B-Spline-Kurve und -Basisfunktionen

Eine **B-Spline-Kurve** der Ordnung k ist ein stückweise aus **B-Splines (Basisfunktion)** zusammengesetztes Polynom vom Grad (k-1), das an den Segmentübergängen im allgemeinen C^{k-2} stetig differenzierbar ist.

Dabei seien B-Splines Stückweise Polynome, denen die folgenden geordneten Parameterwerte zugrundeliegen:

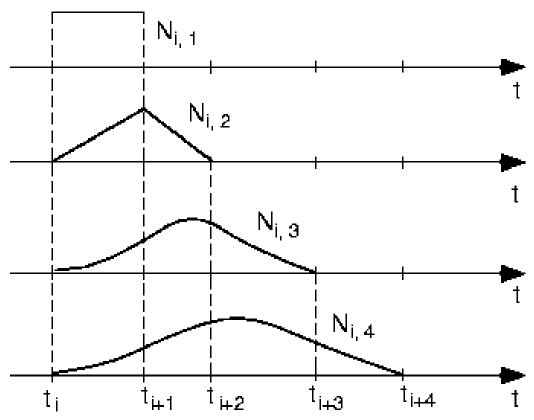
$$\mathbf{t} = (t_0, t_1, t_2, \dots, t_m, t_{m+1}, \dots, t_{m+k}),$$

wobei

- m: wird von der Anzahl der zu interpolierenden Punkte bestimmt
- k: die festgelegte Ordnung der B-Spline-Kurve

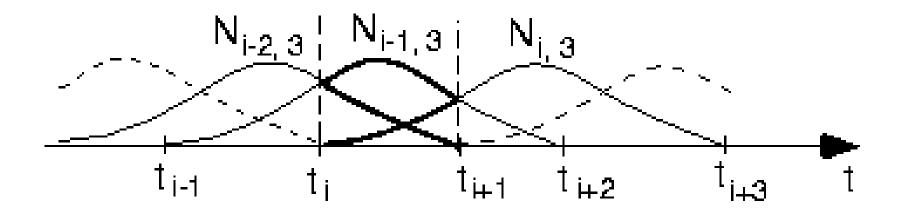
Beispiele von B-Splines

B-Splines der Ordnung 1, 2, 3 und 4:



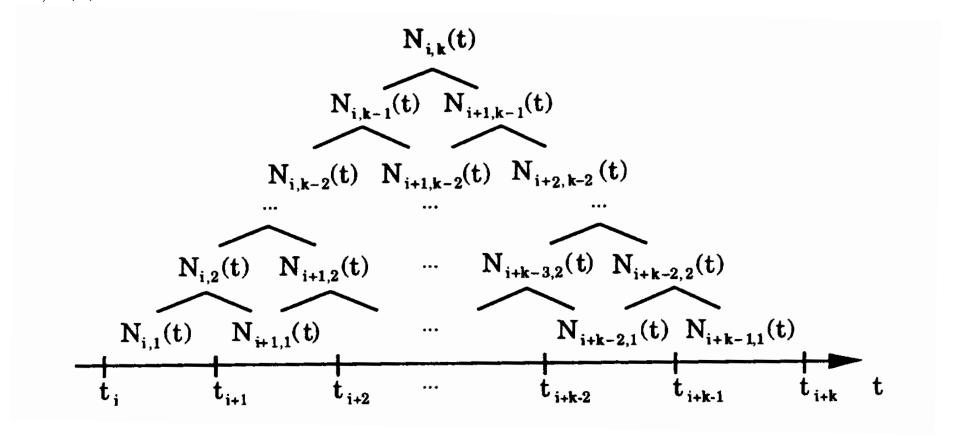
Innerhalb eines Parameterintervals gibt es k sich überlappende B-Splines.

Ein Beispiel der kubischen B-Splines



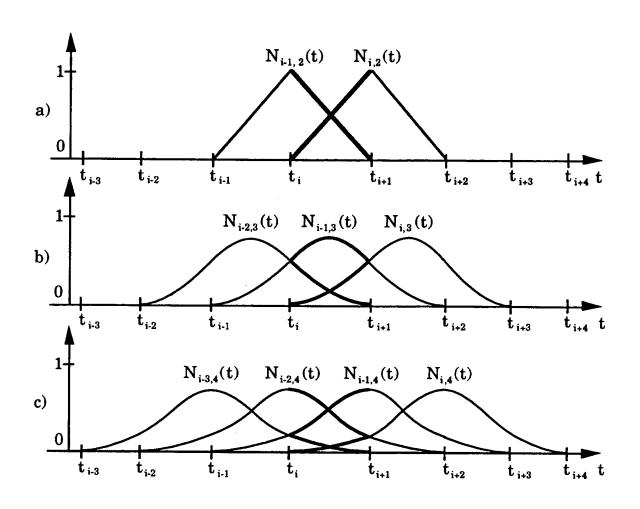
B-Splines der Ordnung k - I

Das rekursive Definitionsverfahren einer B-Spline-Basisfunktion $N_{i,k}(t)$:

