## Disks: Agenda

- Festplatten
- IDE Schnittstelle
- SCSI
- RAID
- Filecache/ OS-Strategien



PC-Technologie | SS 2001 | 18.214

## Disks: "iron oxide valley"

"I think Silicon Valley was misnamed. If you look back at the dollars shipped in products in the last decade there has been more revenue from magnetic disks than from silicon.

They ought to rename the place Iron Oxide Valley"

Al Hoagland, One of the Pioneers of Magnetic Disks (1982) [Hennessy & Patterson, Computer Architecture, 6.2]

#### Disks: IBM Microdrive



• 340 MB, kleiner als PCMCIA-II Karte, 16 Gramm

PC-Technologie | SS 2001 | 18.214

#### Disks: Literatur

Friedhelm Schmidt: SCSI-Bus und IDE-Schnittstelle, Addison-Wesley 93

H.-P. Messmer PC-Hardwarebuch, Addison-Wesley 97

c't Plattenkarussell

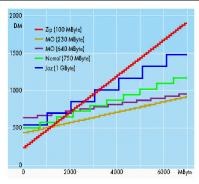
c't SCSI-Einführung, Hefte 17/98/184, 18/98/144, 19/98/264

ATA-1 bis ATAPI-5 Spezifikationen SCSI-1 bis SCSI-3 Spezifikationen SCSI-3 MMC Spezifikation

www.seagate.com, www.quantum.com, www.storage.ibm.com

PC-Technologie | SS 2001 | 18.214 PC-Technologie | SS 2001 | 18.214

# atten


## Disks: Plattenkarussell

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Kopozitět | Decharah | Coche   | Boulom   | Random    | Dowerfron      | female         | Gewichteter Mittelwert | Interface           | louigesä   | wich       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|---------|----------|-----------|----------------|----------------|------------------------|---------------------|------------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |         |          | Access    | Lesen          | Scholben       | (Halbonch)             |                     | Luke       | Betrieb    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |         |          |           | min/mittel/max | min/mittel/max |                        |                     |            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [MByte]   | [U/min]  | [KByte] | [Zoll]   | пв        | [MByte/s]      | [MByte/s]      | [MByle/s]              |                     | [dBA/Sone] | [dBA/Sone] |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |         |          |           |                |                | beuer >                |                     |            |            |
| Septiment of the septim |           |          |         |          |           |                |                |                        |                     |            |            |
| ST31621A <sup>33</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1548      | 3600     | 64 4    | 3,5/1    | 23,0/18,6 | 1,47/2,89/4,01 | 1,47/2,69/3,97 | 2,22                   | 4                   | 33,5/1,5   | 47,8/4,7   |
| ST317242A Medalist 17242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16447 12  | 5400     | 512     | 3,5/1    | 13,2/8,1  | 8,93/12,4/15,5 | 8,88/12,4/15,5 | 7,58                   | 4, U4               | 36,1/1,7   | 42,0/3,1   |
| ST32122A Medalist <sup>5</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2014      | 4500     | 1284    | 3,5/1    | 19,9/15,7 | 3,54/5,35/6,62 | 3,54/5,35/6,62 | 3,63                   | 4, U2               | 37,7/2,0   | 47,7/4,7   |
| ST32140A <sup>20</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2015      | 5400     | 128     | 3,5/1    | 19,1/14,6 | 2,56/3,81/4,86 | 2,52/3,75/4,86 | 2,81                   | 4                   | 41,8/2,8   | 47,5/4,6   |
| ST34321A Medalist4321 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4103      | 5400     | 128     | 3,5/1    | 15,0/11,2 | 5,58/7,79/9,63 | 5,19/7,36/9,38 | 5,32                   | 4, U2               | 33,8/1,3   | 38,9/2,4   |
| ST34342A Medalist <sup>10</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4103      | 4500     | 128     | 3,5/1    | 20,7/15,5 | 3,26/5,40/6,82 | 3,21/5,38/6,82 | 3,68                   | 4, U2               | 39,1/2,7   | 49,0/5,6   |
| ST36450A MedalistPro 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6149      | 5400     | 448     | 3,5/1    | 16,7/11,1 | 5,08/6,90/8,65 | 4,69/6,72/8,65 | 4,68                   | 4                   | 38,4/2,1   | 45,5/4,1   |
| ST36451A MedalistPro 6451 <sup>5</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6149      | 5400     | 448     | 3,5/1    | 16,5/11,2 | 5,04/6,85/8,59 | 5,04/6,85/8,59 | 4,91                   | 4, U2               | 36,0/1,9   | 46,2/4,3   |
| ST36530A MedalistPro 6530 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6208      | 7200     | 448     | 3,5/1    | 14,3/9,2  | 6,51/11,8/14,0 | 6,50/11,8/14,0 | 7,23                   | 4, U2               | 35,8/1,9   | 47,9/4,3   |
| ST36531A Medalist 6531 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6204      | 5400     | 128     | 3,5/1    | 14,7/10,6 | 5,00/7,77/9,62 | 4,93/7,70/9,62 | 5,43                   | 4, U2               | 34,0/1,5   | 43,1/3,4   |
| ST366GA [OEM HP] 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 520       | 3800     | 120     | 3,5/1    | 24,9/24,7 | 1,11/1,79/2,22 | 1,17/1,79/2,22 | <b>1</b> ,31           | 3                   | 40,7/2,8   | 48,3/5,2   |
| ST38421A U4 8421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8056 12   | 5400     | 256     | 3,5/1    | 13,6/9,4  | 8,89/12,9/16,0 | 8,80/12,9/16,0 | 7,47                   | 4, U4               | 30,5/1,1   | 42,3/3,4   |
| ST38641A Medalist8641 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8207 12   | 5400     | 128     | 3,5/1    | 15,3/10,7 | 5,07/7,83/9,59 | 4,96/7,72/9,59 | 5,40                   | 4, U2               | 35,1/1,6   | 42,7/3,3   |
| ST39140A MedalistPro 9140 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8693 12   | 7200     | 448     | 3,5/1    | 14,4/8,9  | 3,40/11,3/14,0 | 3,59/11,4/14,0 | 7,62                   | 4, U2               | 36,8/2,1   | 50,7/5,1   |
| ST51270A 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1223      | 5400     | 128     | 3,5/0,75 | 19,7/16,4 | 2,34/3,65/4,62 | 2,26/3,58/4,61 | 2,61                   | 4                   | 38,6/2,5   | 43,1/3,3   |
| ST52520A MedalistPro 2.5 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2446      | 5400     | 112     | 3,5/0,75 | 16,0/12,0 | 4,45/6,74/8,56 | 4,63/6,74/8,56 | 4,64                   | 4                   | 35,6/1,8   | 46,1/3,9   |
| Western Digital                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |         |          |           |                |                |                        |                     |            |            |
| AC11200L Coviar <sup>6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1222      | 5200     | 256     | 3,5/1    | 18,6/15,3 | 4,79/7,06/9,11 | 4,10/7,03/9,13 | 4,72                   | - 4                 | 34,1/1,3   | 40,5/2,5   |
| AC21200 Caviar <sup>20</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1222      | 5200     | 128     | 3,5/1    | 18,4/15,1 | 3,15/4,78/6,03 | 2,72/4,72/6,03 | 3,15                   | 4                   | 37,4/2,1   | 48,5/4,1   |
| AC21600 Caviar <sup>14</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1549      | 5200     | 128     | 3,5/1    | 18,3/14,8 | 4,01/5,68/7,22 | 2,85/4,79/6,79 | 3,39 31                | 4                   | 36,8/1,9   | 49,4/4,0   |
| AC22100 Caviar <sup>21</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2014      | 5200     | 128     | 3,5/1    | 18,4/13,8 | 4,10/6,19/7,90 | 3,49/5,71/7,89 | 3,48                   | 4                   | 38,1/2,2   | 49,2/4,4   |
| AC22500L Caviar <sup>6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2441      | 5200     | 256     | 3,5/1    | 18,5/13,6 | 4,85/7,15/9,23 | 4,62/7,08/9,24 | 4,69                   | 4                   | 38,8/1,6   | 48,9/3,6   |
| AC23200L Caviar <sup>©</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3098      | 5400     | 256     | 3,5/1    | 16.7/11.9 | 5,70/8,26/9,85 | 5,71/8,18/9,85 | 4.56                   | 4. U2               | 36.6/1.4   | 48,7/4,0   |
| AC24300L Caviar <sup>7</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4112      | 5400     | 256     | 3,5/1    | 16,6/11,3 | 5,70/8,27/9,84 | 3,75/4,75/5,57 | 4,24                   | 4, U2               | 37,2/2,0   | 42,9/3,2   |
| AC26400B Carriar <sup>Q</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6149      | 5400     | 512     | 3,5/1    | 16,4/10,5 | 7,57/10,5/12,3 | 7,57/10,5/12.3 | 5.62                   | 4, U2               | 32,5/1,1   | 45,7/3,4   |
| AC28400R Caviar <sup>22</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8064 12   | 5400     | 512     | 3,5/1    | 14,8/10,3 | 8,14/11,3/13,1 | 8,14/11,3/13,1 | 6.94                   | 4, U4 <sup>35</sup> | 31,5/1,1   | 47,2/3,7   |
| AC29100D Expert 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8693 12   | 7200     | 1966    | 3,5/1    | 13,3/9,1  | 10,3/14,3/17,0 | 10,1/14,3/17,0 | 10.5                   | 4, U4               | 41,0/2,5   | 44,1/3,5   |
| AC310100B Caviar <sup>Q</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9671 12   | 5400     | 512     | 3,5/1    | 16,4/10,3 | 7,57/10,8/12,7 | 7,57/10,8/12,7 | 573                    | 4, U2               | 33,8/1,3   | 48,9/4,1   |
| AC313000R Caviar <sup>22</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12417 12  | 5400     | 512     | 3,5/1    | 15,0/10,0 | 7,84/11,2/13,1 | 7,84/11,2/13,1 | 7,29                   | 4, U4 <sup>35</sup> | 33,6/1,5   | 48,2/3,5   |

PC-Technologie | SS 2001 | 18.214

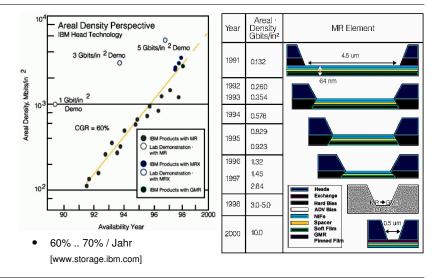
## Disks: einige Wechselplatten





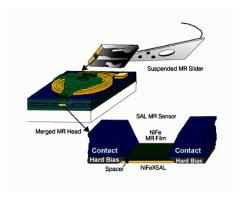
- diverse aktuelle Wechselplatten, magnetisch/magnetooptisch
- Kapazität vs. Performance vs. Kosten vs. Kosten/MB
- MO bietet extreme Datensicherheit, aber schlechtere Performance

Leerseite


PC-Technologie

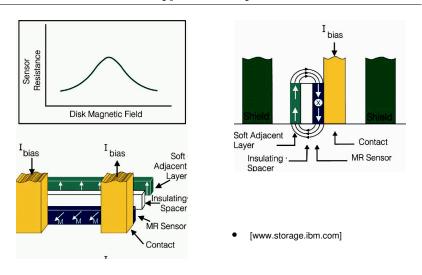
Leerseite

PC-Technologie | SS 2001 | 18.214


PC-Technologie

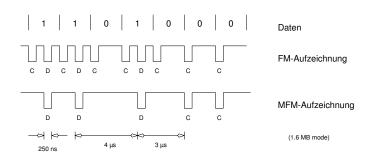
## Disks: Trend




PC-Technologie | SS 2001 | 18.214

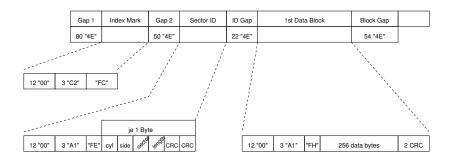
## Disks: MR-Lesekopf: Aufbau




- Schreiben mit "normaler" Spule
- magnetoresistiver Lesekopf (MR)

