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Abstract— In this paper a novel approach to learning by
demonstration (LbD) is presented. A multimodal service robot is
taught grasping skills by a human instructor who demonstrates
a grasping action. Our approach contributes novel solutions to
the aspects of robustly tracking the demonstrator’s hands in real
time as well as to the transformation of tracking results into
grasping skills. To track the demonstrator’s hands in stereoscopic
images a Mean-Shift-like algorithm is adapted. For the very first
time this algorithm is applied to local binary patterns (LBP)
and color histograms. To retrieve the hand configuration we
use view-based Principal Component Analysis (PCA). To develop
grasping skills from tracking results the robot repetitively tracks
the demonstrator’s grasping actions and transforms the results
into three-dimensional self organizing maps (SOMs). The SOMs
give a spatial description of the collected data and serve as data
structures for a reinforcement learning (RL) algorithm which
optimizes trajectories for use by the robot. The approach is
applied to a multimodal service robot. Experiments show the
effectiveness of the LBP-enhanced Mean-Shift-like tracking and
the robustness of LbD based on SOMs and RL

I. INTRODUCTION

Grasping objects is a basic skill for service robots. It is
crucial to manipulation tasks and interaction with the environ-
ment. In most industrial applications it is solved via teaching-
by-doing or static programs. Additionally, the use of robots is
very complex so that only a few experts are able to handle
them. However, for a service robot scenario which demands
robust and also adaptive behavior in non-static environments
like e.g. office environments, it is important to further simplify
interaction between robots and humans.
To learn grasping actions by demonstration, it is important
that the robot detects an action and learns how to reproduce
this action. In the case of grasping a certain object, the robot
has to learn an approach trajectory, the tag point, the type of
grasp and an adequate force for a stable grasp. These para-
meters should preferably be learned in real-world scenarios.
That means learning by demonstration (LbD) can be done
considering e.g. video, audio and laser range data of a human
demonstrator performing a grasping task. The data should be
captured by the robot itself without restricting the environment
by the demands of special hardware like data gloves, head-
mounted eye trackers or special sensor installations. E.g., in
[1], [2], [3] it is shown that through the integration of multi-
modal techniques for human-robot-interaction (HRI) simple,

robust and reliable handling in real-world scenarios can be
guaranteed.
This paper is organized as follows: Section II covers related
research. Section III describes the scenario and the setup
for the experiments. Section IV presents our new approach
to LbD and addresses three different aspects of LbD. First,
the design of the interface for HRI is considered. Second,
stereoscopic real-time tracking of the demonstrator’s hand
configuration through Mean-Shift-like tracking [4], [5], [6]
based on local binary patterns (LBP) [7] and color histograms
is presented. And last, the learning of grasping skills itself by
transformation of hand tracking results into three-dimensional
self organizing maps (SOMs) [8] and reinforcement learning
(RL) [9] is introduced. Experiments are given in Section V.
Conclusions and future work are presented in Section VI.

II. RELATED RESEARCH

A lot of work has been done in the field of LbD (see [10]
for a recent overview): [11] presents a method for extracting
the goals and constraints of a demonstrated task to determine
the best imitation strategy, in this case for the selective
reproduction of simple reaching tasks. Human trajectories are
captured with magnetic field sensors and stereo-cameras and
encoded into Hidden Markov Models (HMMs). According to
a metric which measures the quality of the reproduction based
on invariants in time, an optimal trajectory is generated.
An approach to LbD, which is built on the closed-world
assumption and emphasizes the exact observation of the human
operator, is presented in [12]. The authors acquire accurate
scene data by modeling the whole work cell and using stereo
cameras as well as data gloves. In the work cell dual-arm
manipulation tasks are demonstrated for humanoid robots [13].
The manipulations are classified by segmentation into subtasks
and their mapping and execution on the robot is shown.
As shown in [10], [11], [12], [13] for the reason of robust and
accurate data acquisition, data gloves and magnetic sensors
are often used to observe the demonstrator’s actions. But
techniques for contact-free and easy-to-use HRI interfaces are
important to simplify the application of LbD techniques. One
key problem is the tracking of the human hands, especially for
the imitation of manipulation tasks. There are many approa-
ches to this topic, e.g. in [14] an approach to 3D-tracking of



