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Abstract— We present a novel approach to detect and de-
scribe visual features in panoramic image data. For various
applications, especially computer and robot vision, robust and
invariant features are key paths to explore scenes and objects.
Most features applied in the literature can commonly be classified
either as being local or being global. Local features characterize
a significant point in the image like an edge. Global features
describe a general property of the whole image like the color dis-
tribution. In this paper, we propose an in-between representation
using region-based symmetry features. We compare the approach
to a set of state-of-the-art affine feature detectors. Experiments
show that the symmetry features are sparse, distinctive and
robust to changes in panoramic image warp. Therefore, they
are well applicable to robot vision tasks.

I. INTRODUCTION

Robust detection of features is a crucial task for applica-
tions that deal with visual information. Image data is high-
dimensional, complex and particularly sensitive to a multitude
of changes. These mostly unpredictable changes greatly influ-
ence the image representation of one and the same object or
scene. Therefore, a good feature detection is strongly required
in dynamic and unrestricted real world environments. Prefer-
ably, this detection is invariant to a number of transformations
like rotation, scaling, illumination change, perspective and
panoramic warp, occlusion and image noise.

A visual feature is referred to as “good” if it seperates the
core of information from the clutter. This basically depends
on the application at hand and on the context it is used in. For
our research on vision systems for mobile robots, we define
a good feature to be both independent of transformations and
distinctively repeatable in dynamic environments.

Most features applied in literature are commonly classified
either as being global, local or regional. Concerning our
definition of a good feature, common global features that
describe general properties of an entire image scene are rather
inappropriate for our task of robot scene interpretation. While
single objects can be generalized easily by simple global fea-
tures (e.g. size, color or texture attributes), finding stable and
repeatable features is more complex for conglomerate scenes.
However, global features give very compact representations
of significant image properties. Therefore, global features are
mainly used in image-based applications like image retrieval
or image annotation.

Many higher-level tasks like scene exploration or object
classification and object tracking in complex scenes are
grounded on local features. Being related to human visual
perception, local visual features give clues for efficient scene
exploration. They allow to focus on well-located interest
points. Therefore, a variety of local features have been applied
in a range of vision tasks, aiming at high robustness and
repeatability. The Scale-Invariant Feature Transform (SIFT)
proposed by Lowe [1] and the Harris-Laplacian by Mikola-
jczyk and Schmid [2] are two popular methods of local feature
detection. While the SIFT uses local extrema of Difference-
of-Gaussian (DoG) filters in scale-space to produce scale-
invariant features, the Harris-Laplace operator joins rotational
invariant Harris features [3] and Laplacian scale-space anal-
ysis into an affine invariant interest point detector. As the
exploration of invariant features is an active field of research,
well elaborated comparisons of various feature detectors and
descriptors have been published by Schmid et al . [4] and
Mikolajczyk and Schmid [5], [6].

Due to the different characteristics of local and global
features, it is beneficial for some applications to combine
both approaches. Lisin et al . [7] show two methods where
combining local and global features improved the accuracy of
a classification task. Another aspect is the detection of regional
features, where a region is defined as an arbitrary subset
of the image. The extraction of Maximally Stable Extremal
Regions (MSERs) by Matas et al . [8] highlights the advantage
of region-based features: it produces both sparse and robust
features that are particularly covariant to viewpoint change
and affine transformations. Mikolajczyk et al . compare and
evaluate a set of recent affine region detectors in [9], which is
a main reference for the work proposed here.

In this paper, we present a novel region-based image fea-
ture detection approach using symmetric regions. Section 2
describes the regional symmetry feature detection. It is based
on our earlier work on qualitative and quantitative symmetry
measures proposed in [10] and [11]. After the detection of the
features from the image data, we characterize each region by
a SIFT descriptor [1] and subsequently match them using a
common matching strategy. This is described in section 3. An
evaluation and a comparison to other approaches is given in
section 4, before we conclude our work in section 5.



II. SYMMETRY FEATURE DETECTION

A. Qualitative Symmetry

Motivated by psychophysical experiments on symmetry,
we proposed a fast and compact one-dimensional operator
to detect horizontal and vertical reflective symmetry features
in earlier work [10]. Only pixels in the same image row or
column are used for the detection of vertical or horizontal sym-
metry for a pixel pi. It is not necessary to apply interpolation
or trigonometric functions. The qualitative symmetry operator
is based on the normalized mean square error function

s′(pi) = 1− 1
c ·m

m∑
j=1

σ(j,m) · g(pi−j , pi+j)2, (1)

where m is the size of the operator applied to pi. The
normalization constant c depends both on the color space
and on the radial weighting function σ(j, m). The difference
between two opposing points pi−j and pi+j is determined by
a gradient function g(pi−j , pi+j).