## Disks: MR-Lesekopf: Prinzip

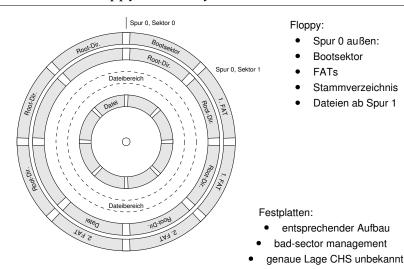



PC-Technologie | SS 2001 | 18.214

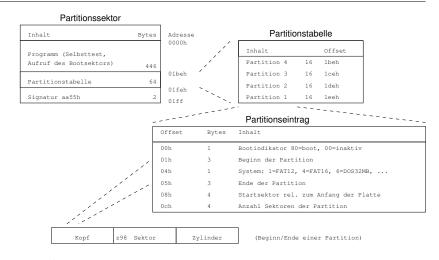
## Disks: FM/MFM Aufzeichnung (Floppy)



- Flusswechsel möglichst eng für hohe Speicherkapazität
- begrenzt durch Material, Lesekopf, oder Elektronik
- Frequenzmodulation verwendet Takt- und Datenimpulse
- MFM doppelte Kapazität
- Festplatten: Lauflängenkodierung (RLL) für höhere Kapazität


#### Disks: MFM Sektorformat




- keine separate Taktspur: selbsttaktend, spurführend
- muß Drehzahlschwankungen ausgleichen
- hohe Redundanz, spez. Taktmuster, CRC-Fehlerkorrektur
- Index-Markierungen für Spur/Sektornummer
- wird beim Formatieren erzeugt (nur Floppy)

PC-Technologie | SS 2001 | 18.214

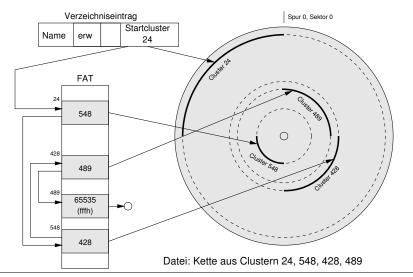
## Disks: Floppy-Sektorlayout



#### Disks: Partitionssektor



Selbsttest ab Adresse 0000, verzweigt zum Bootsektor


PC-Technologie | SS 2001 | 18.214

#### Disks: Bootsektor

|          |                                           |         | Adresse                                           |
|----------|-------------------------------------------|---------|---------------------------------------------------|
| _        | e9xxxxh oder ebxx90h                      | 3 Bytes | 00h / 0                                           |
|          | OEM-Name und Nummer                       | 8 Bytes | 03h / 3                                           |
|          | Bytes pro Sektor                          | 2 Bytes | 0bh / 11                                          |
|          | Sektoren pro Cluster                      | 1 Byte  | 0dh / 13                                          |
|          | reservierte Sektoren (boot record)        | 2 Bytes | 0eh / 14                                          |
|          | Anzahl der FATs                           | 1 Byte  | 10h / 16 / Of8h Festplatte                        |
|          | Einträge im Root-Verzeichnis              | 2 Bytes | 11h / 17 / 016h restpiatte 016h 3.5", 720 KB      |
|          | Anzahl der logischen Sektoren             | 2 Bytes | 13h / 19 / 0f9h 3.5", 1.2 MB<br>0fah 3.5", 320 KB |
|          | Medium-Desktriptor-Byte                   | 1 Byte  | 15h / 21 , 0fbh 5.25", 640KB                      |
|          | Sektoren pro FAT                          | 2 Bytes | 16h / 22                                          |
|          | Sektoren pro Spur                         | 2 Bytes | 18h / 24                                          |
|          | Anzahl der Köpfe                          | 2 Bytes | 1ah / 26                                          |
|          | Anzahl der verborgenen Sektoren           | 2 Bytes | 1ch / 28                                          |
| <b>\</b> | Programm zum Laden des<br>Betriebssystems | Rest    | 1eh / 30<br>xxh : Start des Urladers              |

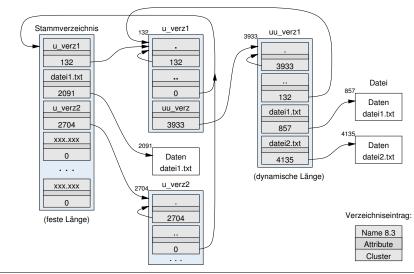
- erster Sektor der Partition (Kopf 0, Spur 0, Sektor 1)
- "Medium Descriptor Table" von 0bh .. 1eh
- ebxxxx: near jump xxxx / e9xx90: short jump xx nop

#### File Allocation Table (FAT) Disks:



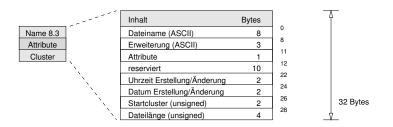
PC-Technologie | SS 2001 | 18.214

PC-Technologie | SS 2001 | 18.214


#### Disks: File Allocation Table

| FAT-12           | FAT-16              | FAT-32                             | Bedeutung                                           |
|------------------|---------------------|------------------------------------|-----------------------------------------------------|
| 000h<br>ff0hff6h | 0000h<br>fff0hfff6h | 0000 0000h<br>0fff fff0h0fff fff6h | frei<br>reserviert                                  |
| ff7h             | fff7h               | Offf fff7h                         | defekter Sektor                                     |
| ff8hfffh<br>xxxh | fff8hffffh<br>xxxxh | Offf fff8hOfff ffffh<br>Oxxx xxxxh | Ende der Clusterkette<br>nächster Cluster der Datei |
| 4077             | 65517               | 2^28 = 256M                        | max. Anzahl der Cluster                             |

- geringe Anzahl der Cluster in FAT-16 führt zu riesigen Clustern:
- ungeeignet für große Platten / Vielzahl von kleinen Dateien

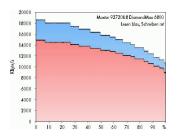

| Kapazität   | Clustergröße (FAT-16) |
|-------------|-----------------------|
| 16128 MB    | 2 KB (4 Sektoren)     |
| 128256 MB   | 4 KB (8 Sektoren)     |
| 256512 MB   | 8 KB (16 Sektoren)    |
| 5121024 MB  | 16 KB (32 Sektoren)   |
| 10242048 MB | 32 KB (64 Sektoren)   |

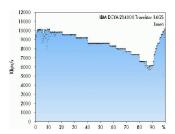
#### DOS-Verzeichnisstrutkur Disks:



PC-Technologie | SS 2001 | 18.214

#### DOS-Verzeichniseintrag Disks:

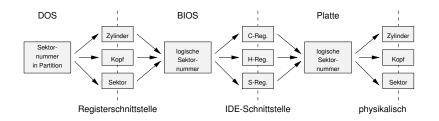




#### Dateiname:

- 8 Zeichen ASCII, 3 Zeichen Erweiterung
- Name '2eh' bzw. '.' bedeutet Verzeichnis, ".." das Stammverzeichnis
- Name 'e5h' bedeutet "gelöscht"

#### Disks: Zonenmessung

#### Anordnung der logischen Blöcke auf der Platte?






- c't-Messung: R/W-Transferraten als Funktion der Blockadresse
- viele Varianten möglich
- schnellste Zone (außen) meistens bei Adresse 0
- gibt es ein "optimales" Mapping?

PC-Technologie | SS 2001 | 18.214

#### Disks: BIOS/CHS/LBA-Adressierung



Adressierung von Daten auf einer Platte:

- · CHS: Cylinder, Head, Sektor
- LBA, logical block addressing (fortlaufend ab 0)
- DOS/BIOS zu wenig Bits: Probleme bei 504M, 2G, 8G, ...
- herstellerspezifisches Mapping LBA Sektor der Platte
- "Zonenmessung"

#### PC-Technologie | SS 2001 | 18.214 PC-Technologie | SS 2001 | 18.214

#### BIOS: 528 MByte Grenze (int13h)

#### 3.2 The 528-megabyte barrier

BIOSs provide Int 13h services for accessing ATA drives from DOS. For conventional Int 13h the Cylinder-Head-Sector (CHS) values supplied to the Int 13h interface were passed to the drive without modification. This method of access allows "Ill-behaved" applications to successfully access the drive, bypassing the BIOSs Int 13h interface. ATA drives support more than 1024 cylinders but the Int 13h interface is limited to 1024, this prevents the BIOS from accessing the full media by passing CHS values directly to the drive. Table 1 illustrates the limitations caused by the differences between the Int 13h and ATA maximum geometries.

Table 1 - Disk drive min/max

|                   | BIOS   | ATA      | Limit  |
|-------------------|--------|----------|--------|
| Max sectors/track | 63     | 255      | 63     |
| Max heads         | 256    | 16       | 16     |
| Max cylinders     | 1024   | 65536    | 1024   |
| Capacity          | 8.4 GB | 136.9 GB | 528 MB |

This table illustrates how the conventional Int 13h interface with an 8.4 GB limit is restricted to 528 MB (63 \* 16 \* 1024 \* 512). One solution to this problem is to address the drive using the Int 13h Extensions described in this technical report. Another solution is to create a false geometry that "fifs" within Int 13h limitations, and also uses the full capacity of the drive. This capability is called geometric or drive translation. The translated geometry is applied in a manner that causes all sectors to maintain the same physical location on the media as when the drive is used in an untranslated environment. The Int 13h interface only has 10 bits for the cylinder, therefore Int 13h Fn 08h always returns the altered geometry information. This allows all DOS applications to function normally. Windows™ 3.11 and below functions normally when 32-bit disk access mode is disabled. A Windows™ driver which supports the geometry reported by Int 13h Fn 08h is required for 32-bit protected disk access mode.