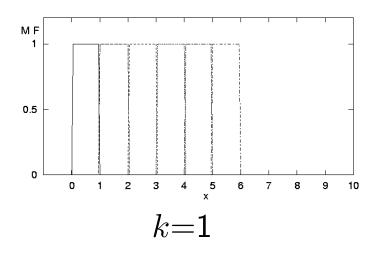


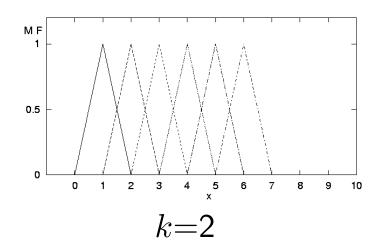
B-Splines der Ordnung k - II

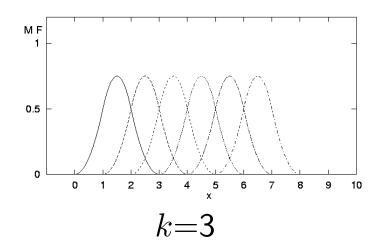
Aktuelle Segemente der B-Spline-Basisfunktionen der Ordnungen 2, 3 und 4 für $t_i \le t < t_{i+1}$:

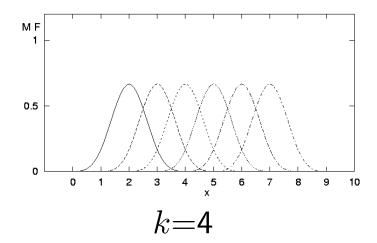


Uniforme B-Splines der Ordnung 1 bis 4



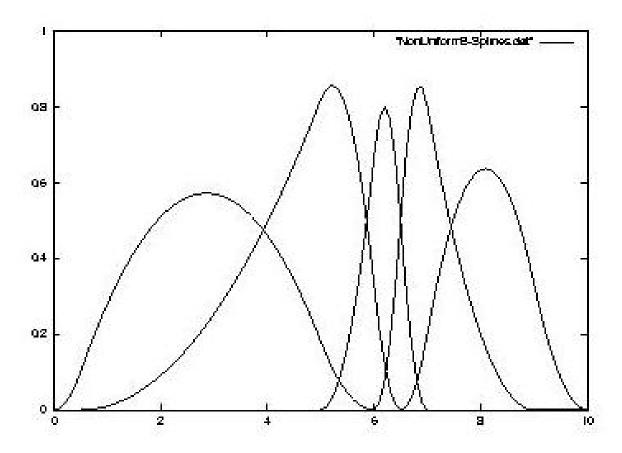






Nichtuniforme B-Splines

Ordnung 3:



Eigenschaften der B-Splines

Partition of unity: $\sum_{i=0}^{k} N_{i,k}(t) = 1.$ Positivity: $N_{i,k}(t) \geq 0.$ Local support: $N_{i,k}(t) = 0 \text{ for } t \notin [t_i, t_{i+k}].$ $C^{k-2} \text{ continuity:} \qquad \text{If the knots } \{t_i\} \text{ are pairwise different from each other, then } N_{i,k}(t) \in C^{k-2}, \text{ i.e. } N_{i,k}(t) \text{ is } (k-2) \text{ times continuously differentiable.}$

Gewinnung einer B-Spline-Kurve

Eine B-Spline-Kurve kann dadurch konstruiert werden, daß eine Menge von vorgegebenen Größen mit diesen B-Splines gemischt werden:

$$\mathbf{r}(t) = \sum_{j=0}^{m} \mathbf{v}_{j} \cdot N_{j,k}(t)$$

wobei \mathbf{v}_j Kontrollpunkte (de Boor-Punkte) genannt werden.

Sei ein Parameter t gegeben, ist $\mathbf{r}(t)$ ein Punkt dieser B-Spline-Kurve.

Wenn t von t_{k-1} bis zu t_{m+1} variiert, so stellt $\mathbf{r}(t)$ eine C^{k-2} stetig differenzierbare Kurve dar.

Berechnung von Kontrollpunkten aus Datenpunkten

Die Punkte \mathbf{v}_j sind nur bei k=2 identisch mit den Datenpunkten zur Interpolation, sonst nicht.

Ein Kontrollpunktzug bildet eine konvexe Hülle für die Interpolationskurve.

