Prof. J. Zhang zhang@informatik.uni-hamburg.de 16. Dezember 2005	Inhaltsverzeichnis Kalibrierung einer Kamera: Grundkonzept	T A AB TAMS M S Fachbereich Informatik Vorlesung: Angewandte Sensorik	Prof. J. Zhang zhang@informatik.uni-hamburg.de	Vortesserie formatik Vortesserie Sensorie Vortesserie Angewandte Sensorie Index Sensorie
Prof. J. Zhang Vorlesung: Angewandte Sensorik	 Kalibrationspunkte Die Kalibrierung erfolgt mit einer (a) bekannte Weltkoordinaten {a hinreichend genauer Präzision (b) innerhalb des Sichtfeldes der Diese Kalibrationspunkte werden Kamerakoordinaten {X_i, Y_i} dete 	TIA AB TAMS MIS Fachbereich Informatik	Prof. J. Zhang Vorlesung: Angewandte Sensorik	 Kalibrierung einer Ka Kalibrierung einer Ka Das Lochkamera-Modell aus der die Kalibrierung die drei unabhängigen extrins die drei unabhängigen extrins und die intrinsischen Parame
Seite 308 16. Dezember 2005	Menge von m Objektpunkten, die $z_{w,i}, y_{w,i}, z_{w,i}$, $i = 1,, m$ in a haben und Kamera liegen. im Kamerabild mit ihren respektiven ktiert.	Kapitel: Sichtsysteme in der Robotik Abschnitt: Kalibrierung einer Kamera: Grundkonzept	Seite 307 16. Dezember 2005	Kapitel: Sichtsysteme in der Robotik Abschnitt: Kalibrierung einer Kamera: Grundkonzept vorangegangenen Vorlesung lieferte für sischen Parameter von R , sischen Parameter von t ter f_x , f_y , C_x und C_y .

Seite 312 16. Dezember 2005	Prof. J. Zhang Vorlesung: Angewandte Sensorik	Seite 310 16. Dezember 2005	Prof. J. Zhang Vorlesung: Angewandte Sensorik
die Kalibrationspunkte <u>nicht koplanar</u> erste Matrix im Identifikationsmodell I 4 sowie 7 und 8 linear abhängig sind.	 Es kann gezeigt werden, dass sein dürfen. Ist dies nicht der Fall, ist die e singulär, da die Spalten 3 und 	$\frac{3z_w + a_{14}}{3z_w + a_{34}}$ $\frac{3z_w + a_{34}}{3z_w + a_{24}}$ $\frac{3z_w + a_{24}}{3z_w + a_{34}}$	$X = \frac{a_{11}x_w + a_{12}y_w + a_1}{a_{31}x_w + a_{32}y_w + a_3}$ $Y = \frac{a_{21}x_w + a_{22}y_w + a_2}{a_{31}x_w + a_{32}y_w + a_3}$
nten a_{11}, \ldots, a_{33} werden mit Hilfe der ate bestimmt. nspunkte notwendig. $a_{i}, y_{w,i}, z_{w,i}), (X_i, Y_i)$ liefert zwei den gesuchten Koeffizienten.	 Die elf unbekannten Koeffizier Methode der kleinsten Quadra Minimal sind <u>sechs</u> Kalibratior Jedes Paar Datenpunkte {(x_w algebraische Gleichungen mit 	$= f_y \frac{r_4 x_w + r_5 y_w + r_6 z_w + t_y}{r_7 x_w + r_8 y_w + r_9 z_w + t_z}$	Das verzeichnungsfreie Kameramodell $X=f_x rac{r_1 x_w+r_2 y_w+r_3 z_w+t_x}{r_7 x_w+r_8 y_w+r_9 z_w+t_z},$ Y=lässt sich umschreiben zu
	Least Squares	modell	Verzeichnungsfreies Kamera
Kapitel: Sichtsysteme in der Robotik Abschnitt: Kalibrierung einer Kamera: Grundkonzept	TIA AB TAMS MIS Fachbereich Informatik	Kapitel: Sichtsysteme in der Robotik schnitt: Kalibrierung einer Kamera: Grundkonzept	TIA AB TAMS MIS Fachbereich Informatik Abs
Seite 311 16. Dezember 2005	Prof. J. Zhang Vorlesung: Angewandte Sensorik	Seite 309 16. Dezember 2005	Prof. J. Zhang Vorlesung: Angewandte Sensorik
$ \begin{bmatrix} -Xx_w & -Xy_w & -Xz_w \\ -Yx_w & -Yy_w & -Yz_w \end{bmatrix} \begin{bmatrix} a_{11} \\ \vdots \\ a_{33} \end{bmatrix} = \begin{bmatrix} X \\ Y \end{bmatrix} $	$\begin{bmatrix} x_w & y_w & z_w & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & x_w & y_w & z_w & 1 \end{bmatrix}$	C	Perspective Transformation Matrix).
'en, da eine Skalierung der Koeffizienten und Y nicht ändert. korrespondieren mit der so genannten <i>ionsmatrix</i> . Gleichungen können im folgenden engefasst werden:	 Es kann a₃₄ = 1 gesetzt werdi a₁₁,, a₃₄ die Werte von X Die Koeffizienten a₁₁,, a₃₄ perspektivischen Transformati Die vorangegangenen beiden of Identifikationsmodell zusammonia 	Kamera ist die Identifikation eramodells. reie Kameramodell liefert Itkoordinaten. quares-Identifikation ermittelt die <i>Transformationsmatrix</i> (engl.	 Das Problem bei der Kalibrierung einer I der unbekannten Koeffizienten des Kam Die Bestimmung für das verzeichnungsfr expliziet die Position der Kamera in Wel Die grundlegendste Strategie für eine Ka Koeffizienten mit Hilfe der <i>linear-least-su</i> folgenden vorgestellten <i>perspektivischen</i>
formationsmatrix	Perspektivische Transf		Kalibrierung
Kapitel: Sichtsysteme in der Robotik Abschnitt: Kalibrierung einer Kamera: Grundkonzept	TIA AB TAMS MIS Fachbereich Informatik	Kapitel: Sichtsysteme in der Robotik schnitt: Kalibrierung einer Kamera: Grundkonzept	TIA AB TAMS MIS Fachbereich Informatik Abs