PC-Technologie | SS 2001 | 18.214

#### BIOS: bit shifting

A simple bit-shift mapping scheme may create altered drive geometries. This method has the advantage of working with all ATA drives, including those drives which do not support LBA. A second advantage is that operation is fast and the code is small. The disadvantage of this method is that it lacks the flexibility to translate all geometries reported by a drive with a capacity less than 8.4 GB. However, drives which are ATA-2 (X3.279-1996) and above compatible will report geometries that may be translated. Annex D of ATA-2 or Annex B of ATA-3 and ATA/ATAPI-4 place limits on geometries for drives with less than an 8.4 GB capacity. The bit-shift method of translation manipulates the head and cylinder part of the geometry, but not the sectors per track. Table 2 describes the bit-shift translation capability:

Table 2 - Bit Shift Translation

| Table E - Dit Shift Translation                                                                              |                                                                      |                     |                  |                |  |  |
|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------|------------------|----------------|--|--|
| Actual cylinders                                                                                             | Actual<br>heads                                                      | Altered<br>cylinder | Altered<br>heads | Approx. size   |  |  |
|                                                                                                              |                                                                      |                     | (see note)       |                |  |  |
| 1 <c≤1024< td=""><td>1<h≤16< td=""><td>C=C</td><td>H=H</td><td>528 MB</td></h≤16<></td></c≤1024<>            | 1 <h≤16< td=""><td>C=C</td><td>H=H</td><td>528 MB</td></h≤16<>       | C=C                 | H=H              | 528 MB         |  |  |
| 1024 <c≤2048< td=""><td>1<h≤16< td=""><td>C=C/2</td><td>H=H*2</td><td>1 GB</td></h≤16<></td></c≤2048<>       | 1 <h≤16< td=""><td>C=C/2</td><td>H=H*2</td><td>1 GB</td></h≤16<>     | C=C/2               | H=H*2            | 1 GB           |  |  |
| 2048 <c≤4096< td=""><td>1<h≤16< td=""><td>C=C/4</td><td>H=H*4</td><td>2.1 GB</td></h≤16<></td></c≤4096<>     | 1 <h≤16< td=""><td>C=C/4</td><td>H=H*4</td><td>2.1 GB</td></h≤16<>   | C=C/4               | H=H*4            | 2.1 GB         |  |  |
| 4096 <c≤8192< td=""><td>1<h≤16< td=""><td>C=C/8</td><td>H=H*8</td><td>4.2 GB</td></h≤16<></td></c≤8192<>     | 1 <h≤16< td=""><td>C=C/8</td><td>H=H*8</td><td>4.2 GB</td></h≤16<>   | C=C/8               | H=H*8            | 4.2 GB         |  |  |
| 8192 <c≤16384< td=""><td>1<h≤16< td=""><td>C=C/16</td><td>H=H*16</td><td>8.4 GB</td></h≤16<></td></c≤16384<> | 1 <h≤16< td=""><td>C=C/16</td><td>H=H*16</td><td>8.4 GB</td></h≤16<> | C=C/16              | H=H*16           | 8.4 GB         |  |  |
| 16384 <c≤32768< td=""><td>1<h≤8< td=""><td>C=C/32</td><td>H=H*32</td><td>8.4 GB</td></h≤8<></td></c≤32768<>  | 1 <h≤8< td=""><td>C=C/32</td><td>H=H*32</td><td>8.4 GB</td></h≤8<>   | C=C/32              | H=H*32           | 8.4 GB         |  |  |
| 32768 <c≤65536< td=""><td>1<h≤4< td=""><td>C=C/64</td><td>H=H*64</td><td>8.4 GB</td></h≤4<></td></c≤65536<>  | 1 <h≤4< td=""><td>C=C/64</td><td>H=H*64</td><td>8.4 GB</td></h≤4<>   | C=C/64              | H=H*64           | 8.4 GB         |  |  |
| NOTE – Value ca                                                                                              | n not be grea                                                        | ater than 255 i     | n some Open      | ating Systems. |  |  |

Beispiel FAT ·

#### BIOS: LBA translation

Table 3 - LBA assist translation

| Range                                                                                     | Sectors | Heads | Cylinders  |  |  |
|-------------------------------------------------------------------------------------------|---------|-------|------------|--|--|
| 1 <x≤1,032,192< td=""><td>63</td><td>16</td><td>X/(1,008)</td></x≤1,032,192<>             | 63      | 16    | X/(1,008)  |  |  |
| 1,032,192 <x≤2,064,384< td=""><td>63</td><td>32</td><td>X/(2,016)</td></x≤2,064,384<>     | 63      | 32    | X/(2,016)  |  |  |
| 2,064,384 <x≤4,128,768< td=""><td>63</td><td>64</td><td>X/(4,032)</td></x≤4,128,768<>     | 63      | 64    | X/(4,032)  |  |  |
| 4,128,768 <x≤8,257,536< td=""><td>63</td><td>128</td><td>X/(8,064)</td></x≤8,257,536<>    | 63      | 128   | X/(8,064)  |  |  |
| 8,257,536 <x≤16,450,560< td=""><td>63</td><td>255</td><td>X/(16,065)</td></x≤16,450,560<> | 63      | 255   | X/(16,065) |  |  |
|                                                                                           |         |       |            |  |  |

NOTE - X is the capacity of the drive, calculated by multiplying words 1, 3, and 6 of the IDENTIFY DEVICE data. This number may be different than the drive size reported by IDENTIFY DEVICE words 60 and 61.

These two translation methods yield similar geometries in many cases. The difference between the two translations methods becomes apparent when a drive reports less than 63 sectors per track. The LBA assisted method always assigns a geometry with 63 sectors per track. The bit-shift method uses the sectors returned by

- evtl. andere Resultate als "bit-shifting"-Technik
- beide Varianten: bis max. 16 GByte
- beide Varianten: Platte nach BIOS-Wechsel evtl. nicht mehr lesbar

PC-Technologie | SS 2001 | 18.214

#### BIOS: extended BIOS translation

|        |             | Table 8 – Device address packet                                                                                                                                                                                                                                                                                                           |  |  |  |
|--------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Offset | Туре        | Description                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 0      | Byte        | Packet size in bytes. Shall be 16 (10h) or greater. If the packet size is less than 16 the request is rejected with CF=1h and AH=01h. Packet sizes greater than 16 are not rejected, the additional bytes beyond 16 shall be ignored.                                                                                                     |  |  |  |
| 1      | Byte        | Reserved, must be 0                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 2      | Byte        | Number of blocks to transfer. This field has a maximum value of 127 (7Fh).<br>A block count of 0 means no data is transferred. If a value greater than 127<br>is supplied the request is rejected with CF=1 and AH=01.                                                                                                                    |  |  |  |
| 3      | Byte        | Reserved, must be 0                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 4      | Double word | Address of transfer buffer. The is the buffer which Read/Write operations will use to transfer the data. This is a 32-bit address of the form Seg:Offset.                                                                                                                                                                                 |  |  |  |
| 8      | Quad word   | Starting logical block address, on the target device, of the data to be transferred. This is a 64 bit unsigned linear address. If the device supports LBA addressing this value should be passed unmodified. If the device does not support LBA addressing the following formula holds true when the address is converted to a CHS value: |  |  |  |
|        |             | LBA = (C <sub>1</sub> * H <sub>0</sub> + H <sub>1</sub> ) * S <sub>0</sub> + S <sub>1</sub> - 1                                                                                                                                                                                                                                           |  |  |  |
|        |             | Where:  C <sub>1</sub> = Selected Cylinder Number  H <sub>0</sub> = Number of Heads (Maximum Head Number + 1)  H <sub>1</sub> = Selected Head Number  S <sub>2</sub> = Maximum Sector Number  S <sub>3</sub> = Selected Sector Number                                                                                                     |  |  |  |
|        |             | For ATA compatible drives, with less than or equal to 15,482,880 logical sectors, the H <sub>2</sub> and S <sub>2</sub> values are supplied by WORDS 3 and 6 of the IDENTIFY DEVICE command.                                                                                                                                              |  |  |  |

lineare 64-bit LBA-Adressierung

PC-Technologie | SS 2001 | 18.214

#### extended read/write commands BIOS:

#### 4.2.2 Extended read

```
Entry:
        AH - 42h
        DL - Drive number
        DS:SI - Disk address packet
        carry clear
              AH - 0
        carry set
```

This function transfer sectors from the device to memory. In the event of an error, the block count field of the disk address packet contains the number of good blocks read before the error occurred.

#### 4.2.3 Extended write

```
Entry:
        AH - 43h
        AL - 0 or 1, write with verify off
                2, write with verify on
         DL - Drive number
         DS:SI - Disk address packet
Exit:
        carry clear
                AH - 0
        carry set
                AH - error code
```

This function transfer sectors from memory to the device. If write with verify is not supported, this function rejects the request with AH=01h, CF=1. Function 48h is used to detect if write with verify is supported. In the event of an error, the block count field of the disk address packet contains the number of blocks written before the error occurred. AL also contains the values 0, 1, or 2. This function rejects all other values with AH=01h,

PC-Technologie | SS 2001 | 18.214

#### BIOS: extended BIOS detection

#### 4.2.1 Check extensions present

```
Entry:
       AH - 41h
       BX - 55AAh
       DL - Drive number
        carry clear
               AH - Version of extensions
               AL - Internal use only
BX - AA55h
               CX - Interface support bit map (seeTable 9)
               AH - error code (01h, Invalid Command)
```

Table 9 - Extension result buffer

| Bit  | Description                            |
|------|----------------------------------------|
| 0    | 1 - Fixed disk access subset           |
| 1    | 1 - Drive locking and ejecting subset  |
| 2    | 1 - Enhanced disk drive support subset |
| 3-15 | Reserved, must be 0                    |

This function is used to check for the presence of Int 13h extensions. If the carry flag is returned set, the extensions are not supported for the requested drive. If the carry flag is returned cleared, BX shall be checked for the value AA55h to confirm that the extensions are present. If BX is AA55h, the value of CX is checked to determine what subsets of this interface are supported for the requested drive. At least one subset must be supported. The version of the extensions is 21h. This indicates that the Int 13h extensions are compliant with this

lineare 64-bit LBA-Adressierung

## BIOS: extended BIOS device parameters

Table 4 - Standard device parameter table

| Byte  | Туре | Description                                     |
|-------|------|-------------------------------------------------|
| 0-1   | Word | Physical number of cylinders                    |
| 2     | Byte | Physical number of heads                        |
| 3     | Byte | Not Axh signature, indicates untranslated table |
| 4     | Byte | Reserved                                        |
| 5-6   | Word | Precompensation (obsolete)                      |
| 7     | Byte | Reserved                                        |
| 8     | Byte | Drive control byte                              |
| 9-10  | Word | Reserved                                        |
| 11    | Byte | Reserved                                        |
| 12-13 | Word | Landing zone (obsolete)                         |
| 14    | Byte | Sectors per track                               |
| 15    | Byte | Reserved                                        |

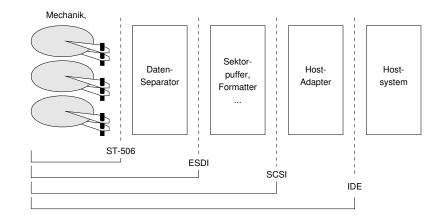
Table 5 - Translated device parameter table

| Byte     | Туре         | Description                                                      |  |  |  |
|----------|--------------|------------------------------------------------------------------|--|--|--|
| 0-1      | Word         | Logical cylinders, limit 1024                                    |  |  |  |
| 2        | Byte         | ogical heads, limit 256 (see note)                               |  |  |  |
| 3        | Byte         | Axh signature, indicates translated table                        |  |  |  |
| 4        | Byte         | Physical sectors per track, limit 63                             |  |  |  |
| 5-6      | Word         | Precompensation (obsolete)                                       |  |  |  |
| 7        | Byte         | Reserved                                                         |  |  |  |
| 8        | Byte         | Drive control byte                                               |  |  |  |
| 9-10     | Word         | Physical cylinders, limit 65536 (see note)                       |  |  |  |
| 11       | Byte         | Physical heads , limit 16 (see note)                             |  |  |  |
| 12-13    | Word         | Landing zone (obsolete)                                          |  |  |  |
| 14       | Byte         | Logical sectors per track, limit 63                              |  |  |  |
| 15       | Byte         | Checksum, 2's complement of the 8 bit unsigned sum of bytes 0-14 |  |  |  |
| NOTE - 0 | indicates th | ne maximum value. See table 2.                                   |  |  |  |

siehe "extended BIOS" specification

PC-Technologie | SS 2001 | 18.214

## Disks: IDE-Schnittstelle


IDE "integrated drive electronics"

EIDE "enhanced IDE"
ATA "AT attachment"