Zwei Verfahren zur Berechnung von Kontrollpunkten aus Datenpunkten:

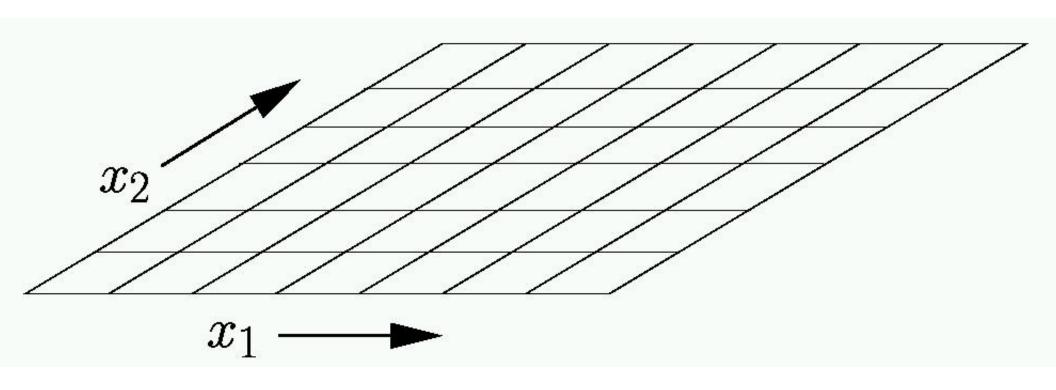
1 Durch die Lösung des folgenden Gleichungssytems (Böhm84):

$$\mathbf{q}_j(t) = \sum_{j=0}^m \mathbf{v}_j \cdot N_{j,k}(t)$$

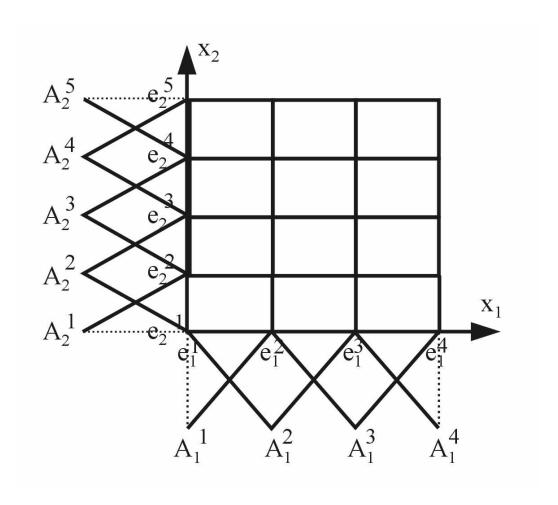
wobei \mathbf{q}_j die Datenpunkte für die Interpolation sind, $j=0,\cdots,m$.