Seite 316	Prof. J. Zhang	Seite 314	Prof. J. Zhang
16. Dezember 2005	Vorlesung: Angewandte Sensorik	Sensorik 16. Dezember 2005	Vorlesung: Angewandte
isen verursachen eine Vielzahl von genügen nicht dem vorangegangenen Modell. sind: ig relativ gering, da die Auflösung der Kameras ig ist. (Aktuelle IEEE1394-DV-Kameras: 320x200, 600, 1024x768 (15 fps); 1280x960 (7.5 fps)) n) Linsen sind unsymmetrisch und erzeugen der Kamera ist nicht präzise durchführbar. (Der D-Chips liegt nicht auf der optischen Achse. parallel zur Linse.) :hen Kamera-Hardware und Grabber-Hardware.	 Reale Kameras und Lin Abbildungsfehlern und 1 Die Hauptfehlerquellen (a) Räumliche Auflösun ebenfalls noch gerin 640x480 (30 fps); 800x (b) Die meisten (billiger Verzerrungen. (c) Der Zusammenbau Mittelpunkt des CC Der Chip liegt nicht (d) Timing-Fehler zwisc 	er vorgestellte Kalibrierungsmethode ermöglicht allerdings eine , wenn auch unpräzise Messung von Punkten mit einem (ameraaufbau. erden zwei Kameras A und B kalibriert und liefern die onsvektoren a^A und a^B . nn die Koordinate $\{x_w, y_w, z_w\}$ eines jeden Punktes der von (ameras gesehen wird berechnet werden. bekannte Punkt hat die korrespondierenden Bildkoordinaten A und $\{X^B, Y^B\}$.	 Die bis schnelle Stereo- Dazu w Kalbrat Dann k beiden beiden Jeder u {X^A, Y
t Linsenverzeichnung	Kameramodell mit	'ision (1)	Stereo-V
Kapitel: Sichtsysteme in der Robotik	TIA AB TAMS	Kapitel: Sichtsysteme in der Robotik	TA AB TAMS
Abschnitt: Kameramodell mit Linsenverzeichnung	MIS Fachbereich Informatik	Abschnitt: Kalibrierung einer Kamera: Grundkonzept	MIS Fachbereich Info
Seite 315	Prof. J. Zhang	Seite 313	Prof. J. Zhang
16. Dezember 2005	Vorlesung: Angewandte Sensorik	Sensorik 16. Dezember 2005	Vorlesung: Angewandte
$ \begin{array}{l} a_{32}X a_{13} - a_{33}X \\ a_{32}Y a_{23} - a_{33}Y \end{array} \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix} = \begin{bmatrix} X - a_{14} \\ Y - a_{24} \end{bmatrix} $ $ \begin{array}{l} \mbox{überbestimmtes Gleichungssystem, welches die inate eines Punktes aus den Bildkoordinaten } \end{array} $	Stereo-Vision (2) Mit der Gleichung $\begin{bmatrix} a_{11} - a_{31}X & a_{12} - a_{21} - a_{31}Y & a_{22} - a_{21}Y & a_{21}Y & a_{22} - a_{21}Y & a_{22}Y & a_{21}Y & a_{21}Y & a_{21}Y & a_{21}Y & $	e gestellte Lösung ist noch nicht global optimal, da bisher keine arzeichnung berücksichtigt wurde. cht möglich expliziet die Rotationsmatrix <i>R</i> und den ionsvektor <i>t</i> zu bestimmen. leutet die vorgestellte Kalibration ermöglicht <u>nicht</u> die Nutzung imera, die an einem sich bewegenden Roboterarm montiert ist. stellung eines präzisen 3D-Kalibrationsaufbaus ist aufwendiger 2D-Kalibrationsplatte.	 Problem Die vor Linsenv Es ist r Transla Das be einer K einer K als eine
Kapitel: Sichtsysteme in der Robotik	TIA AB TAMS	Kapitel: Sichtsysteme in der Robotik	TIA AB TAMS
Abschnitt: Kalibrierung einer Kamera: Grundkonzept	MIS Fachbereich Informatik	Abschnitt: Kalibrierung einer Kamera: Grundkonzept	

