Algorithmisches Lernen/Machine Learning

Part 1: Stefan Wermter
e Introduction
o Connectionist Learning (e.g. Neural Networks)
e Decision-Trees, Genetic Algorithms
Part 2: Norman Hendrich
e Support-Vector Machines
e Learning of Symbolic Structures
e Bayesian Learning
e Dimensionality Reduction
Part 3: Jianwei Zhang
e Function approximation
e Reinforcement Learning
e Applications in Robotics

Algorithmic Learning:



Bayesian Learning

e Bayesian Reasoning

e Bayes Optimal Classifier

¢ Naive Bayes Classifier

e Cost-Sensitive Decisions

e Modelling with Probability Density Functions
e Parameter Estimation

e Bayesian Networks

e Markov Models

e Dynamic Bayesian Networks

¢ Conditional Random Fields
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Bayesian Learning

¢ Bayesian Reasoning
[ ]
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Bayesian Reasoning

derive the probability of a hypothesis h about some observation X

a priori probability: probability of the hypothesis prior to the
observation P(h)

e a posteriori probability: probability of the hypothesis after
observation P(h|X)

e observation can have discrete or continuous values

e continuous values: probability density functions p(h|X) instead of
probabilities

« error optimal decision: choose the hypothesis which maximizes
the a posteriori probability (MAP-decision)
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Bayesian Reasoning

¢ a posteriori probability is difficult to estimate
e Bayes’ rule provides the missing link

P(h,X) = P(X, h) = P(h)P(X|h) = P(X)P(h|X)

P(h)P(X|h)

P(hIX) = =5 3
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Bayesian Reasoning

¢ classification: using the posterior probability as a target function

! (”i)‘ (X‘”i) v
h \p = argmax —————> = argma P(h:\P h;:
M f h,'GHX f (X) r h,‘EHX ( I) (X| I)

¢ simplified form: maximum likelihood decision (e.qg. if the priors are

uniform)

h = P(X|h
MAP argrf?glzl( (x]h)
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Bayesian Reasoning

e allows

e to include domain knowledge (prior probabilities)
 to deal with inconsistent training data
 to provide probabilistic results (confidence)

e but: probability distributions have to be estimated
— usually many parameters
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Bayesian Reasoning

e derived results: Bayesian analysis of learning paradigms may
uncover their hidden assumptions, even if they are not
probabilistic:

o Every consistent learner outputs a MAP hypothesis under the
assumption of uniform prior probabilities for all hypotheses and
deterministic, noise-free training data

« If the real training data can be assumed to be produced out of
ideal ones by adding a normal-distributed noise term, any
learner that minimizes the mean-squared error yields a ML
hypothesis

o If an observed Boolean value is a probabilistic function of the
input value, minimizing cross entropy in neural networks yields
a ML hypothesis
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Bayesian Reasoning

e derived results (cont.):
o If optimal encodings for the hypotheses and the training data
given the hypothesis are chosen, selecting the hypothesis
according to the principle of minimal description length gives a

MAP hypothesis

hypL = arg min Le,(h) + Lc,(Dlh)
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Bayesian Learning

e Bayes Optimal Classifier
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Bayes Optimal Classifier

e Bayes classifier does not always produce a true MAP decision
e.g. for composite results

hypothesis hy h hs
posterior probability | 0.3 0.4 0.3

maximum of posteriors gives ho
but if a new observation is classified positive by h, but negative by
hy and hs the MAP decision would be "negative”

extension of the Bayes classifier to composite decisions
separating hypotheses h from decisions v

Vpap = arg r‘pea\)/( Z P(VAh,)P(h,P?)
1 hieH

simplification for P(v|h) € {0,1}
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Bayesian Learning

¢ Naive Bayes Classifier
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Naive Bayes Classifier

Bayes Optimal Classifier is too expensive
Vuap = argmax P(vj|X) = argmax P(vj|x1, X, ..., Xn)
veV vieV

= argmax P(v;)P(x1, Xz, ..., Xn|V})
vev

prohibitively many parameter to estimate
independence assumption:

P(xi|v;) is independent of P(xx|v;) for i # k

vne = argmax P(v)) [ [ P(xilv))
veV ;

simple training
usually good results
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Bayesian Learning

e Cost-Sensitive Decisions

Algorithmic Learning:

13



Cost-Sensitive Decisions

 error optimal classification not always welcome: highly
asymmetric distributions

o diseases, errors, failures, ...

e priors determine the decision

e including a cost function into the decision rule
e ¢j cost of predicting / when the true class is j
e cost matrix

Ci1 Ci2 ... Cip

c C .. C
C— 21 Co2 2n

Cn‘] Cn2 Cnn
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Cost-Sensitive Decisions

e Bayes classifier with cost function can help to reduce false
positives/negatives

h(x) = argmin > _ ¢ p(hj|X)
T

¢ alternative: biased sampling of training data
« not really effective
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Cost-Sensitive Decisions

e not every cost matrix is a reasonable one
— reasonableness conditions
o correct decisions should be less expensive than incorrect ones
Cij < Cjj i 7éj
e arow in the cost matrix should not dominate another one
e row m dominates row n: Vj.Cm; > Cp;
o optimal policy: always decide for the dominated class

e e.g. asymmetric cost function for diseases:
| actually notill  actually ill

predict not ill 0 1
predict ill 9 0
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Cost-Sensitive Decisions

e any two-class cost matrix can be changed by

 adding a constant to every entry (shifting)
o multiplying every entry with a constant (scaling)

without affecting the optimal decision

Coo  Cot > 0 ¢o1 — Coo/C1o — Coo
Clo Ci 1 C11 — Coo/C10 — Coo

— actually only one degree of freedom!
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Cost-Sensitive Decisions

e optimal decision require the expected cost of the decision to be
larger than the expected cost for the alternative decisions
e.g. two-class case

P(®|x) c10 + P(©]x) ¢11 < P(®]x) coo + P(S]X) Cof

(1 = P(elx) ci0 + P(&[x) c11 < (1 — P(Sx) coo + P(S[X) Cor
¢ threshold for making optimal cost-sensitive decisions

(1—=p*) clo+p* 11 = (1 —p") Coo +P" Co

o C10 — Coo
C10 — Coo + Co1 — C11
can be used e.g. in decision tree learning

p*
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Cost-Sensitive Decisions

e costs are a dangerous perspective for many applications

e e.g. rejecting a "good” bank loan application is a missed
opportunity not an actual loss
— cost are easily measured against different baselines

o benefits provides a more natural (uniform) baseline: cash flow

e costs/benfits are usually not constant for every instance

 e.g. potential benefit/loss of a defaulted bank loan varies with
the amount
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Bayesian Learning

¢ Modelling with Probability Density Functions
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Modelling with Probability Density Functions

probability density functions p(X|v;) instead of P(X|v;)
P(X|v;) is always zero in a continuous domain

choosing a distribution class, e.g. Gaussian or Laplace

)2

1 _(x=p
pxIY) = Nl o] = o5
_lx=pl

1
p(x|v) = L[x, p, o] = 5.6 7

parameters: mean p, variance o
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Modelling with Probability Density Functions

¢ distributions for multidimensional observations
e e.g. multivariate normal distribution

P(RIV) = NX. i, ]

Die zweidimensionale Normalverteilung

e parameters

e vector of means
e co-variance matrix
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Modelling with Probability Density Functions

diagonal covariance
matrix

uniformly filled

(rotation symmetry around
the mean)

diagonal covariance
matrix

filled with arbitrary values
(reflection symmetry)

completely filled
covariance matrix
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Modelling with Probability Density Functions

o diagonal covariance matrix: uncorrelated features
relativly small number of parameters to be trained
— naive Bayes classifier

e completely filled covariance matrix: correlated features
high number of parameters to be trained

Zuweidimensionale Normalverteilung mit sigma_Y=2 und rho=0.7
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Modelling with Probability Density Functions

o decorrelation of the features: transformation of the feature space

 Principal Component Analysis
o Karhunen-Loéve-Transformation
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Modelling with Probability Density Functions

e compromise: mixture densities
e superposition of several Gaussians with uncorrelated features

M
p(x|v) = Z Cm N'[X, fim, Zm]

m=1
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Modelling with Probability Density Functions

e compromise: mixture densities
e superposition of several Gaussians with uncorrelated features

M
p(x|v) = Z Cm N'[X, fim, Zm]

m=1
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Modelling with Probability Density Functions

e mixture density functions introduce a hidden variable:
Which Gaussian produced the value?
¢ two step stochastic process:
e choosing a mixture randomly