(a) Service robot (b) Grasping tool

Fig. 1. Multi modal service robot and grasping tool

a human head and hand is described. It is used to recognize
pointing gestures with calibrated stereo cameras. Color and
disparity data are integrated into a multi-hypothesis tracking
framework, and a HMM is used to classify pointing gestures.
Another approach to 3D-hand tracking and articulated finger
motion is presented in [15]. A 3D geometric model of a hand is
used to generate contours which are matched with monocular
edge and skin color images. The tracking is formulated as state
estimation, where the model parameters define the internal
state of the human hand, which is estimated from image
observations. A hierarchical Bayesian filter is developed to
allow integration of temporal information.
In [16] a method for imitation learning based on visuo-somatic
mapping, ranging from the observed demonstrator’s posture
to reminding the self posture, is presented. This happens via
mapping from the self-motion observation to the self posture
of a robot. The mapping from postures to posture space and
the mapping from trajectories in posture space onto a motion-
segment space is both done by SOMs. Then optical flows from
the demonstrator’s motions are mapped onto a flow-segment
space where flow data is connected with the corresponding
motion segments in motion-segment space. The connection
with self motion is done via Hebbian Learning.
An abstraction mechanism is used in [17] to focus on features
of the demonstration which are important to the imitating
robot. It is based on the pairing of multiple inverse models
operating in parallel with corresponding forward models to
create an execution-prediction sequence and determine which
inverse model corresponds to the generation of the observed
action. It is shown that recognition with abstraction outper-
forms recognition without abstraction.
A brief overview of the special field of robot grasping is given
in [18]. E.g., [19] presents a self-valuing learning technique
based on RL to learn how to grasp unfamiliar objects. Methods
for computing hand configurations for precision and pinch
grasps are presented in [20].

III. SCENARIO

The proposed approach is used on a multimodal mobile
service robot (see Fig. 1(a)). This robot consists of a mobile
platform equipped with a PC and currently one Mitsubishi
PA10-6C manipulator. As grasping tool, a three-finger hand
from Barrett Technologies Inc. is used (see Fig. 1(b)). The
hand has eight degrees of freedom (DOF). Each finger has

(a) Demonstration phase (b) Grasping phase

Fig. 2. Scenario

two joints which are coupled via a TorqueSwitchTM [22]. Two
fingers are linked by a spread joint. An active vision system
with a stereo-camera system and a pan-tilt unit is mounted
on the robot. The robot is able to navigate and move in an
office environment. The exact localization capabilities [23] are
important for grasping skills, because it allows the robot to
adjust its position up to an accuracy of ±1cm if it is too far
away from the target object to be grasped.
Our scenario for the task of LbD consists of a human demon-
strator standing opposite the service robot and a table that
is placed between them (see Fig. 2(a)). Several objects are
placed on the table. These objects are trained for recognition
in advance and offline with a method based on Scale Invariant
Features [21]. The user demonstrates a grasping skill by saying
“start” and reaching out his hand to the object he wants
to grasp. Then he grasps the object and says “stop”. The
robot observes the performed action several times to collect
sufficient data. Then the robot learns the skill and tries to grasp
the object itself in the demonstrated way (see Fig. 2(b)).