Prof. J. Zhang Vorlesung: Angewandte Sensorik 16. Dezember 2005	<figure><section-header></section-header></figure>	TIA AB TAMS Kapitel: Sichtsysteme in der Robotik MIS Fachbereich Informatik Abschnitt: Kameramodell mit Linsenverzeichnung	Prof. J. Zhang Vorlesung: Angewandte Sensorik 16. Dezember 2005	 Absentit: Kamermodel mit Einsensystem resultiert in einer geänderten position der Bildpixel auf der Bildebene. Das Lochkameramodell wird dem nicht mehr gerecht. Es wird ersetzt durch folgendes Modell: u' = u + Du(u, v) v' = v + Dv(u, v) wobei u und v die nicht beobachtbaren, verzeichnungsfreien Bildkoordinaten sind und u' und v' die korrespondierenden verzerrten Koordinaten.
Prof. J. Zhang Vorlesung: Angewandte Sensorik	 Arten von Verzeichnungen: Es gibt zwei Arten von Verzeichnungen: <i>radial</i> und Radiale Verzeichnung verursacht einen Versatz on nach innen (Tonne) oder außen (Nadelkissen). Ursache: fehlerhafte radiale Krümmung der Lins 	TA AB TAMS MIS Fachbereich Informatik	Prof. J. Zhang Vorlesung: Angewandte Sensorik	Precibered Informatik Absentit:
Seite 320 16. Dezember 2005	der idealen Position ^{;e} :	Kapitel: Sichtsysteme in der Robotik Abschnitt: Arten von Verzeichnungen	Seite 319 16. Dezember 2005	Kameramodell mit Linsenverzeichnung nion with