2 Durch Lernen basierend auf dem Gradient-Abstieg (**Zhang98**).

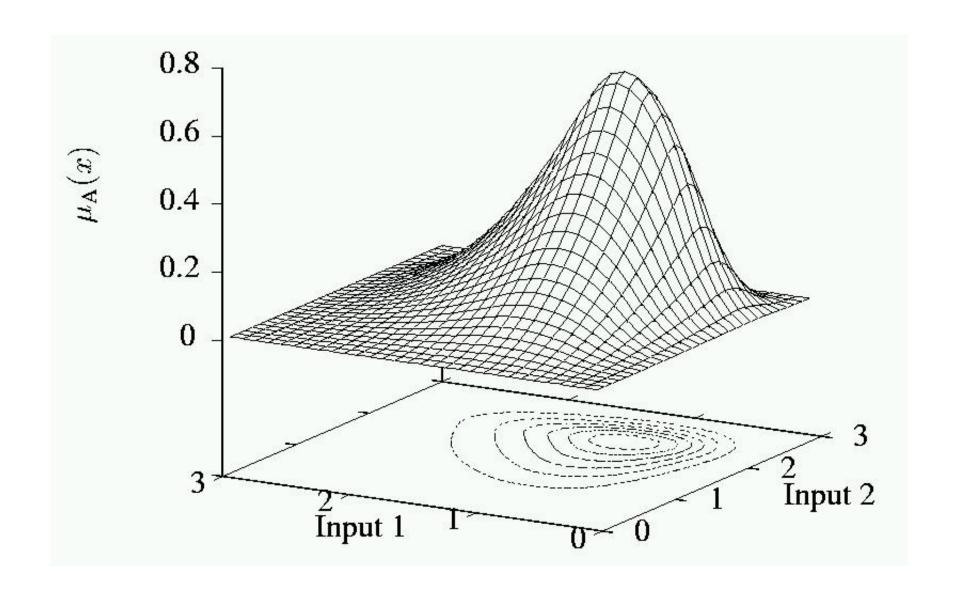
Lattice - I



Lattice - II



Tensor-Produkt 2D-NURBS



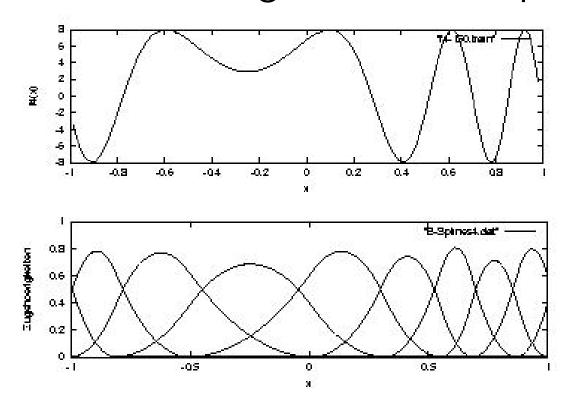
Problematik in der realen Welt

- Modellierung: Lernen aus Beispielen,
 selbstoptimierende Gestaltung, Vorhersagen, ...
- Regelung: Perzeption-Aktion-Zyklus,
 Zustandsregelung, Identifikation dynamischer Systeme,

Funktionsapproximation als Benchmark zur Wahl eines Modells

Funktionsapproximation - 1D Beispiel

Eine Testfunktion $f(x) = 8sin(10x^2 + 5x + 1)$ mit -1 < x < 1 und die richtig verteilten B-Splines:



Lattice

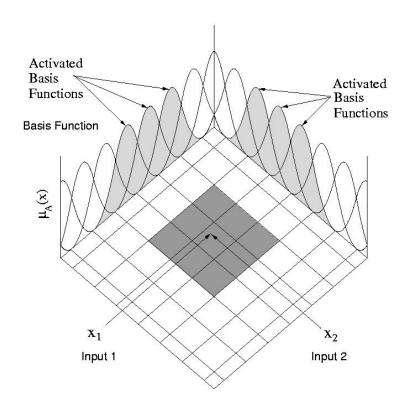
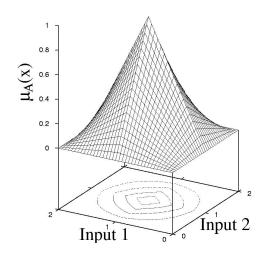
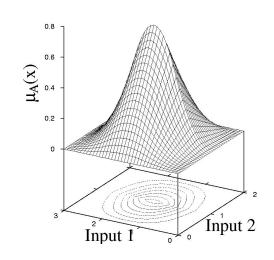


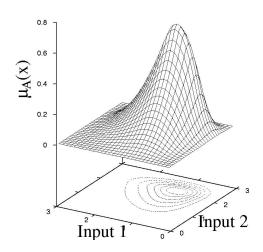
Abbildung 1: The B-spline model — a two-dimensional illustration.

Jedes n-dimensionale Viereck (n > 1) wird von dem j^{th} multivariaten B-spline $N_k^j(x)$ bedeckt. $N_k^j(x)$ ist über den Tensorprodukt n univariate B-splines:

$$N_k^j(x) = \prod_{j=1}^n N_{i_j,k_j}^j(x_j) \tag{1}$$







- (a) Tensor product of (b) Tensor product of (c) Tensor product of two, order 2 univariate B-splines.
 - one order 3 and one order 2 univariate Bsplines.
- two univariate B-splines of order 3.

Abbildung 2: Bivariate B-splines formed by taking the tensor product of two univariate B-splines.

Allgemeine Anforderungen an einen Approximator

- Universalität: Approximation von beliebigen Funktionen
- Generalisierung: gute Approximation ohne *Overfitting*
- Adaptivität: selbsteinstellend anhand von neuen Daten
- Parallelität: Rechnen nach biologischen Vorbildern
- Interpretierbarkeit: mindestens als "Grey-box" anstatt "Black-box"

Bedeutung der Interpretierbarkeit eines Modells

Richard P. Feynman: "the way we have to describe nature is generally incomprehensible to us".

Albert Einstein: "it should be possible to explain the laws of physics to a barmaid".

