Einführung

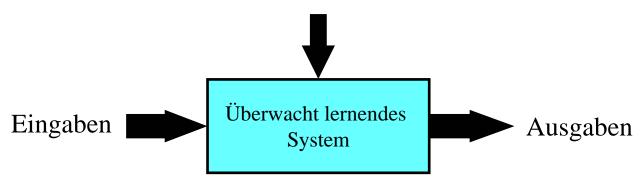
Künstliche Intelligenz Steuerungs- und **Psychologie** Regelungstechnik Reinforcement Learning (RL) **Neurowissenschaft** Künstliche Neuronale Netze

Was ist Reinforcement Learning?

- Lernen aus Interaktion
- Ziel-orientiertes Lernen
- Lernen durch, von, und während der Interaktion mit einer externen Umgebung
- Lernen "was zu tun ist" wie man Situationen auf Aktionen abbildet — um ein numerisches Reward-Signal zu maximieren

Überwachtes Lernen

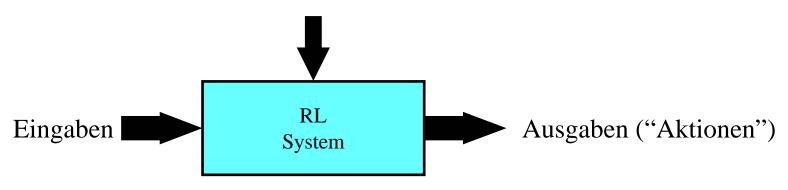
Trainings Info = gewünschte (Soll-) Ausgabe



Fehler = (Soll-Ausgabe - Systemausgabe)

Reinforcement Learning

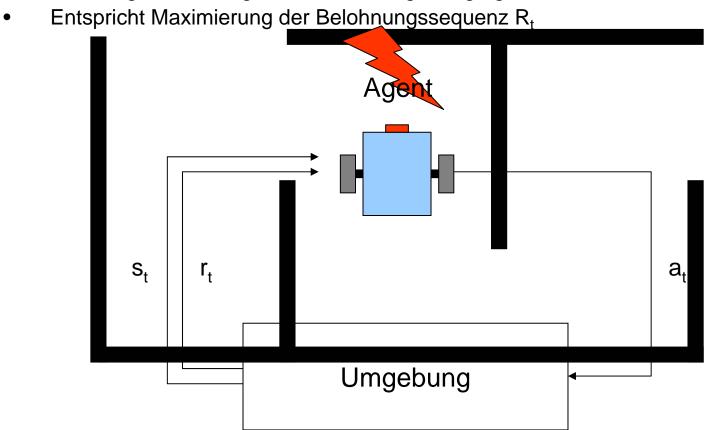
Trainings Info = Bewertungen ("rewards" / "penalties")



Ziel: erreiche soviel Reward wie möglich

Reinforcement Learning

• Ziel: Möglichst "erfolgreich" in der Umgebung agieren

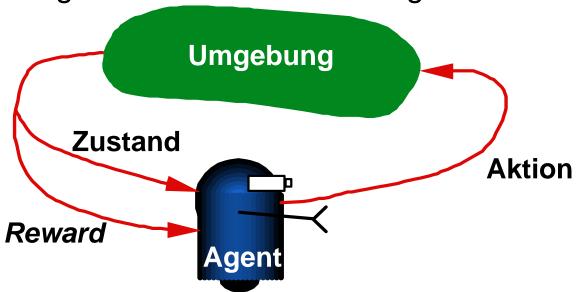


Key Features von RL

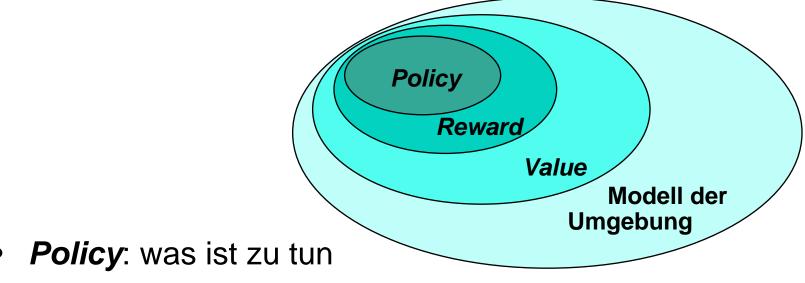
- Lerner bekommt nicht gesagt welche Aktionen zu wählen sind
- Trial-and-Error Suche
- Möglichkeit eines verspäteten ("delayed") Reward
 - Aufgeben von kurzfristigem Ertrag um höheren langfristigen Ertrag zu erhalten
- Das Dilemma "exploration" vs. "exploitation"
- Betrachte das komplette Problem eines ziel-orientierten Agenten in Interaktion mit einer unsicheren Umgebung

Der vollständige Agent

- Zeitlich situiert
- Beständiges Lernen und Planen
- Beeinflusst die Umgebung
- Umgebung ist stochastisch und ungewiss