IV. LEARNING BY DEMONSTRATION

We designed a multi-modal interface for HRI which uses
video and audio data gathered by the robot’s multi-camera
active vision system and microphones. This passive setup
doesn’t interfere with the environment besides the robot itself.
To track the demonstrator’s hands in stereoscopic images
in real time, a Expectation-Maximization-like algorithm [6]
is adapted. In a completely novel approach this EM-like
algorithm is applied to LBP and color histograms. Speech
recognition is used to mark start and end points of tracked
trajectories. In addition, the hand configuration is retrieved by
application of view-based Principal Component Analysis [24].
To actually learn the grasping skills from tracking results we
developed a new approach which learns grasping skills by
repetitive tracking of the demonstrator’s grasping actions and
by transforming the tracking results into a three-dimensional
SOM. The topology of the SOM is arranged to correspond
to the three dimensional space in which the demonstrator’s
hand is tracked. The hand tracking results are fed into the
SOM. After convergence, the SOM gives a spatial description
of the collected data and serves as the input data structure for
a RL algorithm. The RL algorithm finds trajectories and hand
configurations optimized for use by the robot arm and hand.
The generated grasp is stored within an object representation
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and represents the learned grasping skill.
The approach, its implementation on the multi-model service
robot as well as experiments will be presented below.

A. Tracking the demonstrator’s hands

To learn a grasping skill by demonstration, it is necessary
to know how the demonstrator grasps an object. This means
that the trajectory as well as the configuration of the hand, e.g.
the articulation of the fingers, has to be known.
For the purpose of position estimation of the hand we rely on
an EM-like algorithm [6] which is an extension to Mean-Shift
procedures like [4] and [5]. Mean-Shift procedures are efficient
techniques for tracking 2D blobs. The EM-like algorithm
can robustly track objects based on color-histograms through
simultaneous estimation of the position of the local mode and
the covariance matrix that describes the approximate shape of
the local mode of a kernel-based estimate of a density function.
But as for most color-based blob tracking algorithms, ro-
bustness decreases if the color feature can not discriminate
between the tracked object and background. Therefore we
applied LBP as an additional feature to the tracking algorithm.
The LBP is a gray-scale-invariant texture analysis operator and
derived from a general definition of texture in a local neighbor-
hood. The basic idea is a binary code that describes the local
texture which is built by thresholding a neighborhood by the
gray value of its center (see Fig. 3). It encodes local primitives
like e.g. curved edges, spots, flat areas, etc. Excellent results
in terms of accuracy and computational complexity have been
shown e.g. by application of LBP to face recognition [25] or
moving object detection [26]. Because LBP describes image
texture and can also be expressed in the form of histograms, it
lends itself to integration into the EM-like tracking algorithm.
By combining color and texture features, the robustness of
the tracking algorithm is further increased. The improvement
in robustness is exemplarily shown in Fig. 4. We used three-
dimensional histograms of color and texture discretized to 8
bins per dimension as input for the tracking algorithm. First
and second dimensions describe the hue and saturation chan-
nels of the HSV color space. The third dimension describes the
LBP feature. The main steps of the EM-like tracking algorithm
according to [6] are:

Input: object model ~o = [o1, . . . , oM ]T (a color-texture histo-
gram of the object with M bins), initial object position
~θ(0) and shape defined by covariance matrix V (0)

(a) frame 1 (b) frame 2 (c) frame 80

(d) frame 1 (e) frame 2 (f) frame 80

Fig. 4. Exemplary comparison of color (Fig. 4(a)-4(c)) and color-texture-
based (Fig. 4(d)-4(f)) hand tracking over wooden surface. Color-only-based
tracking looses track immediately after initialization whereas color-texture-
based tracking does not.

1. Compute the M bins rm of the color-texture histogram
of the current region defined by ~θ(k) and V (k) using

rm(~θ(k), V (k)) =
NV∑
i=1

N (~xi; ~θ, V )δ [b(~xi)−m]

with NV the number of pixels of the current region,
N (~x; ~θ, V ) a gaussian probability function, b(~xi) :
R2 → 1, . . . ,M a function that assigns a pixel value
at location ~xi to its histogram bin

2. Calculate weights using

ωi =
M∑

m=1

√
om

rm(~θ(k), V (k))
δ [b(~xi)−m]

3. Calculate qi-s using

qi =
ωiN (xi; ~θ(k), V (k))∑N
i=1 ωiN (xi; ~θ(k), V (k))