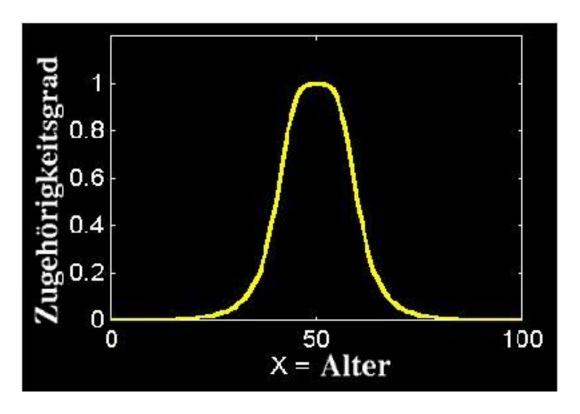
Wichtige Gründe für symbolische Interpretierbarkeit eines Approximators:

- Linguistische Modellierung bietet ein Mittel zur Fertigkeitsübertragung von einem Experten auf einen Computer oder Roboter.
- Automatisches Lernen eines transparenten Modells erleichtert die Analyse, Validierung und Überwachung bei der Entwicklung eines Modells bzw. eines Reglers.
- Transparente Modelle besitzen vielfältige Anwendungsmöglichkeiten in Decision-Support Systems.

Symbolumwandlung der Kernfunktionen

Positiv definierte, konvexe Kernfunktionen können als Fuzzy-Mengen betrachtet werden. Z.B.:

$$\frac{\mu_B(x)}{1 + \left(\frac{x - 50}{10}\right)^2} =$$



B-Spline ANFIS

Bei einem B-Spline ANFIS mit n Eingängen x_1, x_2, \ldots, x_n , werden Regeln der folgenden Form benutzt:

$$\{Regel(i_1,i_2,\ldots,i_n)\colon \mathsf{IF}\ (x_1\ \mathsf{IS}\ N^1_{i_1,k_1})\ \mathsf{AND}\ (x_2\ \mathsf{IS}\ N^2_{i_2,k_2})\ \mathsf{AND}\ \ldots\ \mathsf{AND}\ (x_n\ \mathsf{IS}\ N^n_{i_n,k_n})\ \mathsf{THEN}\ y\ \mathsf{IS}\ Y_{i_1i_2...i_n}\},$$

wobei

- ullet x_j : Eingangsgröße j $(j=1,\ldots,n)$,
- ullet k_j : Ordnung der B-Spline-Basisfunktion für x_j ,

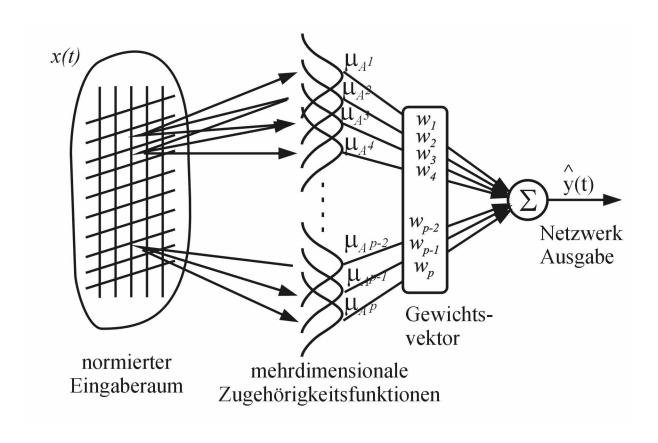
- $N^j_{i_j,k_j}$: mit dem i-ten linguistischen Term für x_j assoziierte B-Spline-Funktion,
- $i_j = 0, \ldots, m_j$, Partitionierung von Eingang j,
- $Y_{i_1 i_2 ... i_n}$: Kontrollpunkte der $Regel(i_1, i_2, ..., i_n)$.
- der "AND"-Operator: Produkt

Dann ist der Ausgang y eines MISO Regelungssystems:

$$y = \sum_{i_1=1}^{m_1} \dots \sum_{i_n=1}^{m_n} (Y_{i_1,\dots,i_n} \prod_{j=1}^n N_{i_j,k_j}^j(x_j))$$

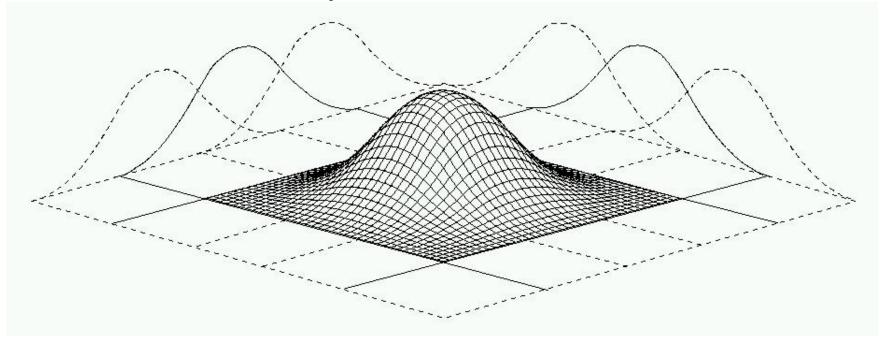
Das ist ein allgemeines B-Spline-Modell, das die Hyperfläche $NUBS\ (nonuniform\ B\text{-}spline)$ darstellt.

