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Abstract— A sensor-based model of a service robot’s envi-
ronment is a prerequisite for interaction. Such a model should
contain the positions of the robot‘s interaction partners. Addi-
tionally to the actual positions of the partners it is important
for the service robot to predict their possible future positions.
This knowledge could for example be used to realize efficient
path planning for delivery tasks. In this paper we propose
an extensible framework for systems, that combine different
sensor modalities in a general tracking system. Furthermore,
human trajectories are predicted by deducing them from
learned motion patterns. Exemplarily, a tracking system is
implemented that fuses tracking algorithms in laser range scans
as well as in camera images by a particle filter. The observed
trajectories are generalized to trajectory patterns by a novel
method which uses self organizing maps. Those patterns are
used to predict trajectories of the currently observed persons.
Practical experiments show that multimodality increases the
system‘s robustness to incorrect measurements of single sensors.
It is also demonstrated that a self organizing map is suitable for
learning and generalizing trajectories. Convenient predictions
of future trajectories are presented which are deduced from
these generalizations.

I. INTRODUCTION

Service robots will support everyday work in business
or home environments more and more in the near future.
Possible services are delivery tasks, cleaning services or
home care. Recent developments in mobile robotics empha-
size this [1], [2], [3]. But, the distribution and therewith
further development of mobile robots is mainly dependent
on the acceptance of the society. An important criteria for
this acceptance is the robot‘s ability to interact with the
environment.

Interaction is only possible if the robot has knowledge
about the locations of its interaction partners. In general,
this knowledge can only be generated using sensory input.
An explicit specification of a dynamic environment is usually
impossible.

The generation of such an environment model is a nontri-
vial task since the sensor calibration and measurements are
susceptible to errors. In addition, the observed objects may be
occluded and therefore not detectable by some sensors. We
argue that this uncertainty about the environment decreases
when different sensor-modalities with diverse qualities are
used. The advantages of the different sensors can comple-
ment one another using appropriate fusing methods. In the
following we present a scalable robust system, that fuses

arbitrary multimodal data containing trajectories of moving
objects.

Besides the interaction partner‘s actual position, it is
another important ability for a service robot to predict
people‘s future positions. For example, the robot could
intercept people for delivery tasks. Predictions about motions
of dynamic objects are based on a motion model, which
can be specified explicitly or learned from previous observed
motions. We developed a novel approach to predict people‘s
motion based on a motion pattern learned by a self organizing
map.

The reminder of this paper is organized as follows: In
section II an overview of existing research on trajectory
prediction is given. Section III introduces the proposed
framework for multimodal tracking. The laser- and camera-
based tracking algorithms used in our implementation of the
framework are presented. Preliminary experiments show the
usefulness of the framework. The results of the experiments
are used in section IV to explain the generalization of motion
patterns and the experience-based prediction. Section V gives
a conclusion.

II. RELATED RESEARCH

The research related to the proposed system for people
tracking and trajectory prediction cuts into three areas:
motion prediction, people tracking and filtering and fusion
of multimodal tracking data.

A. Motion Prediction

Predicting the motion of objects is a commonly used to
avoid collisions in path planning tasks. There are numerous
approaches present in the literature to predict obstacle motion
in this context. Until the last few years motion prediction was
synonymous with the prediction of the objects position at
the imminent following time step. This short-term prediction
was mainly approached by modeling the object motion by a
statistical process [4], [5], [6]. In [7] a Kalman filter is used
to predict immediate following positions.

Even though several of this approaches might give accu-
rate predictions, there actual benefit in relation to collision
avoidance is questionable [8]. Short term predictions are also
not sufficient to be used by higher level task planning pro-
cesses. To predict object motions in a longer period of time,



it is assumed that the motions are following determinated
motion patterns.

Based on this idea of observable motion patterns, [9]
clusters similar trajectories to trajectory prototypes by an
expectation maximization algorithm. Partially observed tra-
jectories are compared with these prototypes, to predict
future motions of objects. It is assumed, that the object is
moving on the prototype trajectory which is the most similar
to the partially observed trajectory. Other methods [10], [11]
use comparable techniques. The main difference lies in the
method which is used to generate the trajectory prototypes.
In [10] a pairwise clustering process is used. In [11] the
target of the observed object’s motion is estimated and the
predicted path is generated by a path planning algorithm. The
major drawback of that kind of systems is the impossibility
to predict unusual trajectories.