This operator overcomes the problem of other symmetry
detection methods that use large operators which are mostly
unsuitable for robotic real-time tasks. Experiments show that
our fast qualitative operator is able to robustly detect symmetry
axis segments [12]. Like most other approaches, the operator
shows the significant disadvantage of depending on an a-priori
operator size m, i.e. a pixel’s symmetry value is described
with respect to a constant region around this pixel. There-
fore, such qualitative operators return a relative, commonly
normalized value of symmetry for each image element. This
value describes the qualitative symmetry as low or high inside
the constant region of size m. The lack of flexibility of those
approaches is quite obvious. It would be more relevant to get
quantitative information like the size of the symmetric region
instead of its degree, with respect to a static operator size.

B. Quantitative Symmetry

For this purpose, a novel method to generate robust quanti-
tative symmetry values was proposed in [11]. The approach is
based on an algorithm computing bilateral quantitative sym-
metry information using an adopted Dynamic Programming
technique referred to as Dynamic Programming Symmetry
algorithm. For each image point, the pair of opposing image
regions spans a single local search space. Each search space is
computed to find an optimal mapping of the regions’ elements.
Symmetry information is finally extracted regarding the error
of this mapping.

The optimal mapping and the overall error are computed
in an iteratively growing subsquare of the search space. If
the minimum error exceeds a given threshold in an iteration
step, the calculation is aborted. The mapping end is returned
using the search space indices sl(pi) and sr(pi) that now
serve as a measure of symmetry. The environment given by
S(pi) = sl(pi) + sr(pi) can be treated intuitively as the
symmetric region around pi. This operator offers quantitative,
comparable symmetric range information for each image point.

The disadvantage of this approach is the high effort in com-
puting time, as a whole search space has to be treated for each
pixel.

C. Symmetry Features

In this paper, we propose to combine qualitative and quanti-
tative symmetry measurements into a mixed approach for fast
and stable visual feature detection. To detect features from an
image, we first use the qualitative operator to acquire fast sym-
metry information for each image point. Symmetry axis points
are extracted by a line-independent maxima investigation on
the symmetry data. This provides a binary representation of the
axis points. The feature points are defined as intersections of
vertical and horizontal symmetry axes. Therefore, we associate
the axis points into straight line segments. This is done by a
simple algorithm that searches for a segment start point and
processes the line points to a segment end point. The segment
representation gives access to additional information about
each symmetry axis, e.g. length, orientation and maximum
variance of the integrated points to the line segment. Segments
with a large maximum variance correspond to curve segments.
We iteratively split these at the point of maximum variance
until they form straight subsegments.

Including quantitative symmetry measures now, each in-
tersection of a horizontal and a vertical segment reveals an
elliptical region feature fi = (yi, θi, ai, bi) parametrized by

yi = (xyi
, yyi

), (center point) (2)

θi =
θv + θh

2
− π

4
, (orientation) (3)

ai = Ŝv(yi), (1st semi axis) (4)

bi = Ŝh(yi), (2nd semi axis) (5)

where θh and θv correspond to the orientations of intersecting
segments. Caused by line segmentation, intersections might
miss the ideal symmetry maxima point, thus Ŝv(yi) and
Ŝh(yi) are computed by finding the maximum vertical Sv(x)
and horizontal Sh(x) in a small neighborhood of yi. Each
feature ellipse can also be formulated as

Fi = {(x, y) ∈ R2 | AiDi(x− xyi
)2 + 2BiDi(x− xyi

)

· (y − yyi
) + CiDi(y − yyi

)2 = 1}, (6)

where Ai = a2
i sin2(θi) + b2

i cos2(θi),

Bi = (a2
i − b2

i ) · cos(θi) sin(θi),

Ci = a2
i cos2(θi) + b2

i sin2(θi),

Di = (aibi)−2.

which is similar to the quadratic equation of central conics.
Fig. 1(f) shows an example for the symmetry feature ellipses
detected from the panoramic image sample in Fig. 1(a).