Architektur des B-Spline ANFIS

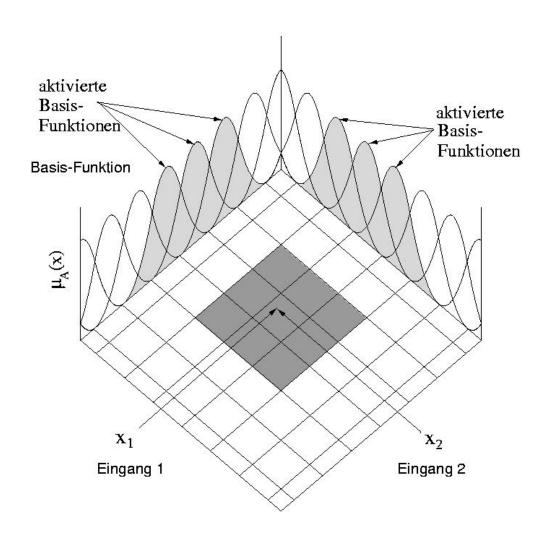


ZF-Formulierung - Tensorprodukt

Tensor-Produkt 2D-Splines:



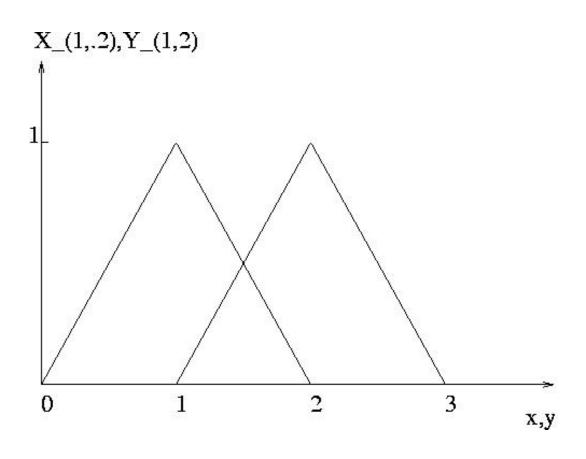
Die Aktivierung der ZF über den Eingang



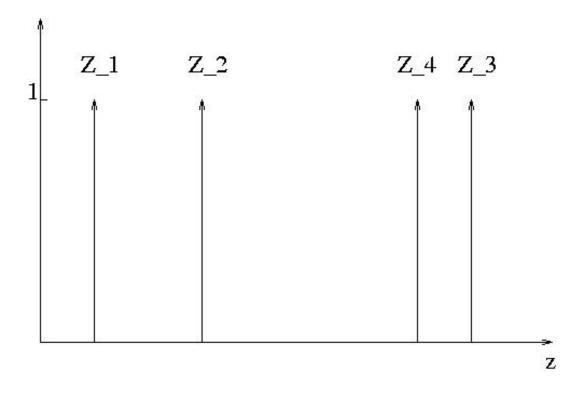
B-Spline ANFIS: ein Besipiel

Ein Beispiel mit zwei Eingangsvariablen (x und y) und einem Ausgang z. Die Parameter der DANN-Teile sind Z_1, Z_2, Z_3, Z_4 .

Die linguistischen Terme der Eingänge (WENN-Teile):



Die Parameter der DANN-Teile:



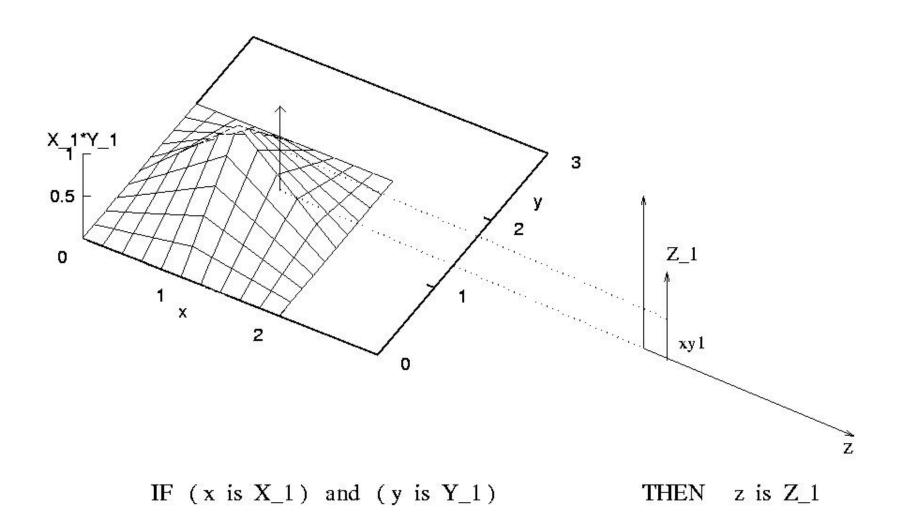
Ein Beispiel-Regelbasis

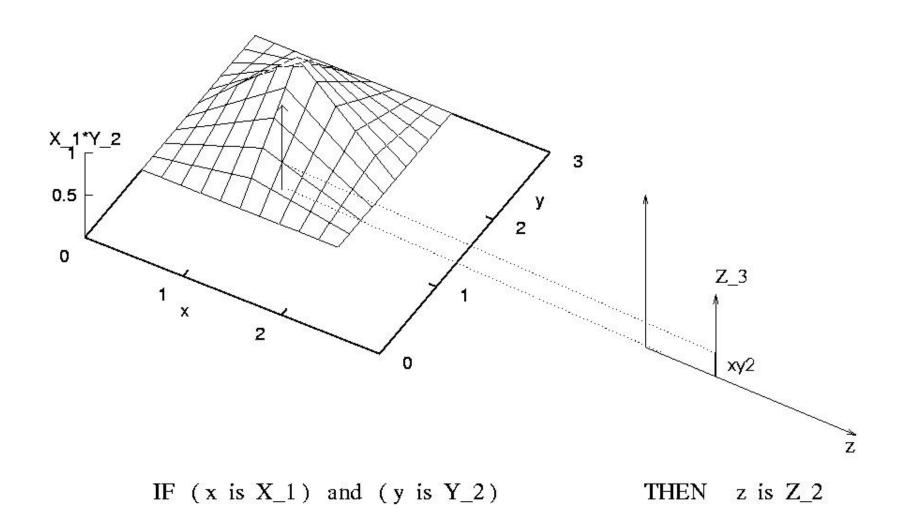
Die Beispiel-Regelbasis besteht aus vier Regeln:

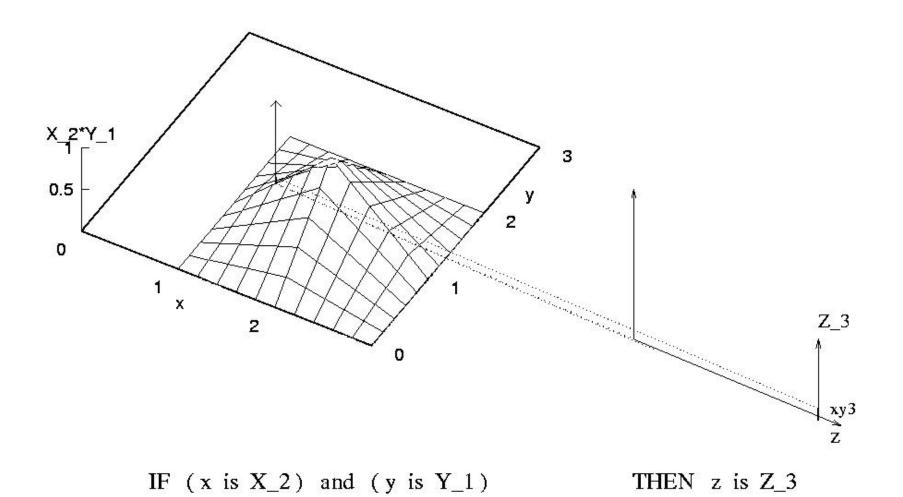
Regel

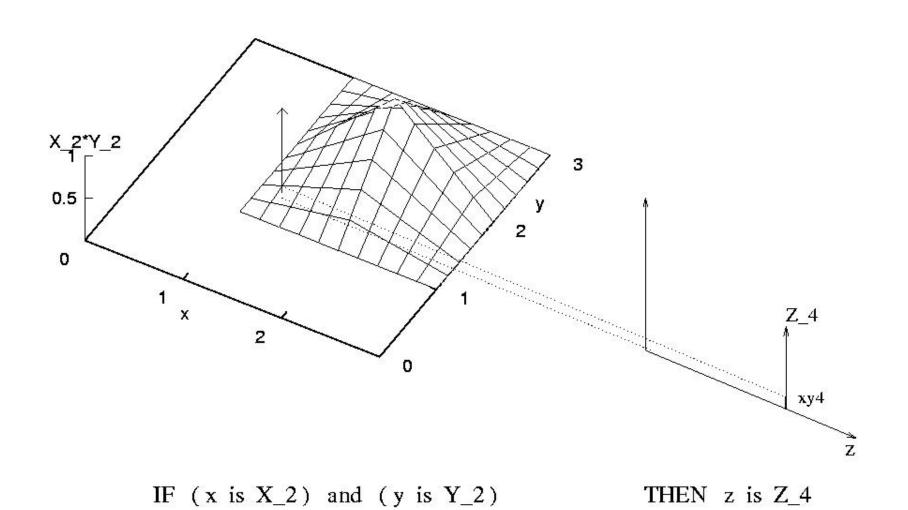
1) IF x is X_1 and y is Y_1 THEN z is Z_1 2) IF x is X_1 and y is Y_2 THEN z is Z_2 3) IF x is X_2 and y is Y_1 THEN z is Z_3 4) IF x is X_2 and y is Y_2 THEN z is Z_4