ATAPI AT attachment packet interface

- Anschluss von Festplatten an den AT-Bus
- minimaler Hardwareaufwand des Interfaces (=billig)
- registerkompatible Variante eines WD ST506 Controllers
- vollständiger ST506-Controller in der Platte integriert (=IDE)
- mittlerweile standardisiert (ATA-1, 2, 3, 4, ATAPI, MMC, ...)
- Anschluss f
   ür Fest- und Wechselplatten, CD-Laufwerke, usw.
- derzeit fast immer im PC-Chipsatz integriert
- siehe ATAPI-5 Spezifikation

#### Disks: ST506 vs. SCSI vs. ATAPI



• IDE/ATA-Platte enthält kompletten Controller und Adapter

PC-Technologie | SS 2001 | 18.214

## ATAPI: Signale

Table A.3 – 40-pin I/O connector interface signals

Connector Conductor Connector Sign

| Signal name                | Connector<br>contact | Cond | uctor | Connector contact | Signal name         |
|----------------------------|----------------------|------|-------|-------------------|---------------------|
| RESET-                     | 1                    | 1    | 2     | 2                 | Ground              |
| DD7                        | 3                    | 3    | 4     | 4                 | DD8                 |
| DD6                        | 5                    | 5    | 6     | 6                 | DD9                 |
| DD5                        | 7                    | 7    | 8     | 8                 | DD10                |
| DD4                        | 9                    | 9    | 10    | 10                | DD11                |
| DD3                        | 11                   | 11   | 12    | 12                | DD12                |
| DD2                        | 13                   | 13   | 14    | 14                | DD13                |
| DD1                        | 15                   | 15   | 16    | 16                | DD14                |
| DD0                        | 17                   | 17   | 18    | 18                | DD15                |
| Ground                     | 19                   | 19   | 20    | 20                | (keypin)            |
| DMARQ                      | 21                   | 21   | 22    | 22                | Ground              |
| DIOW-:STOP                 | 23                   | 23   | 24    | 24                | Ground              |
| DIOR-:HDMARDY-<br>:HSTROBE | 25                   | 25   | 26    | 26                | Ground              |
| IORDY:DDMARDY-<br>:DSTROBE | 27                   | 27   | 28    | 28                | CSEL                |
| DMACK-                     | 29                   | 29   | 30    | 30                | Ground              |
| INTRQ                      | 31                   | 31   | 32    | 32                | Obsolete (see note) |
| DA1                        | 33                   | 33   | 34    | 34                | PDIAG-:CBLID-       |
| DA0                        | 35                   | 35   | 36    | 36                | DA2                 |
| CS0-                       | 37                   | 37   | 38    | 38                | CS1-                |
| DASP-                      | 39                   | 39   | 40    | 40                | Ground              |

• billiges 40-pol. Flachbandkabel

- Signale praktisch identisch mit den ISA-Bus Signalen
- seit kurzem auch 80-pol. Kabel für Ultra-DMA Modi

[ATAPI-5 Spec.]

## ATAPI: ATA-Register

|      | 4 – Reg<br>Ad | dresse | \$  |     | Fund                    | tions          |  |  |  |  |
|------|---------------|--------|-----|-----|-------------------------|----------------|--|--|--|--|
| CS0- | CS1-          | DA2    | DA1 | DA0 | Read (DIOR-)            | Write (DIOW-)  |  |  |  |  |
| N    | N             | х      | х   | х   | Released Not used       |                |  |  |  |  |
|      |               |        |     |     | Control block registers |                |  |  |  |  |
| N    | Α             | N      | х   | х   | Released                | Not used       |  |  |  |  |
| N    | Α             | Α      | N   | х   | Released                | Not used       |  |  |  |  |
| N    | Α             | Α      | Α   | N   | Alternate Status        | Device Control |  |  |  |  |
| N    | Α             | Α      | Α   | Α   | Obsolete(see note)      | Not used       |  |  |  |  |
|      |               |        |     |     | Command bl              | ock registers  |  |  |  |  |
| Α    | N             | N      | N   | N   | Data Data               |                |  |  |  |  |
| Α    | N             | N      | N   | Α   | Error                   | Features       |  |  |  |  |
| Α    | N             | N      | Α   | N   | Sector Count            | Sector Count   |  |  |  |  |
| Α    | N             | N      | Α   | Α   | Sector Number           | Sector Number  |  |  |  |  |
| Α    | N             | Α      | N   | N   | Cylinder Low            | Cylinder Low   |  |  |  |  |
| Α    | N             | Α      | N   | Α   | Cylinder High           | Cylinder High  |  |  |  |  |
| Α    | N             | Α      | Α   | N   | Device/Head             | Device/Head    |  |  |  |  |
| Α    | N             | Α      | Α   | Α   | Status                  | Command        |  |  |  |  |
|      | Α             | х      | х   | х   | Released                | Not used       |  |  |  |  |

Host schreibt Parameter in Register 1-6

[ATAPI-5 Spec.]

[ATAPI-5 Spec.]

- Befehl starten durch Schreiben auf Register 7
- Datenübergabe nacheinander über das Data-Register 0

PC-Technologie | SS 2001 | 18.214

## ATAPI: Register für Packet-Command

Table F.5 – Register functions and selection addresses for PACKET and SERVICE commands

|                 | A           | ddresse     | s        |          | Funct                           | tions           |
|-----------------|-------------|-------------|----------|----------|---------------------------------|-----------------|
| CS0-            | CS1-        | DA2         | DA1      | DA0      | Read (DIOR-)                    | Write (DIOW-)   |
| Ν               | N           | х           | х        | х        | Released                        | Not used        |
|                 |             |             |          |          | Control bloc                    | k registers     |
| N               | Α           | N           | х        | х        | Released                        | Not used        |
| Ν               | Α           | Α           | N        | х        | Released                        | Not used        |
| Ν               | Α           | Α           | Α        | N        | Alternate Status                | Device Control  |
| N               | Α           | Α           | Α        | Α        | Obsolete(see note)              | Not used        |
|                 |             |             |          |          | Command blo                     | ock registers   |
| Α               | N           | N           | N        | N        | Data                            | Data            |
| Α               | N           | N           | N        | Α        | Error                           | Features        |
| Α               | N           | N           | Α        | N        | Interrupt reason                |                 |
| Α               | N           | N           | Α        | Α        |                                 |                 |
| Α               | N           | Α           | N        | N        | Byte count low                  | Byte count low  |
| Α               | N           | Α           | N        | Α        | Byte count high                 | Byte count high |
| Α               | N           | Α           | Α        | N        | Device select                   | Device select   |
| Α               | N           | Α           | Α        | Α        | Status                          | Command         |
| Α               | Α           | х           | х        | x        | Released                        | Not used        |
| Key:<br>A = sig | nal assert  | ed          | N        | = signa  | I negated x = do                | n't care        |
| NOTE -          | - This regi | ister is ol | bsolete. | A device | should not respond to a read of | this address.   |

• CD/CDR/DVD haben andere Organisation als Festplatten


- Packet-Command definiert neue Bedeutung der Register
- Datentransfer wie bei normalen ATA-Befehlen

## ATAPI: Befehle (Ausschnitt)

| Command Name                 | Op Code | Туре | Sub-clause |
|------------------------------|---------|------|------------|
| BLANK                        | Alh     |      | 6.1.1.     |
| CLOSE TRACK/SESSION          | 5Bh     |      | 6.1.2.     |
| FORMAT UNIT                  | 04h     |      | 6.1.3.     |
| INQUIRY                      | 12h     | М    | SPC        |
| LOAD/UNLOAD C/DVD            | A6h     | 0    | 6.1.5.     |
| MECHANISM STATUS             | BDh     | М    | 6.1.6.     |
| MODE SELECT (6)              | 15h     | М    | SPC        |
| MODE SENSE (10)              | 5Ah     | М    | SPC        |
| MODE SENSE (6)               | 1Ah     | M    | SPC        |
| PAUSE/RESUME                 | 4Bh     | A    | 6.1.7.     |
| PLAY AUDIO (10)              | 45h     | A    | 6.1.8.     |
| PLAY AUDIO (12)              | A5h     | A    | 6.1.9.     |
| PLAY AUDIO MSF               | 47h     | A    | 6.1.10.    |
| PLAY C/DVD                   | BCh     | 0    | 6.1.11.    |
| PREVENT/ALLOW MEDIUM REMOVAL | 1Eh     | М    | SPC        |
| READ (10)                    | 28h     | M    | SPC        |
| READ BUFFER CAPACITY         | 5Ch     |      | 6.1.12.    |
| READ C/DVD                   | BEh     | 0    | 6.1.13.    |
| READ C/DVD MSF               | B9h     | 0    | 6.1.14.    |
| READ C/DVD RECORDED CAPACITY | 25h     | М    | 6.1.15.    |
| READ DISC INFORMATION        | 51h     |      | 6.1.16.    |
| READ DVD STRUCTURE           | ADh     |      | 6.1.17.    |
| READ HEADER                  | 44h     | М    | 6.1.18.    |
| READ MASTER CUE              | 59h     |      | 6.1.19.    |
| READ SUB-CHANNEL             | 42h     | M    | 6.1.21.    |

PC-Technologie | SS 2001 | 18.214

## ATAPI: Prinzip PIO-Lesezugriff



Laufwerk liest/schreibt jeweils ganzen Sektor

PIO Host liest/schreibt jedes Datenwort einzeln
 DMA Datentransfer via DMA mit vollem Handshake

# PC-recimologie

#### ATAPI: PIO-Modi 0 .. 4

|                 | Table 49 –                                                                        | PIO data | a transfer | to/from d | evice  |        |      |     |
|-----------------|-----------------------------------------------------------------------------------|----------|------------|-----------|--------|--------|------|-----|
|                 | PIO timing parameters                                                             | Mode 0   | Mode 1     | Mode 2    | Mode 3 | Mode 4 | Note |     |
|                 |                                                                                   |          | ns         | ns        | ns     | ns     | ns   |     |
| to              | Cycle time                                                                        | (min)    | 600        | 383       | 240    | 180    | 120  | 1,4 |
| t <sub>1</sub>  | Address valid to DIOR-/DIOW-<br>setup                                             | (min)    | 70         | 50        | 30     | 30     | 25   |     |
| t <sub>2</sub>  | DIOR-/DIOW-                                                                       | (min)    | 165        | 125       | 100    | 80     | 70   | 1   |
| t <sub>2i</sub> | DIOR-/DIOW- recovery time                                                         | (min)    | -          | -         | -      | 70     | 25   | 1   |
| t <sub>3</sub>  | DIOW- data setup                                                                  | (min)    | 60         | 45        | 30     | 30     | 20   |     |
| t,              | DIOW- data hold                                                                   | (min)    | 30         | 20        | 15     | 10     | 10   |     |
| t <sub>s</sub>  | DIOR- data setup                                                                  | (min)    | 50         | 35        | 20     | 20     | 20   |     |
| t <sub>e</sub>  | DIOR- data hold                                                                   | (min)    | 5          | 5         | 5      | 5      | 5    |     |
| t <sub>ez</sub> | DIOR- data tristate                                                               | (max)    | 30         | 30        | 30     | 30     | 30   | 2   |
| t <sub>o</sub>  | DIOR-/DIOW- to address valid hold                                                 | (min)    | 20         | 15        | 10     | 10     | 10   |     |
| t <sub>RD</sub> | Read Data Valid to IORDY active<br>(if IORDY initially low after t <sub>A</sub> ) | (min)    | 0          | 0         | 0      | 0      | 0    |     |
| t <sub>A</sub>  | IORDY Setup time                                                                  |          | 35         | 35        | 35     | 35     | 35   | 3   |
| t <sub>B</sub>  | IORDY Pulse Width                                                                 | (max)    | 1250       | 1250      | 1250   | 1250   | 1250 |     |
| tc              | IORDY assertion to release                                                        | (max)    | 5          | 5         | 5      | 5      | 5    |     |

[ATAPI-5 Spec.]