III. FEATURE DESCRIPTION AND MATCHING

In order to compare and match the perceived features in
different views, each detected region has to be characterized
by a significant descriptor. A number of feature descriptors



have been elaborated in literature. A recent classification and
overview of many techniques is given by Mikolajczyk and
Schmid in [6]. For matching of symmetry features and for the
comparison to a set of well-evaluated approaches from [9], all
features fi are described using a 4×4×8 SIFT-descriptor [1]

d(fi) = {du(fi)}u=1...128. (7)

After the detection and description of symmetry-based
regions, a measure of correspondence has to be defined to
features that correlate the most. Since each feature is almost
completely characterized by its descriptor vector, we therefore
use the SIFT mapping

ρ (fi, gj) =
128∑
u=1

(du(fi)− du(gj))2 (8)

to compute the similarity of two features fi and gj . The
common application of feature matching is given by com-
paring a feature fi from one scene with a set of features
g = {gk}k=1...n detected in a second scene. The best mapping
for fi is thus given by

fi 7→ gj : gj = arg min
gk∈g

ρ (fi, gk) . (9)

The most common type of matching that is applied by the
SIFT operator [1] is the set of single best mappings

R (f ,g) = {{fi, gj} | fi 7→ gj ∧ ρ (fi, gj) < t}, (10)

where t describes a threshold, which we set to 1
2ρ

(
fi, g

′
j

)
with g′j being the second best mapping for fi. This ensures
that the mapping is distinctive. The matching R (f ,g) is not
symmetric and usually non-injective, because more than one
fi may be mapped to one gj . A common measure that is
consulted to rate the quality of a matching between two images
is the repeatability value. A basic the repeatability measure is
defined as the ratio of the number of matches and the mean
or minimum value of the number of features in both images.
We use the minimum repeatability measure

r (f ,g) =
‖R (f ,g) ‖

min (‖f‖, ‖g‖)
. (11)

IV. EVALUATION

In this section, we follow the experiments of affine region
detectors in [9]. We evaluate the proposed symmetry feature
detector in contrast to other well-elaborated feature detec-
tors. For a set of panoramic images symmetry features are
compared to Harris-Affine and Hessian-Affine Regions [6],
Intensity-Based Regions (IBRs) [13] and Maximally Stable
Extremal Regions (MSERs) [8]. While Hessian- and Harris-
Affine are edge-based regions, IBRs, MSERs and the symme-
try approach are oriented towards area-based regions. This can
bee seen in the example images of Fig. 1.

(a) 1440× 288 panoramic image sample #37

(b) Harris-Affine Region Detector

(c) Hessian-Affine Region Detector

(d) Intensity-Based Region (IBR) Detector

(e) Maximally Stable Extremal Region (MSER) Detector

(f) Symmetry Region Detector

Fig. 1. Sample features extracted by the five detectors: Harris-Affine
and Hessian-Affine Regions [6], Intensity-Based Regions (IBRs) [13] and
Maximally Stable Extremal Regions (MSERs) [8]. While Hessian-Affine and
Harris-Affine are edge-based regions, IBRs, MSERs and Symmetry Regions
are oriented towards area-based regions.

A. Region Size, Run-time and Feature Count

We calculate these features for the 1440 × 288 panorama
image in Fig. 2 and present region size, run-time and feature
count of the different detectors in Tab. I. The histogram of
Fig. 3 shows distributions of image feature sizes, where the
size of an elliptical region is computed as the mean value of
its semi axes. Symmetry, MSER and IBR provide few and
sparse features with mean feature size, while Harris-Affine
and Hessian-Affine detect many small features.

For our symmetry detector, feature count and run-time
do not depend on image size only, but also on symmetric
image structure. The main effort is spent on the quantitative
symmetry detection, where a growing search space for each
image point is established. Larger symmetries cause larger
search spaces and computation time. While symmetry features
were computed on a Pentium M 1.7GHz Windows Laptop,
standard Linux binaries1 were used from [9] on a Linux PC∗

with a Pentium 4 3GHz for the other approaches. Though

1www.robots.ox.ac.uk/∼vgg/research/affine/detectors.html



TABLE I
MEAN SIZE, RUN-TIME AND FEATURE COUNT FOR ALL DETECTORS.

detector mean size run-time #features
Symmetry 23.12 ∼ 3.2 sec 127
MSER∗ 24.61 < 0.5 sec 216
IBR∗ 14.01 ∼ 1.9 sec 160
Harris-Affine∗ 9.69 ∼ 1.6 sec 396
Hessian-Affine∗ 9.21 ∼ 0.8 sec 564

Fig. 2. 1440× 288 panoramic image sample #1.

run-time of the detectors is not directly comparable because
of the hardware differences, it can be concluded from the test
that symmetry offers the most sparse set of features with large
mean feature size. Additionally, the whole process of feature
description and matching is depending on feature count, so
symmetry features can be described and matched fastest.