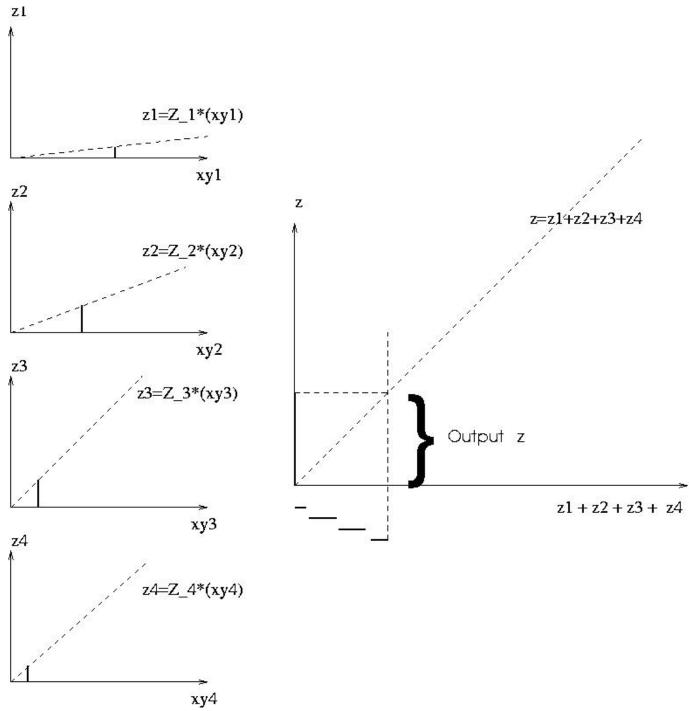
Illustrierung der Fuzzy-Inferenz











Algorithm zum überwachten Lernen - I

Angenommen sei $\{(\mathbf{X}, y_d)\}$ eine Menge von Trainingsdaten, wobei

- $\mathbf{X} = (x_1, x_2, \dots, x_n)$: der Vektor der Eingangsdaten,
- ullet y_d : der gewünschte Ausgang für ${f X}$.

Der LSE ist:

$$E = \frac{1}{2}(y_r - y_d)^2,$$
 (2)

wobei y_r der aktuelle reale Ausgangswert während des Tranings ist.

Die zu findenen Parameter sind $Y_{i_1,i_2,...,i_n}$, die den Fehler in (2) minimiert, d.h.

$$E = \frac{1}{2}(y_r - y_d)^2 \equiv MIN.$$
 (3)

Algorithm zum überwachten Lernen - II

Jeder Controlpunkt $Y_{i_1,...,i_n}$ kann über das folgende Gradientabstiegsverfahren verbessert werden:

$$\Delta Y_{i_1,\dots,i_n} = -\epsilon \frac{\partial E}{\partial Y_{i_1,\dots,i_n}} \tag{4}$$

$$= \epsilon (y_r - y_d) \prod_{j=1}^{\infty} N_{i_j, k_j}^j(x_j)$$
 (5)

wobei $0 < \epsilon \le 1$.

Das Gradientabstiegsverfahren gewährleistet, dass der Lernalgorithmus zum globalen Minimum der LSE-Funktion konvergiert, weil die 2. partielle Ableitung bezüglich zu $Y_{i_1,i_2,...,i_n}$ konstant ist:

$$\frac{\partial^2 E}{\partial^2 Y_{i_1,\dots,i_n}} = \left(\prod_{j=1}^n N_{i_j,k_j}^j(x_j)\right)^2 \ge 0.$$
 (6)

Dies bedeutet dass die LSE-Funktion (2) konvex im Raum $Y_{i_1,i_2,...,i_n}$ ist und deshalb nur einen (globalen) Minimum besitzt.

Funktionsapproximation - Demonstrationen

 $sin(x^2)$ Stop 1d-demo $sin(x^2y)$ Stop 2d-demo