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Setting

Key/value pairs storage and retrieval

� Keys are unique

=) w.l.o.g. keys are uniformly distributed (160-bit)
numbers (e.g. use hashing)

� Keys can have different store and/or retrieve popularity

DHT (Distributed Hash Table)
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Constraints

� Any particular node can disappear at any time

� Nodes should be loaded equally (bandwidth and storage)

Goal

� Quick storage and retrieval, independent from node failures

� Minimize number of control messages
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Node instability

Ideal case

� Once a node joins, it never leaves.

Realistic case

� A randomly selected online node will stay online for
another 1 hour with probability 1/2.
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� Probability of remaining online another hour as a function of
uptime. The x axis represents minutes. The y axis shows the
the fraction of nodes that stayed online at least x minutes that
also stayed online at least x+ 60 minutes.
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Common approach

1. Assign random (160-bit) ID to each node

2. Define a metric topology on the 160-bit numbers, i.e. the space
of keys and node IDs

3. Each node keeps contact information to O(log n) other nodes

4. Provide a lookup algorithm, which finds the node, whose ID is
closest to a given key.

=) we need a metric that identifies closest node uniquely

5. Store and retrieve a key/value pair at the node whose ID is
closest to the key
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Chord lookup

Each step halves the topological distance to the target.
So we have expected log n hops to the target.
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Chord routing table basics
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� Contacts in logarithmically distributed regions of the ID space
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Chord routing table rigidity
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� Rigidity

� Complicates recovery from failed nodes and routing table

� Precludes proximity-based routing
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Chord discrepancy
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� In- and out- distribution are exactly opposite

� Prevents from using incoming traffic to re-enforce routing
table
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Fixing Chord has drawbacks
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� Bi-directional routing table has drawbacks

� Doubles routing table size

� Doubles number of control messages
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Kademlia: a peer-to-peer system

� Flexible routing table

� Allows to benefit from proximity-based routing

� So relaxed, that maintenance is minimal

� In- and out- distributions are the same

� Network re-enforces itself

� Just log n contacts (not counting redundancy)
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Overarching idea
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Every hop brings us in a smaller subtree around the target.
Can forward requests to any node in the appropriate subtree.
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Idea: routing table
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� No more rigidity: can have any contact in a subtree

� In- and out- distributions are the same

� Routing table size is still log n

� Why do we need a topology?
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The XOR topology

� Definition: d(X;Y ) = X � Y

� Intuition: Differences at higher order bits matter much more
than differences at lower order bits.

010101

110001, distance is 4 + 32 = 36

� Geometric intuition: Nodes in the same tree are much closer
together than they are with nodes in other subtrees.
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Complete XOR tree of 5-bit numbers

Points in the same subtree are much closer together than they
are with points in other subtrees.
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Data Structures

Contact

� A pair of node ID and IP:UDP port

k-bucket

� A container for no more than k contacts (we use k = 20)

� Operations place contact and remove contact

Routing table

� Operations place contact and remove contact

� A constrained tree of k-buckets

� Each bucket responsible for a range of the node ID space
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00...011...1

Pseudo-Address Space

k-buckets

Routing Table Data Structure
(for node, whose pseudo-address is 00...0)
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00...011...1

Pseudo-Address Space

2-buckets

Routing Table Data Structure
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Simple lookup

01

0..001..11
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Lookup algorithm skeleton
� Goal: Find the k nodes closest to a given target T 2 f0; 1g160

� RPC: find noden(T ) returns all contacts from the (first
non-empty) k-bucket in n’s routing table that is closest to T

� Lookup:

no = ourselves (the node that is performing the lookup)

N1 = find nodeno

(T )

N2 = find noden1
(T )

: : :
Nl = find nodenl�1

(T );

this completes when Nl contains no contacts that haven’t been
called already

� ni is any contact in Ni
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How lookup works?

� On every step, the metric distance between ni and the target
reduces by an exact factor of 1/2.

=) (abstractly) every step reduces the pool of candidates by an

expected factor of 1/2.

� Consequent calls to find noden(T ) fetch the result from ever
smaller-range k-buckets.
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Concurrent lookup

� : Trade bandwidth for lower latency lookups

� Goals:

� Route through closer/faster machines

� Avoid delays due to timeouts on offline contacts

� Idea: Perform � > 1 calls to find noden(T ) in parallel.
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Asynchronous Lookup
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Why lookup works?

Routing table invariant

� The routing table always contains the k closest to ourselves
nodes

� A k-bucket is only empty if there are no nodes in its range
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Contact accounting
� Whenever we use a contact that doesn’t respond within a

given timeout, we remove it from the routing table

� As a general rule: every node places a contact to each node
that makes an RPC call to it in its routing table

� Due to XOR topology’s symmetry, the distribution of nodes
that call us is going to be the same as the distribution of
contacts that we need for our routing table

� Formally: the probability of being contacted by someone at a
distance l 2 [2i; 2i+1], i = 0, from us is a constant, independent
of i
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Joining, Leaving and Refreshes

Node join:

� Borrow some contacts from an already online node

� Lookup self

� Cost of join is O(log n) messages

Node leave: no action

� Very useful for modem connections that may disconnect
multiple times during a long online session

Hourly k-bucket refreshes (only if necessary)
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00...011...1

Pseudo-Address Space

Routing Table Evolution
(for node, whose pseudo-address is 00...0)
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Key-Value Pairs

� Invariant: Be able to find the key-value pairs on one or more of
the k nodes closest to the key

� Publishing and searching is like a lookup
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Key/Value Invariant

� Joining nodes are immediately noticed by their closest
neighbours, and the appropriate key/value pairs are
replicated to them.

� Re-enforce invariant every hour

� Expected Retainment Time (of a key/value pair) is 2k hours.
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Topological caching

Search caching

� When a key starts getting popular, replicate it to more
nodes around its location.

� When searching for a key, stop the lookup as soon as we get
a result.
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Caching principles
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Overpopular nodes

� Nodes tend to be seen only by nearby nodes

� Hard-limit on requests prevents over-popularity

� Flip-side: Natural separation between very-long-staying nodes
and short comers.
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Conclusions

Novel topology:

� Symmetry: If d(X;Y ) = d(Y;X). Helps reduce control
messages.

� Uniqueness: For every X 2 f0; 1g160 and l 2 � there is
unique Y 2 f0; 1g160, such that d(X;Y ) = l. Identify key
location uniquely.

� Unidirectionality: For a fixed X there are 2i Y ’s for which

d(X;Y ) 5 2i�1. Makes caching efficient.

Asynchronous lookup: avoids slow links
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Further directions

� Non-unique keys.

� Node heterogenity (nodes of different strengths)

� Network heterogenity (take advantage of fast intranets)

� Security models against node, key and lookup attacks.
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