B. Affine Transformation

Related approaches emphasize to be covariant under affine
transformations like change of scale, rotation and perspective
view. Covariance or overlap terms that elliptical represen-
tations of a feature cover the same image region in both
images. The measure of quantitative symmetry intuitively il-
lustrates the concept of scale robustness, as symmetry is highly
proportional to scale. Only horizontal and vertical symmetry
measures are used in our approach, thus the detection of
features is not rotational invariant. Symmetry axes of hori-
zontal and vertical operators are able to approximate slightly
skewed axes of symmetry, but are rotational invariant for
rotations of rπ

2 only. In contrast to other approaches symmetry
is comparatively weak in this covariance measure on affine
transformations. Nevertheless, no multiple scale analysis or
scale selection is needed, since scale emerges from symmetry.
Symmetry features are not strongly covariant and fail in strict
overlap measures, as it can be seen in Fig. 4.
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Fig. 4. Exemplary overlap graphs for the “wall sequence” from [9]. Left:
Overlap of 40% error allowed. Right: Overlap of 80% error allowed.
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Fig. 3. Histogram of feature sizes for the panorama image #1 in Fig. 2.

C. Panoramic Warp

In contrast to the transformations (changes in image blur,
scale, rotation, perspective view and JPEG compression) dis-
cussed in [9], panoramic warp is not an affine one. We exploit
the properties of the detectors in an evaluation experiment
on panoramic warp, which naturally includes changes in blur,
scale, and panoramic view, as can be seen in the two panorama
samples of Fig. 1(a) and Fig. 2. The two images are #1 and
#37 of a sequence of 37 images that were recorded during
a 3.38m straight movement using our robot platform. The
images are retrieved from a SeiwaPro Panorama Eye R© [14]
omnidirectional vision system that is mounted above the stereo
camera head of the robot. Like most catadioptric systems, the
one applied here comprises a firewire color camera facing
upwards to a hyperboloidal mirror surface. Omnidirectional
images are restricted in image resolution, but offer the main
advantage of providing a complete 360◦ visual perception of
the surroundings in each time step. Methods for unwarping
distorted omnidirectional views into panoramic views are well
elaborated to offer user-friendly visual feedback. For the
following experiments, we use image #1 as the reference frame
for the other images #2 to #37.

1) Feature Matching: For each of the five detectors, f(1) is
computed, being the feature set for image #1. We also detect
and describe the feature sets {g(i)}i=2,...,37 to compute the
matches between f(1) and each g(i). Hereby, we evaluate how
sensitive the different detectors are with regard to different
levels of panoramic image warp. The number of features and
feature matches are shown in Fig. 5(a) and (b). We find
that symmetry yields very few features and matches. To rate
these matches, the repeatabilities r

(
f(1),g(i)

)
(Eq. 11) are

computed and plotted in Fig. 5(c). The plot presents clearly
the repeatability decrease with larger distance because images
differ more from the reference image #1 along the sequence.
Additionally, it shows that the matching rates of MSERs and
Symmetry Features are best to find correspondences from the
detected features.

2) Homographies: However, detected matches are not al-
ways correct. There may be false positives, when image
regions look the same. To distinguish between false and correct
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(d) Homographies between image #1 and #2 - #6.
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Fig. 5. For the comparison of all detectors, features of image #1 (Fig. 2) are matched to those of all other sequence images #2 to #37 (Fig. 1(a)).