- NOTES -
- 1 t<sub>b</sub> is the minimum total cycle time, t<sub>b</sub> is the minimum DIOR-/DIOW- assertion time, and t<sub>b</sub> is the minimum DIOR-/DIOW- negation time. A host implementation shall lengthen t<sub>b</sub> and/or t<sub>b</sub> to ensure that t<sub>b</sub> is equal to or greater than the value reported in the devices IDENTIFY DEVICE data. A device implementation shall support any local host implementation.
- 2 This parameter specifies the time from the negation edge of DIOR- to the time that the data bus is released by the device.
- 3 The delay from the activation of DIOR or DIOW- until the state of IORDY is first sampled. If IORDY is inactive then the host shall wait until IORDY is active before he PIO cycle is completed. If the device is not driving IORDY negated at the 4 fart the activation of DIOR- or DIOW, then 4 shall be met and to is not applicable. If the device is driving IORDY negated at the time t<sub>n</sub> after the activation of DIOR- or DIOW, then 4 shall be met and to so not applicable.
- I Mode may be selected at the highest mode for the device if CS(1:0) and AD(2:0) do not change between read or write cycles or selected at the highest mode supported by the slowest device if CS(1:0) or AD(2:0) do change between read or write cycles.
- Protokoll/Handshake immer gleich, unterschiedliche Wartezeiten

PC-Technologie | SS 2001 | 18.214

PC-Technologie | SS 2001 | 18.214

## ATAPI: PIO Waveforms



[ATAPI-5 Spec.]

Host kontrolliert und initiiert alle Transfers

#### ATAPI: Ultra-DMA

- aktuelles, derzeit schnellstes Übertragungsverfahren
- Ultra-DMA/66 bis 66 MB/s
- Sender (Host/Platte) schickt Daten und Strobe-Impulse
- reduziertes Handshake
- dafür CRC-Fehlerkorrektur
- erfordert neues 80-pol. Kabel
- Anordnung abwechselnd Daten/Masseleitung



[ATAPI-5 Spec.]

PC-Technologie | SS 2001 | 18.214

## ATAPI: Ultra-DMA Waveforms

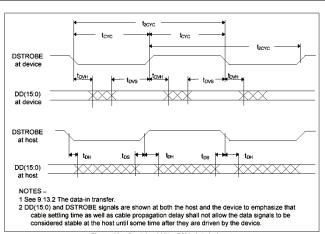



Figure 50 - Sustained Ultra DMA data-in burst

kein Handshake, jeweiliger Sender steuert Daten und Strobe

## ATA: Marktbedeutung

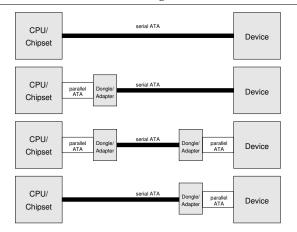
## **126 Million Units and 87%** ATA must be doing something right!

Mobile+Desktop represent 126 MU in '98 and 87% of shipments. Category dominated by ATA.

Projections do not forecast any substantial change in the mix

Disk Drive Unit Shipments\*\* (in thousands)

|                      |                | S <u>hipment</u> s |                | Fore    | cast   |        |  |
|----------------------|----------------|--------------------|----------------|---------|--------|--------|--|
|                      |                | 1998               | 1999           | 2000    | 2001   | 2002   |  |
|                      | Mobile Drives  | 17846              | 20990          | 24340   | 28215  | 32600  |  |
|                      | Desktop Drives | 108628             | 125646         | 143780  | 163180 | 184200 |  |
|                      | Server Drives  | 18493              | 21718          | 25700   | 30550  | 36130  |  |
| Develope             | Total<br>r     | 144967             | 168354         | 193820  | 221945 | 252930 |  |
| Forum-<br>Spring 200 |                | k/Trend report     | at IIST Lk. Ar | rowhead | Inte   | Labs   |  |

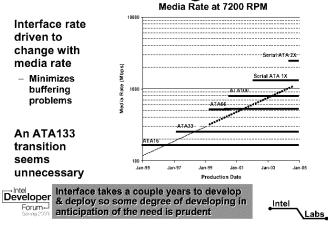

PC-Technologie | SS 2001 | 18.214

#### ATA: Serial-ATA

parallele Datenübertragung problematisch:

- teure Kabel
- Skew-Probleme
- höhere Taktraten als 100 MHz schwierig
- => Umstellung auf serielle Datenübertragung "Serial-ATA"
- Beibehalten des ATAPI-Befehlssatzes
- volle Kompatibilität
- Unterstützung durch alle großen Hersteller
- bei Bedarf "Dongles" zur Parallel/Seriell-Umwandlung

#### ATA: Serial-ATA Dongles




- bei Bedarf "Dongles" zur Parallel/Seriell-Umwandlung
- alte Hardware kann weiter genutzt werden, einfache Migration

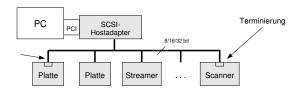
PC-Technologie | SS 2001 | 18.214

## ATA: Serial-ATA Roadmap

## **Another Driving Factor**



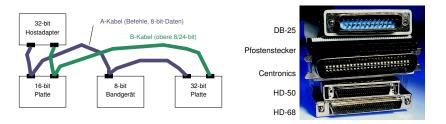
PC-Technologie | SS 2001 | 18.214 PC-Technologie | SS 2001 | 18.214


#### SCSI: Übersicht

#### SCSI := Small Computer Systems Interface

- hervorgegangen aus "Shugart Associates SI"
- standardisiert als SCSI-I, SCSI-II, SCSI-III
- Einsatz in PCs (Server), Mac, Workstations
- keine reine Festplattenschnittstelle
- sondern universeller Bus für Peripheriegräte ("Targets")
- z.B. Bandlaufwerke, Scanner, Musiksynthesizer, ...
- 8-bit parallel (wide-SCSI mit 16-/32-bit)
- "Hostadapter" steuert den Bus
- komplexe Befehle und Arbitrierung
- flexibler, aber auch teuer und komplexer als EIDE/ATAPI
- Praxistips in der Artikelserie in ct 17-19/98

PC-Technologie | SS 2001 | 18.214


## SCSI: Grundlagen

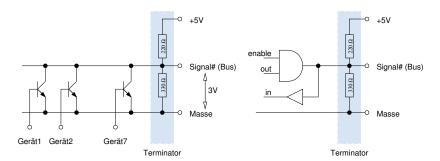


- Bus mit 8 Geräten (LUN 0..7), inklusive Controller
- Gerätenummer per Schalter eingestellt (nicht automatisch!)
- komplexe Regeln zur Verkabelung (Terminierung, Abstände)
- parallele Datenübertragung, 8-bit oder (wide) 16/32-bit
- aufwendiges Busprotokoll mit Arbitrierung und split-transactions
- Geräte handeln die jeweils bestmögliche Geschwindigkeit aus
- langsame Geräte stören schnelle Geräte nicht

#### SCSI: Varianten

- Befehlssätze: SCSI-1, SCSI-2, SCSI-3
- Busbreite: normal 8-bit, wide-SCSI 16-bit und 32-bit
- Bustiming: SCSI-1 bis 5 MB/s, Fast 10 MB/s, Ultra 20 MB/s
- alle Kombinationen, z.B. U2W = Ulta-Wide SCSI-2
- alle Gerätevarianten miteinander kombinierbar
- insbesondere auch normale und wide-SCSI Geräte

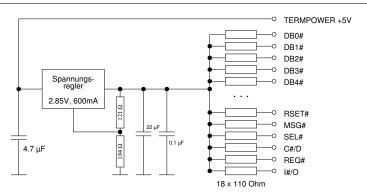



PC-Technologie | SS 2001 | 18.214

## SCSI: Signale

|          | 1 | Cor  | nec | ctor |    |      |        | I Co | nne | ctor  |    |         |   |
|----------|---|------|-----|------|----|------|--------|------|-----|-------|----|---------|---|
| i        | i | cont | act | numb | er | Ca   | ble    | cont | act | numbe | er |         |   |
| Signal   | 1 |      |     |      |    | cond | luctor |      |     |       |    | Signal  |   |
| name     | 1 | Set  | 2   | Set  | 1  | num  | ber    | Set  | 1   | Set   | 2  | name    |   |
| GROUND   | ī | 1    |     | 1    |    | 1    | 2      | 2    |     | 26    |    | -DB(0)  |   |
| GROUND   | 1 | 2    |     | 3    |    | 3    | 4      | 4    |     | 27    |    | -DB(1)  |   |
| GROUND   | 1 | 3    |     | 5    |    | 5    | 6      | 6    |     | 28    |    | -DB(2)  |   |
| GROUND   | 1 | 4    |     | 7    |    | 7    | 8      | 8    |     | 29    |    | -DB(3)  |   |
| GROUND   | 1 | 5    |     | 9    |    | 9    | 10     | 10   |     | 30    |    | -DB(4)  |   |
| GROUND   | 1 | 6    |     | 11   |    | 11   | 12     | 12   |     | 31    |    | -DB(5)  |   |
| GROUND   | i | 7    |     | 13   |    | 13   | 14     | 14   |     | 32    |    | -DB(6)  |   |
| GROUND   | i | 8    | - 1 | 15   |    | 15   | 16     | 16   |     | 33    |    | -DB(7)  |   |
| GROUND   | 1 | 9    |     | 17   |    | 17   | 18     | 18   |     | 34    |    | -DB(P)  |   |
| GROUND   | 1 | 10   |     | 19   |    | 19   | 20     | 20   |     | 35    |    | GROUND  |   |
| GROUND   | i | 11   |     | 21   |    | 21   | 22     | 22   |     | 36    |    | GROUND  |   |
| RESERVED | 1 | 12   |     | 23   |    | 23   | 24     | 24   |     | 37    |    | RESERVE | D |
| OPEN     | 1 | 13   |     | 25   |    | 25   | 26     | 26   |     | 38    |    | TERMPWR |   |
| RESERVED | 1 | 14   |     | 27   |    | 27   | 28     | 28   |     | 39    |    | RESERVE | D |
| GROUND   | i | 15   |     | 29   |    | 29   | 30     | 30   |     | 40    |    | GROUND  |   |
| GROUND   | i | 16   | - 1 | 31   |    | 31   | 32     | 32   |     | 41    |    | -ATN    |   |
| GROUND   | 1 | 17   |     | 33   |    | 33   | 34     | 34   |     | 42    |    | GROUND  |   |
| GROUND   | i | 18   |     | 35   |    | 35   | 36     | 36   |     | 4.3   |    | -BSY    |   |
| GROUND   | i | 19   |     | 37   |    | 37   | 38     | 38   |     | 44    |    | -ACK    |   |
| GROUND   | i | 20   |     | 39   |    | 39   | 40     | 40   |     | 45    |    | -RST    |   |
| GROUND   | i | 21   |     | 41   |    | 41   | 42     | 42   |     | 46    |    | -MSG    |   |
| GROUND   | i | 22   |     | 43   |    | 43   | 44     | 44   |     | 47    |    | -SEL    |   |
| GROUND   | i | 23   |     | 45   |    | 45   | 46     | 46   |     | 48    |    | -C/D    |   |
| GROUND   | i | 24   |     | 47   |    | 47   | 48     | 48   |     | 49    |    | -REQ    |   |
| GROUND   | i | 25   |     | 49   |    | 49   | 50     | 50   |     | 50    |    | -1/0    |   |