B. People Tracking

The basis of the above mentioned prediction techniques is
an accurate motion model, which rests upon previous obser-
ved trajectories. To ensure the quality of the observations it is
already common to fuse data of multiple sensor modalities.
Two frequently used sensors for tracking applications are
cameras and laser range finders.

1) Camera Tracking: If static cameras are used, back-
ground subtraction is a common technique to separate fo-
reground objects. In [12] every pixel is assigned with a
statistical color probability of the observed background by
a mixture of gaussians. This probability is used to determine
the pixel‘s background membership in each frame. In [13]
and [14] an occurrence model is used to track certain objects.
This model contains the color appearance and a probability
mask, which represents the probability of each pixel to be
part of the object. Another approach to track certain objects
is presented in [15]: Here a color histogram represents the
model. This approach is applied in our system and it is
described in section III in detail. Since this approach uses
no background subtraction, it is suitable to track people in
images recorded by mobile cameras .

2) Laser Tracking: In [16], [17] and [18] background
subtraction is used with laser range scans for object tracking.
The systems differ in the way they generate the background.
They all have in common that the background is modeled as
a probability density function over the range measurements.
For laser range finders mounted on a mobile robot it is not
suitable to use such background models since the background
measurements are changing permanently. Therefore, in [19]
human legs are registered only via their size and shape.

C. Filtering and Fusion of Multimodal Tracking Data

Both the tracking algorithms in laser range scanners and
in camera images mostly include filtering of the position
estimates. This is reasonable since all measurements contain
errors. The filtering becomes more important if several sen-
sors are used. The integration and weighting of the different
sensors is mostly included in the filtering algorithm. In [19] a
Kalman filter is used to integrate tracking algorithms in laser
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Fig. 1. Implemented components of the tracking system. The black dots
symbolize the common interface described in section III-A.

range scans and camera images. A particle filter is presented
in [20] which fuses audio and video information. [21]
applies another approach which deals with multimodality.
The different tracks gained by different sensor modalities
are connected via an anchoring method.

III. PEOPLE TRACKING AND SENSOR FUSION

Both, camera tracking as well as laser tracking, have their
own specific advantages and drawbacks. To build a robust
and accurate tracking system, it is necessary to integrate
several independent tracking algorithms working on the
different sensors. With an appropriate fusion algorithm the
specific advantages of the sensors could complement one
another to decrease the overall error.

In the following, we introduce a conceptual framework,
that is able to deal with an arbitrary number of sensors.
Subsequent, we describe how a particle filter algorithm is
applied to fuse and filter data of different sensor modalities.
At last, the tracking algorithms for the measurements of laser
range scanners as well as for camera images are presented.

A. Conceptual Framework for Multimodal Tracking

A typical multiple target tracking system consists of
four blocks: sensor hardware, sensor processing and single
sensor tracking, track fusion and association and track life
management. A tracking system should be modular to allow
the addition, removal and exchange of sensors and sensor
processing algorithms. Therefore, the most important aspect
of a tracking system becomes its ability to filter and fuse the
results from individual sensors.

We developed a framework, that contains the above men-
tioned blocks. The schematic block diagram for this frame-
work is shown in figure 1. Our implementation of the data
association block includes filtering and data fusion using a
particle filter. To ensure the extensibility of our system, we
defined a general interface, that has to be implemented by the
modules for low-level sensor processing as well as higher-
level modules. Through this interface an arbitrary number of
tracks is provided for the following module where each track
consists of
• the current position and velocity of the tracked object,
• the uncertainty about the position and velocity and
• an unique identity number.
The structure of this framework is mainly motivated by

software technical encapsulation, substitutability of algo-
rithms and extensibility concerning further sensor modalities.



This structure provides efficient development, maintenance
and testing capabilities.

B. Sensor Fusion and Filtering

We consider the problem of tracking as the detection of
a state of a target. Therefore, we model the state xt of
a tracked person at time t as a four-dimensional vector
(x,y,δx,δy)T . This vector describes not only the position
on the ground plain but also the velocity of the person.
Since measurements of sensors contain errors it is impossible
to derive the actual state of observed persons in a non-
probabilistic way. Generally, a probability density function
(pdf ) is used to represent the state. Nonlinear Bayesian
filtering can be applied to determine this pdf taking every
previous measurement into account. The Bayesian solution
to derive a belief about the current state is a recursive discrete
time approach. Since optimal solutions for nonlinear Baysian
tracking can only be applied when certain constraints hold
we used the particle filter in our implementation. The particle
filter is an approximate nonlinear Baysian filter.

