify every input function
» if the Gaussian kernels are “narrow” enough

» Gaussian-kernel SVM has infinite VC dimension
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Summary

» Support Vector Machine

>

>
>
>
>

vV vV . vVvY

maximum-margin linear classifier

concept of support vectors

soft-margin classifier

feature-maps and kernels to handle non-linearity
training via Quadratic Programming algorithms

(multi-class) classification and clustering
pattern and object recognition
regression and function approximation
algorithms and complexity estimates

» still an active research topic

[=] = = = o
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Summary SVM

Thanks for your attention!

» Questions?

» bug-reports and feedback:
hendrich@informatik.uni-hamburg.de
zhangQinformatik.uni-hamburg.de
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A bit of fun: from Learning with Kernels
LWK p.363...the whole book is like this :-)

Theorem 12.4 (Algorithmic Stability of Risk Minimizers) The algorithm minimiz-
ing the regularized risk functional Rieg

A 1 & A
Regl1:= Remplf1+ I = - 3 et i f5) + 1P (1212)
=1
.. 2C%k? ) .
has stability 8 = , where x is a bound on ||k(x,-)|| = vk(x, x), ¢ is a convex loss

function, || - || is the RKHS norm induced by k, and C is a bound on the Lipschitz constant
of the loss function c(x, y, f(x)), viewed as a function of f(x).

Since the proof is somewhat technical we relegate it to Section 12.1.4. Let us now
discuss the implications of the theorem.

We can see that the stability of the algorithm depends on the regularization
constant via 5, hence we may be able to afford to choose weaker regularization if
the sample size increases. For many estimators, such as Support Vector Machines,
we use a constant value of C = ;5. In the context of algorithmic stability this means
that we effectively use algorithms with the same stability, regardless of the sample
size.
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Software: libsvm

» C.-C.Chang & C.-J. Lin, libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
Bindings to C/C++, Java, ...

» Alain Rakotomamonjy, Stephane Canu, SVM and Kernel
Methods Matlab Toolbox, http://asi.insa-
rouen.fr/enseignants/~arakotom/toolbox/index.html

» W.H.Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery,
Numerical Recipes — The Art of Scientific Computing,
Cambridge University Press, 2007 (all algorithms on CD-ROM)

» several other software packages (Matlab, C/C++, ...)
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Example datasets

> the libsvm page links to several training datasets
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

» MNIST handwritten digits
http://yann.lecun.com/exdb/mnist/

» NORB object recognition datasets
http://www.cs.nyu.edu/ylclab/data/norb-v1.0/
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