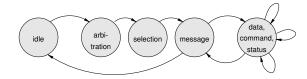
8-bit SCSI, entsprechend mehr Datenleitungen für Wide-SCSI


## SCSI: Signale und Terminierung



- 8-bit SCSI hat 18 Signale auf 50-poligem Kabel
- Signale active-low mit open-Collector Schaltung: kurzschlußfest (!)
- ausgeschaltete Geräte stören den Bus nicht (!)
- Terminator zieht die Leitung auf "inaktiven" high-Pegel
- Terminierung nur an den beiden Endes des Busses

PC-Technologie | SS 2001 | 18.214


## SCSI: aktive Terminierung



- höhere Übertragungsrate erfordert Unterdrückung von Reflektionen
- geforderte Leitungsimpedanz 100..132 Ohm
- mit Spannungsregler / Konstantstromquelle

#### SCSI: Protokoll

· kompliziertes Mehrphasen-Busprotokoll:



- jeder Datentransfer erfordert die Arbitration-Phasen
- Datenphase erlaubt effiziente Burst-Transfers
- trotzdem beträchtlicher Overhead (H&P: 1 ms pro Transfer)
- mit gleicher Platte langsamer als ATAPI (aber flexibler)
- Arbitrierung/Befehlsübertragung immer 8-bit, asynchron
- Details siehe SCSI Spezifikation

PC-Technologie | SS 2001 | 18.214

#### SCSI: SCSI-Befehlssatz

Table N.3 - Commands Common to all SCSI Devices

| Command Name                    | Operation Code |      | SCSI-3  |  |  |  |
|---------------------------------|----------------|------|---------|--|--|--|
|                                 |                | Type | Ref Std |  |  |  |
| CHANGE DEFINITION               | 40h            | 0    |         |  |  |  |
| COMPARE                         | 39h            | 0    |         |  |  |  |
| COPY                            | 18h            | 0    |         |  |  |  |
| COPY AND VERIFY                 | 3Ah            | 0    |         |  |  |  |
| INQUIRY                         | 12h            | M    |         |  |  |  |
| LOCK/UNLOCK CACHE               | 36h            | 0    |         |  |  |  |
| LOG SELECT                      | 4Ch            | 0    |         |  |  |  |
| LOG SENSE                       | 4Dh            | 0    |         |  |  |  |
| MODE SELECT (10)                | 55h            | 0    |         |  |  |  |
| MODE SELECT (6)                 | 15h            | м    |         |  |  |  |
| MODE SENSE (10)                 | 5Ah            | M    |         |  |  |  |
| MODE SENSE (6)                  | IAh            | M    |         |  |  |  |
| PREFETCH                        | 34h            | 0    |         |  |  |  |
| PREVENT/ALLOW MEDIUM<br>REMOVAL | 1Eh            | м    |         |  |  |  |
| READ (10)                       | 28h            | М    |         |  |  |  |
| READ (12)                       | A8h            | 0    |         |  |  |  |
| READ (6)                        | 08h            | 0    |         |  |  |  |
| READ BUFFER                     | 3Ch            | 0    |         |  |  |  |
| READ LONG                       | 3Eh            | 0    |         |  |  |  |
| RECEIVE DIAGNOSTIC RESULTS      | 1Ch            | 0    |         |  |  |  |
| RELEASE (10)                    | 57h            | М    |         |  |  |  |
| RELEASE(6)                      | 17h            | 0    |         |  |  |  |
| REQUEST SENSE                   | 03h            | М    |         |  |  |  |
| RESERVE(10)                     | 56h            | М    |         |  |  |  |
| RESERVE(6)                      | 16h            | 0    |         |  |  |  |
| SEEK (10)                       | 2Bh            | М    |         |  |  |  |
| SEEK (6)                        | 0Bh            | M    |         |  |  |  |
| SEND DIAGNOSTIC                 | 1Dh            | М    | 1       |  |  |  |
| SET LIMITS (10)                 | 33h            | 0    | 1       |  |  |  |
| SET LIMITS (12)                 | B3h            | 0    | 1       |  |  |  |
| START/STOP UNIT                 | 1Bh            | м    | 1       |  |  |  |

Lev: M = command implementation is mandatory

• für alle SCSI-Geräte

• zusätzliche Erweiterungen

für Platten, Scanner, ...

Standard: SCSI-3 MMC

"multi media commands"

[SCSI-3 MMC spec]

O = command implementation is mandato O = command implementation is optional

PC-Technologie | SS 2001 | 18.214

#### SCSI: SCSI-3 MMC

#### "MultiMedia Command Set"

- standardisierte Befehlssatzerweiterung f
   ür SCSI
- insbesondere f
  ür CD/CDR/DVD/DVDR-Ger
  äte:
  - digitales Auslesen von Audio-Tracks ("grabbing")
  - Ansteuerung von digitalen Audio-Ausgängen
  - o Ansteuerung / Kalibrierung von CDR/DVD-Brennern
  - Unterstützung für das CSS-Kryptverfahren auf DVDs
- MMC-Befehle auch für ATAPI-Geräte definiert
- erlaubt gemeinsame Treiber für SCSI- und ATAPI-Geräte
- in aktuellen Geräten (etwa CD-Brenner) implementiert

PC-Technologie | SS 2001 | 18.214

#### SCSI: MMC-Befehlssatz

| Command Name              | Operation Code | MMC Type | Sub-clause |
|---------------------------|----------------|----------|------------|
| BLANK Command             | A1h            | 0        | 6.1.1.     |
| CLOSE TRACK/SESSION       | 5Bh            | М        | 6.1.2.     |
| FORMAT UNIT               | 04h            | 0        | 6.1.3.     |
| LOAD/UNLOAD CD            | A6h            | 0        | 6.1.5.     |
| MECHANISM STATUS          | BDh            | М        | 6.1.6.     |
| PAUSE/RESUME              | 4Bh            | 0        | 6.1.7.     |
| PLAY AUDIO (10)           | 45h            | A        | 6.1.8.     |
| PLAY AUDIO (12)           | A5h            | A        | 6.1.9.     |
| PLAY AUDIO MSF            | 47h            | A        | 6.1.10.    |
| READ BUFFER CAPACITY      | 5Ch            | 0        | 6.1.12.    |
| READ CD                   | BEh            | 0        | 6,1,13,    |
| READ CD MSF               | B9h            | М        | 6.1.14.    |
| READ CD RECORDED CAPACITY | 25h            | М        | 6.1.15.    |
| READ DISC INFORMATION     | 51h            | М        | 6.1.16.    |
| READ HEADER               | 44h            | М        | 6.1.18.    |
| READ MASTER CUE           | 59h            | 0        | 6.1.19.    |
| READ SUB-CHANNEL          | 42h            | М        | 6.1.21.    |
| READ TOC/PMA/ATIP         | 43h            | М        | 6.1.22.    |
| READ TRACK INFORMATION    | 52h            | 0        | 6.1.23.    |
| REPAIR TRACK              | 58h            | 0        |            |
| RESERVE TRACK             | 53h            | М        | 6.1.28.    |
| SCAN                      | BAh            | 0        | 6.1.30.    |
| SEEK                      | 2Bh            | M        |            |
| SEND CUE SHEET            | 5Dh            | 0        | 6.1.31.    |
| SEND OPC INFORMATION      | 54h            | 0        | 6.1.33.    |
| SET CD SPEED              | BBh            | м        | 6.1.34.    |
| STOP PLAY/SCAN            | 4Eh            | 0        |            |
| SYNCHRONIZE CACHE         | 35h            | М        |            |
| WRITE (10)                | 2Ah            | 0        | 6.1.38.    |

CD-Befehle:
 Load/Unload CD
 Play Audio (analog/dig.)
 Read CD (grabbing)
 Read Sub-Channel
 Read TOC / ...

#### SCSI: MMC vs. ATAPI

#### Annex B ATAPI Compliance (normative)

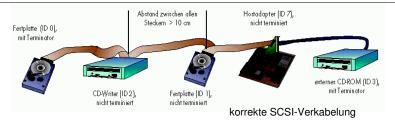
#### B.1. Introduction

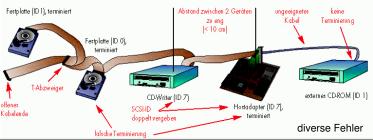
This section describes the implementation of the MultiMedia Commands in ATAPI devices. The intent is to make the command sets highly compatible. It is desired that a common driver may be written to control both SCSI and ATAPI devices.

#### B.2. General

ATAPI devices implement a subset of SCSI behavior. Certain errors and conditions that exist in SCSI don't exist in ATAPI. In addition, certain terms are used in ATAPI instead of related SCSI terms. The mechanisms for transporting the commands, data, and status are unique to each transport. Addressing of units is also unique to each transport. MMC does not directly specify any of these mechanisms; the command and data layer definition may be layered on either transport.

#### B.2.1. Terms


- B.2.1.1. Host the ATAPI equivalent for the SCSI term "Initiator."
- B.2.1.2. Device the ATAPI equivalent for the SCSI term "Target" or "Logical Unit."
- B.2.1.3. Command Packet the ATAPI equivalent for the SCSI term "Command Descriptor Block."


#### **B.2.2.** Supported Block Sizes

ATAPI does not use the block size in the mode select block descriptor. Instead, the block size shall be determined by the command. The READ command shall return 2048 bytes per block. The WRITE command shall send the number of bytes per block as determined by the WRITE PARAMETERS mode page. The READ CD and READ CD MSF commands shall return the number of bytes per block as specified by the command.

PC-Technologie | SS 2001 | 18.214

## SCSI: Verkabelung





SCSI-Beispielkonfiguration ·

#### Server: dimensionieren . . .

#### Ausgangslage und Aufgabe:

[H&P, 530ff]

- Prozessor mit 500 MIPS, kostet \$30.000
- Speicher, Busbreite 16 Byte, 100 ns Zykluszeit
- I/O-Bus mit 200 MB/s Bandbreite, Platz für 20 SCSI-2 Controller
- Betriebssystem benötigt 10.000 CPU-Befehle pro Platten-I/O
- SCSI-2 Busse, jeweils bis 20 MB/s, bis 15 Geräte (="SCSI String")
- SCSI-2 Controller a \$1.500, mit 1 ms Latenzzeit pro I/O-Transfer
- Platten mit 2 GB oder 8 GB, Preis jeweils \$0.25 pro MB
- beide Platten jeweils 7.200 rpm, 8 ms access time, 6 MB/s Transfer
- geforderte Speicherkapazität 200 GB
- mittlere Blockgröße für I/O-Transfers ist 16 KB
- => Performance mit kleinen/großen Platten? Kosten pro I/O-Transfer? günstigste Konfiguration? wie viele Controller, welche Platten, usw.