L, if X; was generated by p;(X|v)
Y71 0 otherwise

 choosing a value randomly

v

[\ piGIv) p% PalFIV)

e direct estimation of distribution parameters is not possible
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Bayesian Learning

e Parameter Estimation
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Parameter estimation

e complete data

o maximum likelihood estimation
o Bayesian estimation

e incomplete data

o expectation maximization
« (gradient descent techniques)
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Maximum Likelihood Estimation
¢ likelihood of the model M given the (training) data D

L(MD) = ] P(d|M)
deD

e log-likelihood

LLMD) = ]| log=P(d|M)
deD

e choose among several possible models for describing the data
according to the principle of maximum likelihood

6 =arg max L(Me|D) = arg max LL(Me|D)

o the models only differ in the set of parameters ©
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Maximum Likelihood Estimation

e complete data: estimating the parameters by counting

o N(A = a)
PA=a)= Zvedom(A) N(A=v)

N(A=a,B=b,C=c)

PA=alB=bC=0)==yp) oo
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Bayesian Estimation

e sparse data bases result in pessimistic estimations for unseen
events
o if the count for an event in the data base is 0, the event ios
considered impossible by the model
e Bayesian estimation: using an estimate of the prior probability as
starting point for the counting
« estimation of maximum a posteriori parameters
e NO zero counts can occur
« if nothing else available use an even distribution as prior
o Bayesian estimate in the binary case with an even distribution

n+1
P =
ves)= i
n: counts for yes, m: counts for no
effectively adding virtual counts to the estimate
e alternative: smoothing as a post processing step
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Incomplete Data

e missing at random:
o probability that a value is missing depends only on the
observed value
 e.g. confirmation measurement: values are available only if the
preceding measurement was positive/negative
e missing completely at random
 probability that a value is missing is also independent of the
value
e e.g. stochastic failures of the measurement equipment
« e.g. hidden/latent variables (mixture coefficients of a Gaussian
mixture distribution)
e nonignorable:

» neither MAR or MCAR
 probability depends on the unseen values, e.g. exit polls for
extremist parties
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Expectation Maximization

Estimating the means of a Gaussian mixture distribution
e choose an initial hypothesis for © = (uy1, ..., uk)
« estimate the expected mean E(z;) given © = (u1, ..., fik)

¢ recalculate the maximum likelihood estimate of the means:
© = (4, ..., pj) assuming z;

5. | 1 ifX;was generated by pj(x|v)
Y71 0 otherwise

» replace p; by u} and repeat until convergence
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Expectation Maximization

e expectation:
o “complete” the data set using the current estimation h = © to
calculate expectations for the missing values
o applies the model to be learned (Bayesian inference)
e maximization:

« use the "completed” data set to find a new maximum likelihood
estimation ¥ = ©’
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Expectation Maximization

¢ generalizing the EM framework

¢ estimating the underlying distribution of not directly observable
variables

o full data n+1-tuples (X;, s, ..., Zi)
only x; can be observed
e training data: X = {Xq, ..., Xm}
e hidden information: Z = {zy, ..., zm}
o parameters of the distribution to be estimated: ©
e Z can be treated as random variable with p(Z) = f(©, X)
o fulldata: Y =XUZ
¢ hypothesis: h of ©, needs to be revised into A
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Expectation Maximization

e goal of EM: A = argmax E(log, p(Y|H'))
o define a function Q(#|h) = E(log, p(Y|H)|h, X)

Estimation (E) step

Calculate Q(H|h) using the current hypothesis h and the observed
data X to estimate the probability distribution over Y

Q(H'|h) — E(log, p(Y|H)|h, X)

Maximization (M) step
Replace hypothesis h by ' that maximizes the function Q

h — arg max Q(H'|h)
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Expectation Maximization

e expectation step requires applying the model to be learned
» Bayesian inference
e gradient ascent search

» converges to the next local optimum
« global optimum is not guaranteed
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Expectation Maximization

Q(H|h) — E(Inp(Y|H)|h, X)

T

h Q(H'|h)

\/

h — arg max Q(H|h)

e If Q is continuous, EM converges to the local maximum of the
likelihood function P(Y|H)
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