NN	T
NN	A
Fachbereich Informatik	AB TAMS

Prof. J. Zhang Vorlesung: Angewandte Sensorik

Seite 322 16. Dezember 2005

Vorlesung: Angewandte Sensorik

Seite 324 16. Dezember 2005

Prof. J. Zhang

Seite 3:	;: Angewandte Sensorik	Prof. J. Zh	Seite 330	Prof. J. Zhang
16. Dezember 20		Vorlesung:	16. Dezember 2005	Vorlesung: Angewandte Sensorik
$: Y_d = x : y$	zw: $X_d:$ mit $X_d=f_x X$ und $Y_d=f_y Y.$	л bz	$r_{w} + r_{5}y_{w} + r_{6}z_{w} + t_{y}$ $r_{w} + r_{8}y_{w} + r_{9}z_{w} + t_{z}$	$Y(1+kr^2)\cong f_yrac{r_4x_v}{r_7x_v}$
$rac{w+r_2y_w+r_3z_w+t_x}{w+r_5y_w+r_6z_w+t_y}$	$\frac{X}{Y} = \mu^{-1} \frac{r_1 x_u}{r_4 x_u}$		$r_w + r_2 y_w + r_3 z_w + t_x$ $r_w + r_8 y_w + r_9 z_w + t_z$	$X(1+kr^2) \cong f_x \frac{r_1 x_v}{r_7 x_v}$
siteren Verzeichnungen auftreten, erhält	Venn neben der radialen keine we	m. W	nen erhält man folgendes	Mit den oben genannten Modifikation
<i>int</i> (RAC):	1an das <i>radial alignment constrai</i>		reichnungen:	Kameramodell für kleine radiale Verze
raint	dial alignment const	ra	e Verzeichnungen	Modell für kleine radiale
Kapitel: Sichtsysteme in der Robotil	B TAMS	TA AB	Kapitel: Sichtsysteme in der Robotik	TIA AB TAMS
Abschnitt: radial alignment constraint (RAC	achbereich Informatik		Abschnitt: <i>radial alignment constraint (RAC</i>)	MIS Fachbereich Informatik
Seite 33:	Chang	Prof. J. Zh	Seite 329	Prof. J. Zhang
16. Dezember 200	;: Angewandte Sensorik	Vorlesung:	16. Dezember 2005	Vorlesung: Angewandte Sensorik
In nützlicher Trick ist die Verwendung der fodells $\frac{x_w + r_2y_w + r_3z_w + t_x}{x_w + r_8y_w + r_9z_w + t_z}$, $\frac{x_w + r_5y_w + r_6z_w + t_y}{x_w + r_8y_w + r_9z_w + t_z}$, $s kr^2 << 1$ ist.	ariation in für das <i>least squares</i> Verfahrer olgenden Variation des vorigen M $rac{X}{1+kr^2}\cong f_xrac{r_1}{r_7}$ $rac{Y}{1+kr^2}\cong f_yrac{r_4}{r_7}$ und gilt unter der Annahme, dass	ے _ک <u>ت</u> ک	coeffizient diese durch die messbaren aher gilt: $_{u}^{2} + (Y/s_{v})^{2}$ <i>Verzeichnungskoeffizienten</i> (engl. lgt $\frac{r_{y}}{r_{x}} = \frac{s_{v}}{s_{u}}$ $_{x}^{x} = \frac{s_{v}}{s_{u}}$	Radialer Verzeichnungsk Da u und v unbekannt sind, werden c Bildkoordinaten X und Y ersetzt. Da $r'^2 = (X/s_u)$ Definiert man $k \equiv k's_v^2$, den <i>radialen</i> <i>radial distortion coefficient</i>), dann fol, $\mu \equiv \frac{f_u}{f_a}$ und $r^2 \equiv \mu^2$.
Kapitel: Sichtsysteme in der Robotik	B TAMS	TIA AB	Kapitel: Sichtsysteme in der Robotik	TIA AB TAMS
Abschnitt: radial alignment constraint (RAC,	achbereich Informatik		Abschnitt: radial alignment constraint (RAC)	MS Fachbereich Informatik

 WENG, JUYANG, PAUL COHEN und MARC HERNIOU: Camera Calibration with Distortion Models and Accuracy Evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(10):965–980, 1992. ZHUANG, HANQI und ZVI S. ROTH: Camera-aided robot calibration, Kapitel 2.II.A, 3.I und 3.II, Seiten 11–14 und 63–68. CRC Press Inc, 1996. 	TIA AB TAMS MIS Fachbereich Informatik Abschnitt: Tsai's RAC-basierte Kamerakalibrierung	Prof. J. Zhang Vorlesung: Angewandte Sensorik 16. Dezember 2005	 Ermitteln der Rotationsmatrix R und der Komponenten t_x und t_y des Translationsvektors. Schätzung der übrigen Parameter aufgrund der Ergebnisse des ersten Schrittes. 	 Annahme C_x, C_y und μ sind bekannt. Ziel ist die Ermittelung der extrinsischen Parameter R und t sowie der intrinsischen Parameter f_x, f_y und k. Für die Kalibrierung wird eine Menge koplanarer Kalibrationspunkte verwendet werden. Die Kalibrierung beinhaltet zwei Schritte: 	Tsai's RAC-basierte Kamerakalibrierung	TIA AB TAMS MIS Fachbereich Informatik Abschnitt: Tsai's RAC-basierte Kamerakalibrierung

Seite 334 16. Dezember 2005