The particle filter is used in two stages of our tracking
system. First, it is used in the tracking algorithms applied
on the data of a single sensor. Second, it is used for the
fusion of tracking results made on different sensors. Other
nonlinear filters like the extended Kalman filter can replace
the individual particle filters in our system since each module
is encapsulated and does not demand a particular algorithm.

The basis of the particle filter is the importance sampling.
A multi dimensional function g(x) is factorized into two
functions g(x) = f (x)π(x), where π(x) is interpreted as a
probability density function with π(x)≥ 0 and

∫
π(x)dx = 1.

If a set of samples {xi|i = 1, . . . , i = N} with N � 1 and
distributed according to π(x) is generated, the integral of the
function g(x) can numerically be approximated as∫

g(x)dx≈ 1
N

N

∑
i=1

f (xi) (1)

When the density function π(x) is unknown, g(x) will be
approximated by a function τ(x) similar to π(x) regarding
that ∀x : π(x) > 0⇒ τ(x) > 0. Equation (1) reformulates to∫

g(x)dx =
∫

f (x)
π(x)
τ(x)

τ(x)dx≈ 1
N

N

∑
i=1

f (xi)ω(xi) (2)

with

ω(xi) =
π(xi)
τ(xi)

(3)

when the sample set xi is distributed according to τ(x)
Importance sampling is applicable to nonlinear estima-

tion if a set of samples {xi
t ,ω

i
t } is chosen at each time t

where ω i
t
4
= ω(xi

t) describes a weighting of the samples and
∑

N
i=1 ω i

k = 1. If f (x) = 1 this yields

p(xk|Zk)≈
1
N

N

∑
i=1

ω
i
kδ (xk− xi

k). (4)

The weights ω i
k follow from

ω
i
k
4
= ω(xi

k) =
p(xi

k|Zk)
τ(xi

k|Zk)
, (5)

For each new measurement the pdf describing the state
of a tracked person is approximated by displacing each
sample according to a probability function τ(xi

k|xi
k−1,Zk). It

is incidental that τ(xi
k|Zk) = τ(xi

k−1|Zk−1)τ(xi
k|xi

k−1,Zk). The
approximation defined recursive as

p(xi
k|Zk) =

p(zk|xi
k,Zk−1)p(xi

k|Zk−1)
p(zk|Zk−1)

=
p(zk|xi

k)p(xi
k|xi

k−1)p(xi
k−1|Zk−1)

p(zk|Zk−1)

(6)

The weightings ω i
k follow by insertion of (6) in (5).

ω
i
k =

p(zk|xi
k)p(xi

k|xi
k−1)p(xi

k−1|Zk−1)
p(zk|Zk−1)τ(xi

k−1|Zk−1)τ(xi
k|xi

k−1,Zk)

= ω
i
k−1

p(zk|xi
k)p(xi

k|xi
k−1)

p(zk|Zk−1)τ(xi
k|xi

k−1,Zk)

(7)

The normalizing factor p(zk|Zk−1) is constant and can be
precalculated for each measurement.

The use of measurements gathered on multiple sensors
causes different measurement models. This affects p(zk|xi

k)
and p(zk|Zk−1) for each sensor.

See [22] and [23] for more detailed descriptions on Bay-
sian filtering.

C. Laser-based Tracking
As presented in section II tracking algorithms which use

laser range finders are often divided into two steps. First, they
generate a background model and, second, they determine
the measurement’s background membership. The background
model is often represented by a histogram over the range
measurements at each angle. It is assumed, that the maximum
of the histogram is caused by the background. This model is
usually calculated in advance. The range measurements simi-
lar to the background distance are classified as background
and discarded. This has the following drawbacks:
• The prior generation of the background model is time-

consuming.
• If there are foreground objects present during the cal-

culation of the background they are included in the
background.

• These systems are unable to handle alterations of the
background.

We developed a novel method to calculate the back-
ground’s ranges which is updated with each measurement.
The background distance hi(t) at time t and angle i is given
by the following recursive equation:

hi(t) = hi(t−1)+

{
ε1 für hi(t−1) < mi(t)
(−ε2) sonst

(8)

The values of the increments ε1 and ε2 determine the
adaptivity of the background model.