PC-Technologie | SS 2001 | 18.214

#### Server: Grenzen durch CPU, Speicher, Bus

IOPS = Anzahl I/O-Transfers pro Sekunde

=> Speicher limitiert auf maximal 10.000 IOPS

#### Grenzen durch Controller und Platten Server:

- Dauer eines SCSI-2 Transfers für 16 KB Daten:
- aber Controller benötigt 1 ms Overhead für den Transfer, also

$$t_{16KB} = \frac{16 \text{ KB}}{20 \text{ MB / s}} = 0.8 \text{ ms}$$
 $IOPS\_controller = \frac{1}{(0.8 \text{ ms} + 1.0 \text{ ms})} \sim 556 \text{ IOPS}$ 

mittlere Dauer für Platten-I/O mit 16 KB Daten (zufällige Zugriffe):

t\_disk = 
$$8 \text{ ms} + \frac{0.5}{7200 \text{ rpm}} + \frac{16 \text{ KB}}{6 \text{ MB/s}} = 8 + 4.2 + 2.7 = 14.9 \text{ ms}$$

$$IOPS\_disk = \frac{1}{14.9 \text{ ms}} \sim 67 \text{ IOPS}$$

PC-Technologie | SS 2001 | 18.214

#### kleine oder große Platten Server:

- 200 GB Kapazität: 25 8-GB Platten oder 100 2-GB Platten
- entsprechende Anzahl der IOPS:

IOPS\_2GB = 
$$100 \times 67 = 6700$$
  
IOPS\_8GB =  $25 \times 67 = 1675$ 

Mindestanzahl der Controller bei 15 Platten pro String

Strings\_2GB = 
$$(100 / 15)$$
 = 7  
Strings\_8GB =  $(25 / 15)$  = 2

Mindestanzahl der Controller, damit diese nicht der Flaschenhals?

Disks/String 
$$< 557 / 67 < 8$$
  
Strings\_2GB =  $(100 / 8)$  =  $12.5$  =  $13$  (aufrunden)  
Strings\_8GB =  $(25 / 8)$  =  $3.1$  = 4 (aufrunden)

#### Server: Performance

Architekturen:

| Тур  | #Platten | #Controller      |
|------|----------|------------------|
| 2 GB | 100      | 7 (min) 13 (opt) |
| 8 GB | 25       | 2 (min) 4 (opt)  |

#### Performance:

| Pla | atte | #SCSI | CPU    | Speicher | Bus    | Disks | Strings | IOPS | Kosten    |
|-----|------|-------|--------|----------|--------|-------|---------|------|-----------|
| 8 ( | GB   | 2     | 50.000 | 10.000   | 12.500 | 1675  | 1112    | 1112 | \$82.200  |
| 8 ( | GB   | 4     | 50.000 | 10.000   | 12.500 | 1675  | 2224    | 1675 | \$87.200  |
| 2 ( | GB   | 7     | 50.000 | 10.000   | 12.500 | 6700  | 3892    | 3892 | \$91.700  |
| 2 ( | GB   | 13    | 50.000 | 10.000   | 12.500 | 6700  | 7228    | 6700 | \$100.700 |

- Server-Performance wird durch die Platten bzw. Controller limitiert (!)
- beste Performance mit vielen kleinen Platten und Controllern
- außerdem bestes Preis/IOPS-Verhältnis (\$76, \$52, \$24, \$15 pro IOPS)
- aber geringere Zuverlässigkeit (siehe RAID)

PC-Technologie | SS 2001 | 18.214

#### RAID: Motivation

Amdahl's Gesetz:

langsamste Komponente behindert Leistungssteigerungen

- => ausgewogenes Verhältnis CPU Speicher I/O nötig
- => CPU und Speicher skalieren mit der Halbleitertechnologie
- => aber wie kann die I/O-Leistung gesteigert werden?

RAID, "redundant array of inexpensive disks":

- Grundidee: viele kleine PC-Festplatten statt einer großen
- bedingt in damaliger (1985er) Festplattentechnologie: Großrechner-Festplatten vs. PC-Festplatten
- Zuverlässigkeit durch redundante Platten
- Wiederherstellung der Daten nach Plattenausfall
- ursprünglich: "independent disks"

#### Disks: RAID

"redundant array of inexpensive disks"

- bahnbrechende Untersuchung von Festplatten-Performance
- ursprünglich Analyse von Großrechner- und PC-Festplatten
- Ersetzen weniger großer durch viele kleine Festplatten
- Zuverlässigkeit des Gesamtsystems?
- diverse RAID-Varianten (=level)
- unterschiedliche Anzahl von Platten
- Strategien zur Verwendung von Nutz- und Reserveplatten
- Ausfallsicherheit, Hot-Plugging
- Optimierung auf Schreib- und/oder Leseperformance
- vielfache Anwendungen
- möglichst das Original lesen!

[Patterson, Gibson, Katz: UCB report CS-98-391]

PC-Technologie | SS 2001 | 18.214

## RAID: Ausgangsbasis (1987)

| Characteristics               | IBM<br>3380 | Fujitsu<br>M2361A | Conners<br>CP3100 | 3380 v.<br>CP3100 | 2361 v.<br>CP3100 |
|-------------------------------|-------------|-------------------|-------------------|-------------------|-------------------|
|                               | 2200        |                   |                   | (>1 means 3.      | 100 better)       |
| Disk diameter (inches)        | 14          | 10.               | 5 3.5             | 4                 | 3                 |
| Formatted Data Capacity (MB)  | 7500        | 600               | 100               | .01               |                   |
| Price/MB(controller incl.)    | \$18-\$10   | \$20-\$17         | \$10-\$7          | 1-2.5             | 1.7-3             |
| MTTF Rated (hours)            | 30,000      | 20,000            | 30,000            | 1                 | 1.5               |
| MTTF in practice (hours)      | 100,000     | ?                 | ?                 | ?                 | ?                 |
| No. Actuators                 | 4           | 1                 | 1                 | .2                | 1                 |
| Maximum I/O's/second/Actuator | 50          | 40                | 30                | .6                | .8                |
| Typical I/O's/second/Actuator | 30          | 24                | 20                | .7                | .8                |
| Maximum I/O's/second/box      | 200         | 40                | 30                | .2                | .8                |
| Typical I/O's/second/box      | 120         | 24                | 20                | .2                | .8                |
| Transfer Rate (MB/sec)        | 3           | 2.                |                   | .3                | .4                |
| Power/box (W)                 | 6,600       | 640               | 10 <sup>₹</sup>   | 660               | 64                |
| Volume (cu. ft.)              | 24          | 3.                | 4 .03             | 800               | 11                |

Table 1. Comparison of IBM 3380 disk model AK4 for mainframe computers, the Fujitsu M2361A "Super Eagle" disk for minicomputers, and the Conners Peripherals CP 3100 disk for personal computers. By "Maximum IIO's Isecond" we mean the maximum number of average seeks and average rotates for a single sector access. Cost and reliability information on the 3380 comes from widespread experience [IBM 87] [Gawlick87] and the information on the Fujitsu from the manual [Fujitsu 87], while some numbers on the new CP3100 are based on speculation. The price per megabyte is given as a range to allow for different prices for volume discount and different mark-up practices of the vendors.

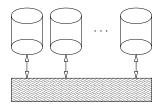
<sup>†</sup>The 8 watt maximum power of the CP3100 was increased to 10 watts to allow for the inefficiency of an external power supply (since the other drives contain their own power supplies).

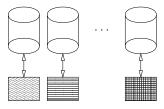
## *RAID* · 121

#### RAID: Kriterien

| <ul> <li>Gesa</li> </ul>  | Gesamtkapazität der Festplatte(n) MByt |           |  |  |  |  |
|---------------------------|----------------------------------------|-----------|--|--|--|--|
| <ul><li>maxir</li></ul>   | maximale und typische Bandbreite MBy   |           |  |  |  |  |
| <ul><li>maxir</li></ul>   | male und typische Latenzzeiten         | S         |  |  |  |  |
| • Koste                   | en, Volumen, Energieverbrauch          | \$, m³, W |  |  |  |  |
| <ul> <li>Zuver</li> </ul> | rlässigkeit                            |           |  |  |  |  |
| 0                         | MTTF, "mean time to failure"           | S         |  |  |  |  |
| 0                         | MTTR, "mean time to repair"            | s         |  |  |  |  |
| 0                         | MTTF_total = (MTTF_single / number_c   | of_disks) |  |  |  |  |

#### RAID-Konzept: viele parallele Platten


- höhere Gesamtkapazität, höhere Bandbreite
- Redundanz erhöht (!) die Zuverlässigkeit
- damalige Annahme: ca. 100 Platten, heute: typ. 5-10


PC-Technologie | SS 2001 | 18.214

## RAID: Glossar

| D  | Gesamtanzahl der Platten                     |
|----|----------------------------------------------|
| G  | Anzahl der Daten- (=nutz) Platten pro Gruppe |
| NG | Anzahl der Gruppen                           |
| С  | Anzahl der redundaten Check-Platten          |
| rc | Verhältnis C/G                               |
| S  | slowdown, typ. $1 < s < 2$                   |
|    |                                              |

## RAID: Szenarien





"single large or grouped read"

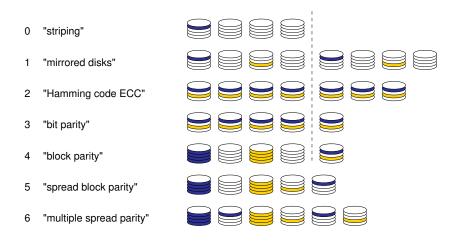
"several small individual reads and writes"

welche Anwendungen benötigen hohe I/O-Leistung?

"scientific": wenige, aber große Transfers
"database" sehr viele kleine Transfers

PC-Technologie | SS 2001 | 18.214

#### RAID: Statistik


Annahmen zur Zuverlässigkeit der Platten:

- Ausfälle sind zufällig, unabhängig, exponentialverteilt
- außere Einflüsse (Sabotage, Stromausfall, ...) nicht berücksichtigt
- Controller ist robust

$$\label{eq:mttf_group} \begin{split} \text{MTTF\_group} &= & \underbrace{\frac{\text{MTTF\_disk}}{\text{G} + \text{C}}} = & \underbrace{\frac{1}{\text{probability of failure}}}_{\text{before repairing the dead disk}} \\ \text{P\_second\_failure} &= & \underbrace{\frac{\text{MTTR}}{\text{MTTF\_disk} / (\text{G+C-1})}}_{\text{MTTF\_raid}} = & \underbrace{\frac{(\text{MTTF\_disk})^2}{(\text{D+C*NG}) * (\text{G+C-1}) * \text{MTTR}}}_{\text{C}} \end{split}$$

122 · RAID

#### RAID: Level-Übersicht



PC-Technologie | SS 2001 | 18.214

#### *RAID-0:* Striping

- Aufteilen jedes (großen) Zugriffs in "Streifen"
   D = G, C = 0
- jede Platte verarbeitet Anteil 1/D
- jeder Zugriff benutzt alle Platten
- theoretisch D-fache Bandbreite für Lesen und Schreiben
- nur für genügend große Zugriffe
- aber keine Fehlertoleranz
- Zuverlässigkeit sinkt auf 1/D
- Einsatz nur für geringe Anzahl von Platten
- nicht im originalen "RAID paper" enthalten
- marktübliche "RAID-0" Kontroller verwalten zwei Platten

#### RAID-1: Mirroring

- Daten werden auf je zwei Platten "gespiegelt"
   G = 1. C = 1
- nutzt nur 50% der Gesamtkapazität der Platten
- jeder Schreibzugriff geht auf zwei Platten
- Schreibzugriff muß auf die jeweils langsamere Platten warten
- optimierte Version benutzt doppelten Kontroller
- erlaubt doppelte Bandbreite beim Lesen
- · kein komplexer Controller notwendig
- ineffizient, aber sehr zuverlässig z.B. 500 Jahre MTTF
- keine besondere Marktbedeutung

