Übungen zu Rechnerstrukturen

64-041 WS 2009/2010 Zhang/Hendrich

Aufgabenblatt 2

Ausgabe 26/10/2009, Abgabe bis 02/11/2009 12:00

Name(n):

Matrikelnummer(n):

Übungsgruppe:

Aufgabe 2.1 Interpreter (10 Punkte)

Wir nehmen einen Computer mit insgesamt vier Ebenen an. Die Ausführungszeit für einen Befehl auf der untersten Ebene 1 beträgt k Nanosekunden. Die oberen Ebenen werden durch drei geschachtelte Interpreter zur Verfügung gestellt. Jeder dieser Interpreter benötigt n Befehle der niedrigeren Ebene i, um einen Befehl seiner Sprache auf Ebene i+1 zu holen, zu dekodieren und auszuführen.

Wie lange benötigt ein Befehl auf den Ebenen 2, 3, und 4? Geben Sie die Formel an.

Aufgabe 2.2 Umwandlung von Dezimalzahlen (10 Punkte)

Überführen Sie die folgenden Dezimalzahlen in ihre Oktal- und Hexadezimaldarstellung mit vier Vorkomma- und vier Nachkommastellen:

a) 57

b) 249,375

Aufgabe 2.3 Umwandlung von Dezimalzahlen (10 Punkte)

Formen Sie die folgenden Dezimalzahlen in Dualzahlen mit zwölf Vorkomma- und vier Nachkommastellen um:

a) 2009

b) 673,23

Aufgabe 2.4 Umwandlung von Dualzahlen (10 Punkte)

Bestimmen Sie den dezimalen Wert der folgenden Dualzahlen:

a) 1101, 100101

b) 10110, 10101

Aufgabe 2.5 Umwandlung von Hexadezimalzahlen (10 Punkte)

Ermitteln Sie die Dezimalzahlen zu den folgenden Hexadezimalzahlen:

a) B5C7

b) C8A, 1F

Aufgabe 2.6 Zahlenbereich (10 Punkte)

Für präzise Zeitmessungen enthalten alle aktuellen x86-Prozessoren (ab dem Pentium) den sogenannten *Time-Stamp Counter*. Dieses 64-bit Spezialregister wird beim Einschalten auf Null gesetzt und anschließend bei jedem Taktimpuls inkrementiert. Der aktuelle Wert kann mit einem besonderen Befehl **rdtsc** ausgelesen werden.

Angenommen, der Prozessor wird mit 3 GHz Takt betrieben. Wie lange dauert es, bis das Register überläuft?

Aufgabe 2.7 Addition (20 Punkte)

Addieren Sie die Zahlen $(25483)_{10}$ und $(17092)_{10}$ im **a)** Dualsystem und **b)** im Hexadezimalsystem und kontrollieren Sie Ihre Ergebnisse.

Aufgabe 2.8 Komplemente (20 Punkte)

Mit Hilfe der Komplemente lässt sich die arithmetische Grundoperation Subtraktion auf die Addition zurückführen. Dadurch wird die Abbildung dieser Operation auf digitale Grundschaltungen erleichtert.

Das Rechnen in Komplement-Darstellung lässt sich dabei grundsätzlich in allen Zahlensystemen durchführen, die in Radix-Schreibweise darstellbar sind.

Berechnen Sie die folgenden Komplemente:

- **a)** $K_{10}(7,392)_{10}$

- **b)** $K_9(0, 3467)_{10}$ **c)** $K_2(1, 111)_2$ **d)** $K_1(110, 01)_2$