After background measurements are removed groups of
foreground measurements are tracked with a particle filter.



D. Camera-based Tracking
An overview of common methods for camera-based

tracking is given in [24]. In our system we use the approach
presented in [15] since it is appropriate to be used with
cameras mounted on a mobile robot.

People tracked in the camera image are represented by
a weighted color histogram. Pixel are weighted with a
monotone decreasing kernel function K : R2 → R which
assigns smaller weights to the pixels which are farther from
the center of a detected person. If the size of a person is
denoted by 2h∗, the probability of the object’s color u can
be calculated as follows:

q̂u = C ∑
x∈X∗

K
( x

h∗

)
δ
(
b(x)−u

)
, (9)

where C denotes a normalization constant. The function b(x)
assigns the pixel to an index of the histogram’s color bin.
Therefore, a person located at the coordinate y in the image
plane is represented by a color histogram:

p̂u(y) = Ch ∑
x∈Xy

h

K
(

y− x
h

)
δ
(
b(x)−u

)
(10)

where h is the size of the target candidate. As a measure
of similarity between two color histograms we chose the
Bhattacharyya coefficient.

The goal of the tracking algorithm is to find the location
y with the highest similarity between the color histogram of
a person and a candidate located at y. This is achieved using
the sample mean shift method described in [15].

E. Experiemtal Results
For our experiments we used two SICK laser range finders

mounted on a mobile service robot and a camera stationary
mounted in the laboratory of the TAMS institute. Due to
the uncertainty of the camera tracking, which is caused by
noisy measurements and changing illumination conditions
we weighted the outcome of the laser tracking higher. In a
first experiment we used both sensor modalities to increase
the accuracy and robustness of the tracking algorithm. Figure
2 shows the results of the multimodal tracking.

In a second experiment the system observed 43 trajectories
during a two hours period of time. These trajectories are
shown in figure 3. They will be used in the following section
to explain the experience-based prediction with real-world
examples.

IV. GENERALIZATION AND PREDICTION OF
TRAJECTORIES

In recent years experience based long term prediction
of trajectories became popular [9], [10], [11]. The systems
have in common that motions are generalized first to predict
future trajectories subsequent. We propose another approach
to generalize trajectories completely unsupervised using a
Self Organizing Map (SOM).

The following section describes the basics of the SOM
algorithm and extensions needed to learn trajectory patterns.
Afterward, a prediction algorithm is presented, which is
based on the learned trajectory patterns.

Fig. 2. Comparison of the sensor modalities: camera tracking (green) and
laser tracking (blue) are fused by a particle filter (red). The greater variance
of the camera tracking is obvious. The additional blue points are the current
measurements of the laser range finders.

A. Learning of Trajectories using a Self Organizing Map

A SOM is a kind of artificial neuronal net. It is usualy
used to map statistical data from a high-dimensional input
space onto a set of reference vectors of a usually lower-
dimensional topological space. A major feature of a SOM is
topology conservation with respect to the neighborhood of
the input set. That means that similar input vectors (IV) are
mapped to the same reference vector (RV).

In our system the SOM is used to learn the observed
trajectories of people. The topology conservation is directly
used to generalize these trajectories to motion patterns. A
subsequent clustering of trajectories is omitted. But, it is ne-
cessary to make the motion patterns which are inherent in the
SOM explicit to be usable for the prediction. The following
description of the SOM follows largely the descriptions of
[25] and [26].

A SOM consists of a set of RV sometimes referred to
as nodes. The RV are ordered in a topological space. In
general, the alignment is arbitrary. We chose a quadratic
structure to permit simple visualization and efficient storage
in a two-dimensional array. The set of RV is depicted by
M = {mi j|mi j ∈ Rd}i=1...mx, j=1...my , where mx is the width
and my the height of the map. The dimension d of the RV
and IV is equivalent.

During the learning phase the SOM is iteratively trained
with the IV xt . The RV mcd ∈M most similar to xt is referred



Fig. 3. The 43 trajectories observed during a two hours experiment.

Fig. 4. This figure shows a converged SOM trained with real tracking
results. The black lines represent the topological connections between the
RV. The yellow lines represent a part of the map of the office environment
of the TAMS institute.

to as response node. As the degree of similarity we chose
the euclidean distance in the input space. The response node
and nodes in its topological neighborhood adept to the IV.
We chose the Manhattan distance as the distance function
for the topological space.