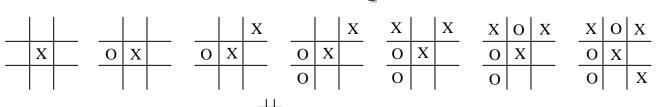


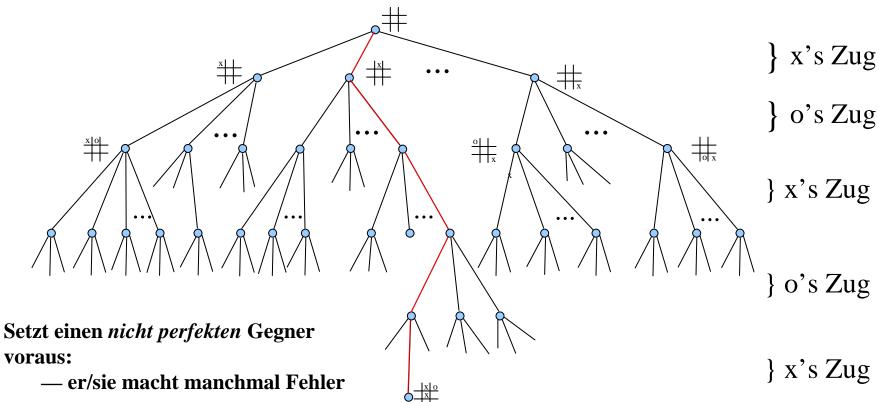
Elemente des RL



- Reward: was ist gut
- Value: was ist gut, da es Reward vorhersagt
- Modell: was folgt auf was

Ein erweitertes Beispiel: Tic-Tac-Toe



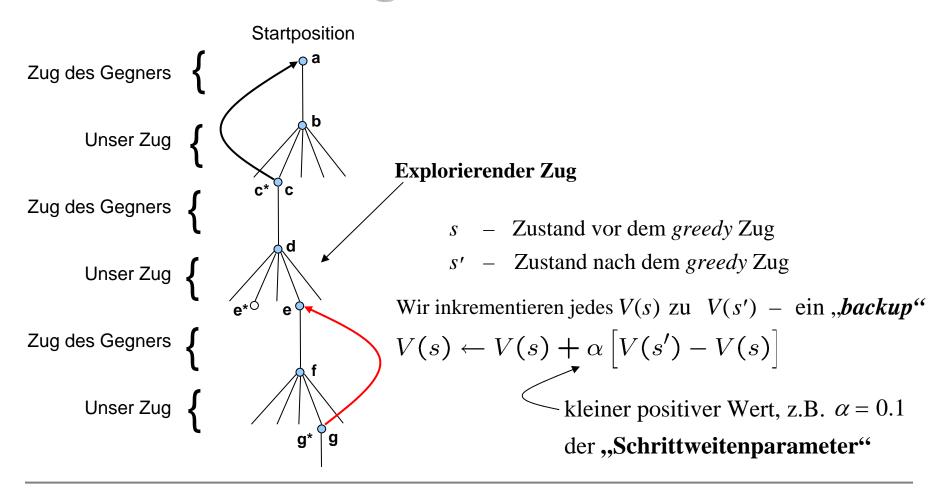


Ein RL Ansatz für Tic-Tac-Toe

1. Erstelle eine Tabelle mit einem Eintrag pro Zustand:

Zustand	V(s) – geschätzte Wahrscheinlichkeit für den Gewinn				
<u> </u>	.5	2. Jetzt spiele viele Spiele.			
 	.5 :		Um einen Zug zu wählen,		
x x x o o	1	gewonnen	schaue einen Schritt nach vorne:		
•	•		Momentaner Zustand		
X O X O O O O O O O	0:	verloren	*	Verschiedene mögliche nächste Zustände	
$\begin{array}{c c} \bullet & \bullet \\ \hline o & x & o \\ \hline o & x & x \\ \hline x & o & o \\ \end{array}$	0	unentschieden	Nehme den nächsten Zu		
			geschätzten Gewinnwahrscheinlichkeit — das höchste $V(s)$; ein greedy Zug.		
			Aber in 10% aller Fälle wähle einen		
			zufälligen Zug; ein <i>explorierender</i> Zug.		

