
A Java-based Framework for the Programming
of Distributed Systems for Mobile Robots

Daniel Westhoff and Hagen Stanek

genRob GmbH, Aidlingen, Germany
{westhoff,stanek}@genRob.com

Abstract. We propose a novel concept for the programming of dis-
tributed systems for mobile robots. A software architecture is presented
that eases the development of applications for mobile robots. This soft-
ware architecture is based upon the Roblet-Technology, which is a pow-
erful medium for robots. It introduces the possibility to develop, compile
and execute a distributed application on one workstation. The funda-
mental paradigm of the Roblet-Technology is the strong use of mobile
code. Using mobile code an application distributes parts of itself through
the network and builds up a distributed application. Since the Roblet-
Technology uses Java the development is independent of the operation
system. With the feature of running programs as a distributed software,
the framework allows running algorithms which need great computa-
tion power on different machines which provide this power. In this way,
it greatly improves programming and testing of applications in service
robotics. We provide several examples of complex applications which
were developed using our framework. They all have in common that they
use the Roblet-Technology to combine several independently developed
software components.

1 Introduction

Robotic systems are becoming more and more complex. The number of con-
stitutional parts that make up current robotic research platforms is increasing.
A multitude of sensors can be found in these robots: tactile sensors from ba-
sic bumper switches to force and torque sensors, range measuring systems like
infrared, ultra-sonic, radar and laser based sensors or vision systems including
cameras as different as low-cost web-cams and high-dynamic-range cameras. On
the actuator side one finds mobile robot platforms with a variety of drive sys-
tems, walking or climbing robots, robot arms with different degrees of freedom
or complex robotic hands with multiple fingers. In service robotics all these are
combined in autonomous mobile manipulators that accomplish tasks in a diver-
sity of applications.

The field of service robotics has seen a lot of advances over the last years,
but still lacks usability and robustness. We think that one reason for this is
the absence of a unifying software architecture that handles the miscellaneous
challenges which the software engineers encounter. These challenges vary from

the development of distributed applications to the handling of the diversities of
different hardware platforms present in service robotics.

Over the last years, the research community has come to realise that the am-
bitious objectives of robotic research can only be reached based on solid software
architectures. These architectures must support the requirements of the hetero-
geneous modern robot systems. Briefly summarised, the main requirements are:
hardware abstraction, extendability, scalability, limited run-time overhead, actu-
ator control, modularisation, support for networked computing, simplicity, con-
sistency, completeness, support for multiple operating systems. [1] and [2] have
conducted surveys and evaluations of existing software systems. They provide a
good elaboration on the merits and demerits of these architectures.

In this paper we propose a framework that meets these challenges and en-
ables a programmer to develop advanced applications for service robots. A main
feature of the framework is the ability to integrate existing solutions to specific
robotic problems. We will show that it is possible to encapsulate libraries for mo-
tion control for manipulators as well as for mobile robots. A variety of hardware
devices connected to a service robot will be integrated into the architecture. A
layer of abstraction will generalise the access to these devices. Thus, developed
applications can be transferred to other robotic systems without changes.

The remainder of this paper is organised as follows: In section 2 an overview
of existing software architectures in robotics is given. This is followed by a discus-
sion of the merits and demerits of the existing software developments. Motivated
by this, section 4 introduces our software architecture and how hardware is en-
capsulated by the proposed framework. In Section 6 applications are presented
where the framework was applied successfully. Section 7 gives a conclusion and
an outlook on future work.

2 Related Research

This section gives an overview of existing software architectures for service
robots. Recently, a workshop during the 2004 conference on Intelligent Robots
and Systems (IROS) tried to list the various research activities in the field of
robotic middleware [3]. One year later a similar workshop was held at the 2005
Conference on Robotics and Automation [4]. The outcome of the second work-
shop is collected in [5]. In the following, some of the activities in the field of
robotic software environments are discussed. Besides, further related research
projects are stated.