The learning step for each node mi j(t) at the time t is
defined by the following learning rule:

mi j(t +1) = mi j(t)+nt(d)l(t)
(
xt −mi j(t)

)
,

where l(t) is the learning rate and nt(d) is a neighborhood
function depending on the Manhattan distance between mi j

and the response node mcd .
The neighborhood function is a kernel function which

specifies a smoothing factor. To enable local learning it is
necessary that nt(d)→ 0 for all d > kt , where kt is the size
of the neighborhood. For the convergence of the SOM it is
necessary that l(t)→ 0 or kt → 0 for t →∞. Figure 4 shows
a converged SOM trained with real tracking results.

B. Extraction of learned Motion Patterns

After the SOM has converged the RV approximate the
input data, i.e. the observed trajectories. It is self-evident
to use a density estimation of the RV in the input space to

Fig. 5. The distribution of the MAAR values calculated on the RV of
figure 4. The smaller the MAAR value the darker the color.

Fig. 6. The topology extracted from the MAAR distribution of figure 5
using Canny edge detection.

characterize frequently used paths. Since the SOM algorithm
does not generate new nodes, the distribution of the nodes
after the learning process is based on a local re-allocation.
Hence, next to every local density maximum there is a
local minimum. That means transferred to the application of
people tracking, that it is unlikely that a person stands beside
a frequently used path. Since this does not agree with reality,
we developed a novel method to characterize frequently used
paths based on a SOM. Our method assigns to every node
a value corresponding to the size of the minimum adjacent
area which is spanned the four adjacent nodes and bi-linearly
interpolated. This value is referred to as MAAR value. The
smaller the MAAR value the more frequent a person was
observed in this area. Figure 5 shows the MAAR distribution
to the SOM of figure 4.

To extract the motion patterns from the MAAR distribu-
tion we used the gradient based Canny edge detector. The
detected edges are transfered into a graph representation to
permit the prediction described in the following subsection.
The generalized motion pattern for the MAAR distribution
of figure 5 is shown in figure 6



Fig. 7. The prediction (red) of the trajectory of an observed person (black)
based on the generalized motion graph (pink).

C. Experiance based Trajectory Prediction

The graph extracted from the MAAR distribution repres-
ents frequently used trajectories in a generalized form. The
trajectory prediction based on this motion patterns assumes
that tracked persons normally move along the graph seg-
ments.

1) Mapping Graph Segments to Observed Persons: To
decide which motion pattern matches best to an observed
person we required a measure, which defines a correlation
between a person and graph segment. We use the euclidian
distance between a persons‘position and the graph segments.
The direction of the observed persons‘motion is not consi-
dered for the mapping but is used later to determine the
person’s direction on the mapped motion pattern.

2) Prediction: Since experiments showed that the map-
ping is suitable, the motion pattern i.e. the graph segment
which the observed person is moving along is known. With
this, the long term prediction is to determine the sequence
of path segments the person will be following subsequently.
It is assumed that the general behavior of the tracked people
does not change compared to the learning phase i.e. they will
move close to the generalized trajectories.

To predict a person‘s motion, the probabilities for turns
at graph branchings are learned. The long term prediction
of a trajectory adds adjacent path segments to the mapped
segment with respect to the probability of a turn at a graph
branching. The prediction terminates if no subsequent path
segment is available or the overall probability i. e. the product
of the probabilities for each prior turn comes under a certain
threshold. Figure 7 examplarily shows a prediction of the
trajectory of an observed person.

V. CONCLUSION

In this paper we presented a framework where different
sensor modalities can be integrated to build a multimodal
tracking system. We implemented this framework for people
tracking algorithms processing laser range measurements and
camera images. The individual tracking algorithms for the
different sensors as well as the fusion module use particle
filters. Due to the modular design other filter algorithms can
be used. With some preliminary experiments we showed that

the robustness of the tracking can be increased when camera-
and laser-based tracking is combined.

Further we presented a new approach to generalize obser-
ved trajectories to motion patterns using a self organizing
map in order to predict future trajectories. We tested our
generalization algorithm with more than 40 trajectories col-
lected during an two hours observation session.

REFERENCES

[1] R. D. Schraft, J. Neugebauer, and C. Schaefferand T. May. Care-O-
bot: Ein technisches Hilfssystem für unterstützungs- und pflegebedürf-
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