4. Calculate new position estimate ~θ(k+1) using

~θ(k+1) =
N∑

i=1

qi~xi =
∑N

i=1 ~xiωiN (xi; ~θ(k), V (k))∑N
i=1 ωiN (xi; ~θ(k), V (k))

5. Calculate new variance estimate (shape) V (k+1) using

~V k+1 = β
N∑

i=1

qi(~xi − ~θ(k))(~xi − ~θ(k))T

6. If no new pixels are introduced using the new elliptical
region stop, otherwise set k ← k + 1 and go to 1

Tracking of the user’s hand is done in both stereo images. To
compute the hand’s world coordinates, the stereo correspon-
dence problem is solved by approximation of the center points
of both tracked hand regions as the corresponding points. The
tracking results are fed into a particle filter to compensate for
the rough approximation of the hand’s position in 3D space.
Initialization of the tracking algorithm is done by skin color
detection.
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Fig. 5. Examples of the robot’s hand configuration selection: The tracked
hand performing different grasps is shown in Fig.5(a), Fig.5(d) and Fig.5(g).
The weights from step 2 of the tracking algorithm are shown in Fig.5(b),
Fig.5(e) and Fig.5(h). They are used as input to the PCA of the shape of
the human hand. Classification of the weights leads to the Barrett-Hand
configurations as shown in Fig.5(c), 5(f), 5(i)

B. Estimation of the hand posture

Tracking of articulated finger motion in 3D space is a high-
dimensional problem. Over 25 DOF can be concerned, and
because of the projection of a three-dimensional scene onto a
two-dimensional image, a lot of information is lost. The non-
rigidity of the human hand and the great number of DOF result
in deformations of the human hand during grasping actions
and motion in general. But modeling the whole hand with
complete articulated finger motion is not necessary for the
case of grasping objects. We are only interested in the type
of grasp which is used to pick up an object. Therefore we
decided to do a view-based approach to detect the posture
of the demonstrator’s hand. This approach is inspired by
the eigenface method [24] and is based on the well-known
Principal Component Analysis (PCA). But we use the weights
of tracking step number 2 (see Fig.5(e), 5(h) and 5(b)) as
input for the PCA, instead of just taking the raw image of
the tracked hand region. As can be seen, the weights provide
a good segmentation into fore- and background and therefore
the PCA yields better classification results using the weights
as input. Additionally, the tracking makes normalization of
the sample size easy because it gives the exact location and
shape of the tracked object. The corresponding mapping from

classified hand postures to Barrett configurations is selected
offline in advance.

C. Learning the grasping skill

In contrast to robot arms, the repeat accuracy of the hu-
man arm is very low. Each time the demonstrator presents
a grasping skill, it will be performed differently. Because
of tracking and calibration errors, the discrepancies between
intended and tracked trajectories are further amplified.
Our approach uses an RL-technique to learn the intended
trajectory of the grasping skill. First, the tracking data has
to be transferred into a suitable representation for an RL-
agent. Therefore, the space used for hand tracking has to
be discretized. Each node of the grid corresponds to one
discretized point of the input space and therefore represents
one state of the RL-agent. Additionally, a state evaluation
function which evaluates the quality of the current state is
needed. Because the quality of a state corresponds to the
amount of trajectories going through it, the evaluation function
assigns higher values to states with more trajectories going
through. We propose the use of SOMs to generate the state
evaluation function. A SOM is organized according to the
regular three-dimensional grid world which serves as data
structure for the RL-agent. Each node represents one point
in the real-world and is connected to its six nearest neighbors
(see Fig.6(a)). The collected trajectories are discretized and
each point of the discretized trajectories is used as input vector
for the SOM. For each input vector the nearest node of the
map is searched. This node and its six neighbors (defined
by the topology of the SOM) are shifted towards the input
vector. Whereas the learning rule says that the smaller a node’s
distance to the input vector is, the more it is shifted. This leads,
after entering all trajectories, to regions with different densities
of nodes on the map (see Fig.6(b)). Whereas nodes with
lower distances to their neighbors represent nodes with more
trajectories going through and nodes with higher distances to
their neighbors represent nodes where lesser trajectories going
through, respectively. Because the topology of the SOM is
preserved during the learning phase, a value of quality can
be assigned to each corresponding state of the grid world
where higher values of quality are assigned to nodes with
low distances to their neighbors.After learning the evaluation
function by a SOM, the RL-agent learns the intended trajectory
of the grasping skill. The used RL-algorithm is a Q-Learning
algorithm [9]. The states for the Q-Learning are the discretized
states from the SOMs. The update rule for the Q-Values of
each state is given by:

Qt+1(s, a) =
∑
s′

Pa
ss′

(
Ra

ss′ + γ ·Qt(s
′
, a

′
)
)

Where s denotes the state and a the action. Pa
ss′ is the

probability to get from state s to state s
′

with action a, and
Pa

ss′ is the given reward according to the selected action and
states. γ denotes the learning rate. At this point, the advantage
of this method over simple regression becomes clear. The RL-
Agent can be set up with different constraints or strategies to



(a) initial SOM with regular distributed knots

(b) final SOM with concentration of knots along the area where
data was entered

Fig. 6. Initial and final SOM of book grasping skill (see Fig. 7). For better
visualization the knots of the SOM are projected on the xy-plane (ground
plane) and the links between the knots are left out)

simulate the movement of the robot arm. E.g., it can optimize
time or path length. Or even further: impossible robot arm
movements can be excluded from the outset by concerning
inverse kinematics. Only the reward function Ra

ss′ is modified
to get different results.

V. EXPERIMENTS

In the experiments three different objects were grasped.
We chose a bottle, a box and a book representing many
other objects. The demonstrator grasped each object ten times
while being observed by the robot. The robot recorded three
sequences, one for each object, of about 1600 vectors of
world coordinates. Each sequence was used to train one three-
dimensional SOM.
Afterwards the Q-Learning was trained. The average dimen-
sion was approximately about 6000 states. To generate a
trajectory from the input data, the Q-Learning algorithm was
trained by 1000 iterations. The generated sequence through
state space represents the learned trajectory. The learned
trajectory for the book is shown in Fig.7, for the box in Fig.8
and for the bottle in Fig.9. The input vectors are overlaid in

(a) frame 12 (b) frame 76

(c)

Fig. 7. Hand tracking results and generated trajectory of book grasping skill

these plots to visualize which path through the input data is
chosen by the RL-Agent. As the visualization shows, the RL-
Agent generates a trajectory which lies within the recorded
movement. For grasping the book the trajectory is curved, for
the box it is descending and for the bottle it is ascending
according to height. All trajectories are nearly a straight line
projected on the xy-plane. The trajectory is optimal according
to the length of the movement and the number of visits of a
point in the grid.

VI. CONCLUSION

The presented approach describes the usefulness of LbD in
the context of human-robot-interaction. It is vision- and audio-
based, therefore contact-free and usable without further special
hardware like data gloves, etc.
Through the combination of local binary features and color
histograms, the robot tracks the demonstrator’s hand in real-
time. The use of SOMs as an unsupervised learning method in
combination with reinforcement learning lets the robot learn
the demonstrated grasping trajectories. Both contributions to
LbD prove to be robust and efficient as experiments show.
The next step will be to add the ability of learning object
handling to the system. Examples of this are pouring water
from a bottle into a glass or hand over operations. The
integration of new vision sensors with higher resolution and
incorporation of more multi-modal sensors are also further
research aspects.



(a) frame 560 (b) frame 812

(c)

Fig. 8. Hand tracking results and generated trajectory of box grasping skill

(a) frame 331 (b) frame 769

(c)

Fig. 9. Hand tracking results and generated trajectory of bottle grasping skill
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