matches, information about the exact image transformation is
necessary. In [9], simple 3×3 homography matrices are used
to define the ground truth of where a feature has to be after
an affine transformation. On the one hand, panoramic image
flow for robot applications is not an affine transformation.
There are image regions that do not change (e.g. fixed robot
parts in the image, regions along the axis of movement and
regions that are far away) or others that warp in a nonlinear
manner according to their size and their distance to the robot.
On the other hand, the environment around the robot is
unknown and dynamically changing, which makes panoramic
homographies for robot applications impossible to establish.
Therefore, we try to approximate each homography H(1, i)

between image #1 and image #i by a column-based histogram
of feature shifts. For each match that results from the feature
matchings between f(1) and g(i), we assign its radial shift in
x-direction to the column. If there are more shifts assigned to
one column, the mean value is assigned. Note that all feature
detectors’ results are used to establish these homographies.
Empty histogram cells are subsequently filled by interpolation.
To handle outliers, each fifth entry of the histogram is used as
a sampling point for a cubic spline that now describes H(1, i).
Resulting homographies {H(1, i)}i=2,...,6 are presented in
Fig. 5(d). Regarding these homography graphs with increasing
shift altitude and zero-crossings at the image edge (at 0 and 2π,
respectively) and the image center (at π), one can obviously



reason that the robot has moved away from a point in the
image center. This is correct, as the robot moved a straight
path from image #1 (Fig. 2) to image #37 (Fig. 1(a)).

3) Failure Analysis: After these two steps, we can com-
pare the shifts of the feature matches to the corresponding
homography for each image match. Fig. 5(e) presents the com-
parison between the R

(
f(1),g(3)

)
of the different detectors

and H(1, 3). For the cause that homographies are acquired
by the complete feature set, they are visibly influenced by
these, but outliers are clearly recognizable. The largest outlier
in the example in Fig. 5(e) can be detected at the left side
of the image as a sample of the IBR method. Reviewing the
image sequence, we find that this feature is one of the features
describing a monitor screen. It has been matched to one of the
other monitor screens in the image and truely is incorrect. In
this homography H(1, 3) there are few eye-catching outliers
for IBR, Harris-Affine, MSER, Symmetry and Hessian-Affine.

The mean deviation of matches about the homographies
along the whole sequence is depicted in Fig. 5(f). It can be
seen that matching correctness decreases for each method the
more the image #i differs from the reference image #1. Finally,
we can conclude that IBR and Symmetry Features provide best
matching correctness for the analyzed image sequence.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, we proposed a new regional feature detection
approach based on symmetry properties. We compared the
approach to other state-of-the-art regional feature detectors
for the task of panoramic image interpretation. The resulting
symmetry-based feature regions are neither generally invariant
nor covariant. Though the detector lacks in precision finding
the same ellipse feature region after common image transfor-
mations, the applied SIFT descriptor is very robust to match
corresponding features distinctively.

Run-time of the presented detector is comparatively high
because of quantitative symmetry search space computation.
While common qualitative symmetry detectors describe sym-
metry in a relative degree inside a window, the quantitative
detector describes symmetry as a pixel range. Scale from
quantitative symmetry is used to characterize the symmetric
feature ellipse in extent only to speed up feature computation.
Nevertheless, the detection of symmetric regions is sparse and
well distributed in most real world samples, depending on
image size and symmetric image content. Feature description
and matching of symmetry features thus is faster than for other
presented approaches that derive larger feature sets.

Each region covers a subset of the image that is significant
related to quantitative symmetry, but not necessarily to object
boundaries. The approach and the experiments presented in
this paper show that scale from symmetry is successfully
applicable as a modular inset for feature detection. No multiple
scale analysis or scale selection is needed, as scale emerges
from symmetry.

It was shown that the symmetry feature approach is well ap-
plicable for robust feature recognition during panoramic image
warp. It offers comparatively few and significant features that

support fast description and matching. Matched features are
highly stable, distinctive and correct in combination with the
SIFT descriptor. Another advantage of the symmetry approach
is the strong relationship of features to the objects in the scene.
Walls, doors, monitors and cabinets are frequently included by
one feature.

An important step will be to increase the symmetry detec-
tor’s rotation invariance and to thereby improve covariance
and overlap. For this reason, it might be beneficial to find a
symmetry orientation measure that yields a feature orientation
before applying the twofold quantitative symmetry measures
along and perpendicular to this direction. In this context,
further evaluation of affine transformations is one topic of
future work.

Other topics address the application of the developed sym-
metry features for visual robot navigation. The discussed
homographies and shift values yet allow range estimation in
combination with odometry. The object relationship will be
a link to object classification to recognize doors or other
common objects. Finally, a long-term goal is the autonomous
robot localization and navigation in dynamic environments.
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