PC-Technologie | SS 2001 | 18.214

## RAID-2: Hamming Code ECC

- Hamming-Code zur Fehlerkorrektur jeder Gruppe von Platten z.B. (G=10, C=4) oder (G=25, C=5) usw.
- analog zur ECC-Fehlerkorrektur bei DRAMs
- Controller muß ECC berechnen und auswerten
- Aufteilung in Daten- und Check-Platten
- "große" Zugriffe laufen auf alle Platten einer Gruppe
- dabei volle Performance beim Lesen und Schreiben
- "kleine" Zugriffe kompliziert: gesamten Block lesen,
   ECC mit neuen Daten berechnen, gesamten Block schreiben
- daher sehr schlechte Gesamtperformance
- CRC-Code der einzelnen Platten unnötig
- sehr hohe Zuverlässigkeit, z.B. 50 Jahre MTTF mit G=10

#### RAID-3: Bit-Parität

- eine Platte mit Paritätscode pro Gruppe C=1
- Hamming-Code ermittelt, welche Platte Fehler aufweist
- dies liefert aber bereits der CRC jeder einzelnen Platte
- Paritätskode reicht aus, um den Fehler zu korrigieren
- weniger Checkdisks als RAID-2
- aber gleiches Performanceproblem f
  ür "kleine" Zugriffe
- jeder Schreibzugriff benutzt die Paritätsplatte
- weniger Platten als RAID-2, daher Preis/Leistung besser
- sehr hohe Zuverlässigkeit, z.B. 50 Jahre MTTF mit G=10

PC-Technologie | SS 2001 | 18.214

## RAID-3: Vergleich Level 2/3

| MTTF                  | Exceeds Useful Lifetime  G=10 G=25 |                               |                              |  |  |  |
|-----------------------|------------------------------------|-------------------------------|------------------------------|--|--|--|
|                       |                                    | (820,000 hrs<br>or >90 years) | (346,000 hrs<br>or 40 years) |  |  |  |
| Total Number of Disks |                                    | 1,10D                         | 1.04D                        |  |  |  |
| Overhead Cost         |                                    | 10%                           | 4%                           |  |  |  |
| Useable Storage Capac | ity                                | 91%                           | 96%                          |  |  |  |
| I/Os/Sec              | Full RAID                          | Per Disk                      | Per Disk                     |  |  |  |
| (vs. Single Disk)     |                                    | L3 L3/L2                      | L3 L3/L2                     |  |  |  |
| Large Reads/sec       | D/S                                | .91/S 127%                    | .96/S 112%                   |  |  |  |
| Large Writes/sec      | D/S                                | .91/S 127%                    | .96/S 112%                   |  |  |  |
| Large R-M-W/sec       | D/2S                               | .45/S 127%                    | .48/S 112%                   |  |  |  |
| Small Reads/sec       | DISG                               | .09/S 127%                    | .04/S 112%                   |  |  |  |
| Small Writes/sec      | D/2SG                              | .05/S 127%                    | .02/S 112%                   |  |  |  |
| Small R-M-W/sec       | D/2SG                              | .05/S 127%                    | .02/S 112%                   |  |  |  |

Table IV. Characteristics of a Level 3 RAID. The L3/L2 column gives the % performance of L3 in terms of L2 (>100% means L3 is faster). The performance for the full systems is the same in RAID levels 2 and 3, but since their are fewer check disks the performance per disk improves. Once again if the disks in a group are synchronized, then S=1.

#### RAID-4: Block-Parität

- eine Platte mit Paritätscode pro Gruppe C=1
- einzelner Datenblock wird auf eine einzelne Platte geschrieben
- Parität des Blocks auf die Paritätsplatte
- Paritätskode reicht aus, um den Fehler zu korrigieren
- gleiche Anzahl Platten wie RAID-3
- aber andere Organisation
- Lesezugriffe parallel ausführbar
- Schreibzugriffe parallel auf Datenplatten ausführbar
- aber Flaschenhals Paritätsplatte
- sehr hohe Zuverlässigkeit, z.B. 50 Jahre MTTF mit G=10

PC-Technologie | SS 2001 | 18.214

#### RAID-5: verteilte Parität

- Paritätscode auf alle Platten einer Gruppe verteilt C=1
- einzelner Datenblock wird auf eine einzelne Platte geschrieben
- Parität des Blocks auf die zugehörige Paritätsplatte
- Paritätskode reicht aus, um den Fehler zu korrigieren
- gleiche Anzahl Platten wie RAID-3
- aber effizienteste Organisation:
- Lesezugriffe parallel ausführbar
- Schreibzugriffe weitgehend parallel ausführbar
- attraktivste Variante, erfordert aber komplexen Controller
- hohe Zuverlässigkeit, z.B. 50 Jahre MTTF mit G=10

#### RAID-6: unabhängige, verteilte Parität

- mehrfacher Paritätscode auf alle Platten einer Gruppe verteilt C=2, 3, ...
- einzelner Datenblock wird auf eine einzelne Platte geschrieben
- Parität des Blocks auf die zugehörigen Paritätsplatten
- diverse Code-Varianten möglich
- ähnlich wie RAID-5
- aber bessere Fehlererkennung/korrektur
- Lesezugriffe parallel ausführbar
- Schreibzugriffe weitgehend parallel ausführbar
- noch komplexerer Controller als RAID-5
- nicht im originalen RAID-Paper erwähnt

PC-Technologie | SS 2001 | 18.214

## RAID: Vergleich (1987)

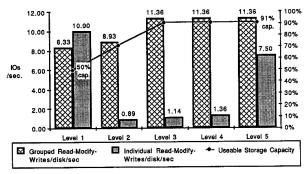
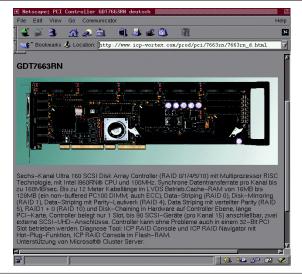



Figure 5. Plot of Large (Grouped) and Small (Individual) Read-Modify-Writes per second per disk and useable storage capacity for all five levels of RAID (D=100, G=10, I/O=30/sec, S=1.2). To scale performance to other speed disks, simply multiply these numbers by the ratio to 30 I/O's/sec.

- · Level-1 schnell, sicher, teuer
- Level-5 der beste Kompromiss


## RAID: vs. single disks (1987)

| Characteristics                | RAID 5L  | SLED      | RAID       | RAID 5L   | SLED      | RAID       |
|--------------------------------|----------|-----------|------------|-----------|-----------|------------|
|                                | (100,10) | (IBM      | v. SLED    | (10,10)   | (Fujitsu  | v. SLED    |
|                                | (CP3100) | 3380)     | (>1 better | (CP3100)  | M2361A)   | (>1 better |
|                                |          |           | for RAID)  |           |           | for RAID)  |
| Formatted Data Capacity (MB)   | 10,000   | 7,500     | 1.33       | 1,000     | 600       | 1.67       |
| Price/MB (controller incl.)    | \$11-\$8 | \$18-\$10 | 2.29       | \$11-\$8  | \$20-\$17 | 2.5-1.5    |
|                                | 820,000  | 30,000    | 27.3       | 8,200,000 | 20,000    | 410        |
| MTTF in practice (hours)       | ?        | 100,000   | ?          | ?         | ?         | ?          |
| No. Actuators                  | 110      | 4         | 22.5       | 11        | 1         | 11         |
| Max I/O's/Actuator             | 30       | 50        | .6         | 30        | 40        | .8         |
| Max Grouped RMW/box            | 1250     | 100       | 12.5       | 125       | 20        | 6.2        |
| Max Individual RMW/box         | 825      | 100       | 8.2        | 83        | 20        | 4.2        |
| Typ I/O's/Actuator             | 20       | 30        | .7         | 20        | 24        | .8         |
| Typ Grouped RMW/box            | 833      | 60        | 13.9       | 83        | 12        | 6.9        |
| Typ Individual RMW/box         | 550      | 60        | 9.2        | 55        | 12        | 4.6        |
| Volume/Box (cubic feet)        | 10       | 24        | 2.4        | 1         | 3.        |            |
| Power/box (W)                  | 1100     | 6,600     | 6.0        | 110       | 640       | 5.8        |
| Minimum Expansion Size (MB) 10 |          | 0 7,500   | 7.5-75     | 100-1000  | 600       | 0.6-6      |

Table VII. Comparison of IBM 3380 disk model AK4 to Level 5 RAID using 100 Conners & Associates CP 3100s disks and a group size of 10 and a comparison of the Fujitsu M2361A "Super Eagle" to a level 5 RAID using 10 inexpensive data disks with a group size of 10. Numbers greater than 1 in the comparison columns favor the RAID.

PC-Technologie | SS 2001 | 18.214

## RAID: Beispiel für einen Controller



#### Disks: Filecache

#### "Filecache"

- Plattenzugriffe deutlich langsamer als Speicherzugriffe
- häufig benutzte Daten (Dateien) im Hauptspeicher halten
- => Teil des Hauptspeichers als Filecache reservieren
- aber Filecache reduziert nutzbaren Hauptspeicher
- wo liegt das Optimum?
- nutzungsabhängig, single/multi user, workstation/server
- verschiedene Betriebssystemstrategien
- z.B. Windows 95 vs. Windows NT
- im folgenden einige Beispiele aus H&P

PC-Technologie | SS 2001 | 18.214

## Disks: Filecache

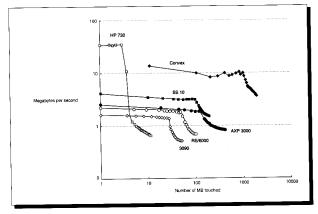



FIGURE 6.26 Performance versus megabytes touched for several workstations and mainframss (see section 6.8). Note the log-log scale. These results use the nominal values selected by the self-scaling benchmark. For example, 50% accesses are reads and 50% are writes. The primary difference between the systems is the average access size of 120 KB for the Corvex; adjusting for a common access size would haive Corvex performance but make little charge to the other lines in this job!

[Hennessy & Patterson]

## Disks: Filecache: Performance

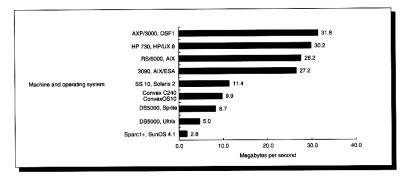



FIGURE 6.38 File cache performance for machines in 6.35. This plot is for 32-KB reads with the number of bytes touched limited to fit within the file cache of each system. Figure 6.36 (page 541) shows the size of the file caches that achieve this performance. (See the caption of Figure 6.36 for details on measurements.)

PC-Technologie | SS 2001 | 18.214

## Disks: Filecache: Size

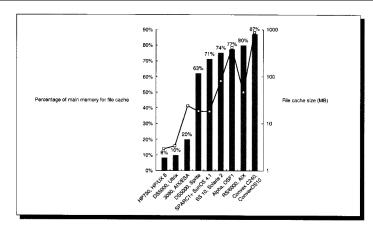



FIGURE 6.39 File cache size. The bar graph shows the maximum percentage of main memory for the file cache, while the line graph shows the maximum size in megabytes, using the log scale on the right. Thus the HP 730 HP/UX version 8 uses only 8% of its 32-MB main memory for its file cache, or just 2.7 MB, and the Convex C240 uses 87% of its 1024-MB main memory, or 890 MB, for its file cache.

FIGURE 6.40 File cache performance versus read percentage. 0% reads means 100% writes. These accesses all fit within the file caches of the respective machines. Note that the high performance of the file caches of the AXP/3000, RS/6800, and 3090 are only evident for workloads with ≥ 90% reads. Access sizes are 32 KB. (See the caption of Figure 6.36 for details on measurements.)

PC-Technologie | SS 2001 | 18.214

Leerseite

PC-Technologie

Leerseite

PC-Technologie

Leerseite

PC-Technologie

PC-Technologie