RL-Lernregel für Tic-Tac-Toe

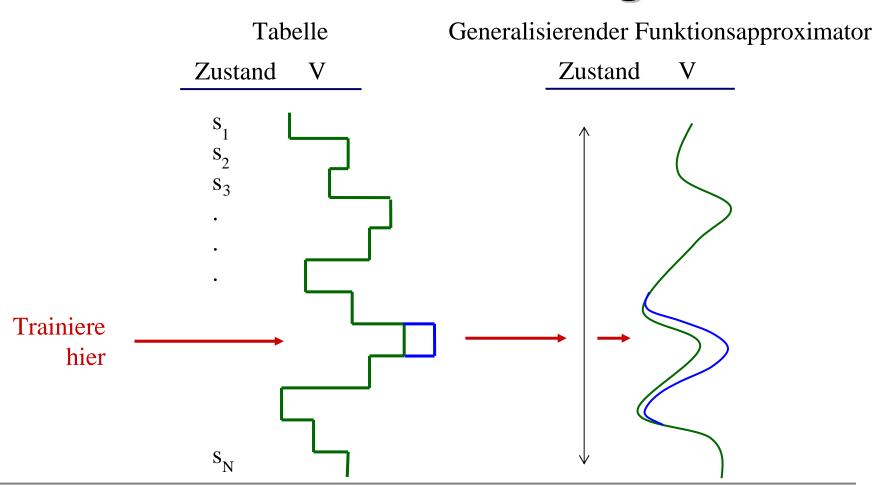


Verbesserung des T.T.T Spielers

- Beachten von Symmetrien
 - Darstellung/Generalisierung
 - Wie kann dies fehlschlagen?
- Braucht man "Zufallszüge"? Warum?
 - Braucht man immer die 10%?
- Kann man von "Zufallszügen" lernen?
- Kann man offline lernen?
 - Vor-Lernen durch Spielen gegen sich selbst?
 - Verwendung von gelernten Modellen des Gegners?

• . . .

z.B. Generalisierung



Warum ist Tic-Tac-Toe einfach?

- Endliche, kleine Anzahl an Zuständen
- Es ist immer möglich einen Schritt nach vorne zu gucken (one-step look ahead)
- Zustände komplett wahrnehmbar

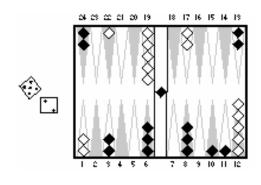
• . . .

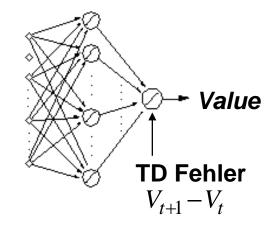
Einige namhafte RL Anwendungen

- TD-Gammon: Tesauro
 - weltbestes Backgammon Programm
- Aufzugssteuerung: Crites & Barto
 - High Performance "down-peak" Aufzugscontroller
- Lagerverwaltung: Van Roy, Bertsekas, Lee & Tsitsiklis
 - 10–15% Verbesserung gegenüber standard Industriemethoden
- Dynamische Kanalzuordnung: Singh & Bertsekas, Nie & Haykin
 - High Performance Zuordnung von Funkkanälen zu Mobiltelefonaten

TD-Gammon

Tesauro, 1992-1995





Aktionsauswahl durch 2–3 Lagensuche

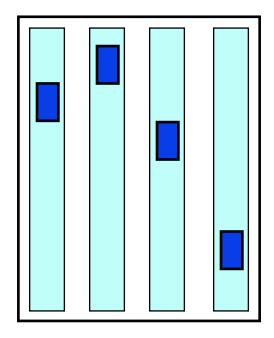
Starte mit zufälligem Netzwerk
Spiele sehr viele Spiele gegen dich selbst
Lerne eine Wertefunktion anhand dieser simulierten Erfahrung

Dies produziert wohl den besten Spieler der Welt

Aufzugseinteilung

10 Stockwerke, 4 Kabinen

Crites and Barto, 1996



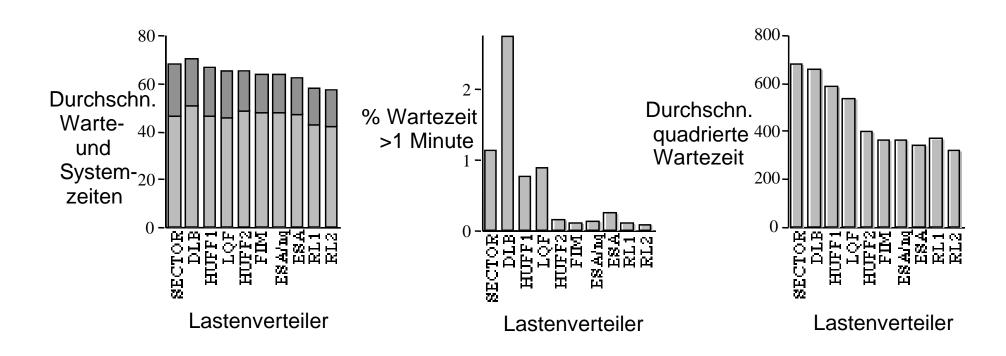
Zustände: Knopfzustände; Positionen, Richtungen, und Bewegungszustände der Kabinen; Personen in Kabinen & in Etagen

Aktionen: halte an X, oder fahre nach Y, nächste Etage

Rewards: geschätzt, –1 pro Zeitschritt für jede wartende Person

Vorsichtige Schätzung: ca. 10²² Zustände

Performance Vergleich



RL Geschichte

Trial-and-Error
learning

Temporal-difference learning

Optimal control, value functions

Thorndike (Ψ) 1911 Secondary reinforcement (Ψ)

Hamilton (Physics) 1800s

Samuel

Shannon

Bellman/Howard (OR)

Minsky

Holland

Klopf

Witten

Werbos

Barto et al.

Sutton

Watkins

MENACE (Michie 1961)

"Matchbox Educable Noughts and Crosses Engine"