The OROCOS project started in 2000 as a free software project due to the
lack of reliable commercial robot control software [6]. It is divided into two de-
coupled sub-projects: Open Real-time Control Services and Open Robot Control
Software. The first one is a real-time software framework for applications for
machine control. The second one is a set of libraries and an application frame-
work including generic functionality mainly for manipulators. Support of mobile
robots is still in its early stages.

In 2004 the Orca project emerged from the OROCOS project [7]. It adopts a
component-based software engineering approach using Ice [8] for communication
and the description of interfaces. The project’s goals are to enable and to simplify
software reuse and to provide a generic repository of components. The use of
different middleware packages for inter-component communicating is extensively
discussed on the project’s home page. Beside writing custom middleware, the use
of CORBA and XML-based technologies is compared to Ice. Orca is available
for various operating systems and compiles natively.

[9] introduces the Player/Stage project, a client-server framework to enable
research in robot and sensor systems. It provides a network interface to a variety
of robot and sensor hardware and to simulators for multiple robots. Multiple con-
current client connections to the servers are allowed. Client applications connect
over TCP sockets. The project’s server software and the simulators are limited
to Unix-like operating systems.

In [10] MARIE is presented, a design tool for mobile and autonomous robot
applications. It is mainly implemented in C++ and it uses the ADAPTIVE
Communication Environment (ACE) [11] for communication and process man-
agement.

In 2002 Evolution Robotics introduced the Evolution Robotics Software Plat-
form (ERSP) for mobile robots [12]. It is a behaviour-based, modular and exten-
sible software available for Linux and Windows systems. The main components
that are included are vision, navigation and interaction.

In December 2006 Microsoft released the first stable version oft their robot
software development kit Microsoft Robotics Studio[13]. The kit features a visual
programming language to create software for robot systems, a 3D simulated
environment and a runtime to execute the programs on the robot hardware.
The use of the software is restricted to several versions of Microsoft Windows
including Windows CE for mobile applications. It is strongly based on Microsoft’s
.NET framework.

In [14] a service robot for a biotechnological pilot laboratory is presented.
The mobile platform of this robot is equal to parts of TASER which is presented
in this paper. A seven degrees-of-freedom arm is mounted on top of the mobile
platform. The system is designed to take samples from a sampling device, handle
a centrifuge, a fridge and other biotechnological equipment and fulfil the com-
plete process of sample management. It relieves the personal of the laboratory of
monotonous time consuming tasks. Nevertheless it operates in a standard lab-
oratory with standard equipment. An easy-to-use script language is proposed
to define high-level work sequences. The scripts are parsed by the robot’s con-
trol software and the robot fulfils the defined task. This encourages the idea of
simplifying the programming of robots but lacks the flexibility of a widespread
programming language including network programming for distributed systems.

3 Discussion of existing software frameworks

The main contradiction a programmer of a service robot has to deal with is the
trade-off between easy operability and full flexible utilisation. Easy operability
means the system should be easily programmable by non-experts. To allow this,
current research investigates man-machine interfaces for natural instruction and
communication. Unfortunately, most of these interfaces are only available as
prototypes. But, commercial implementations of these techniques will not be
available for some years to come. One compromise was to use script languages
as in [14]. These languages are easy to learn and reduce the amount of knowledge
needed to operate the robot. They abstract low-level details of the robot control
and provide mid-level functionality. This mid-level functionality is then used to
implement high-level task-oriented applications.

On the other hand script languages have serious limitations. They only allow
alteration of certain parameters and sequences up to a certain point. Modi-
fications or new tasks can only be implemented if they do not require more
functionality than offered by the script language. Anything that is not possible
within the functionality of the mid-level script language is therefore not possible
at the task-oriented level. Such modifications would require access to low level
details, but are intentionally hidden by the script languages.

As a general conclusion a framework for mobile robots should provide an
easy-to-learn high-level interface for non-expert personnel, while also providing
access to low-level details. This allows adding functionality that is missing in the
high-level interface.

Most of the presented frameworks can be seen as component-oriented archi-
tectures and thereby try to address the above mentioned problems. The Roblet-
Technology presented in section 4 is a novel component based architecture. Since
its basis is one programming language the developers benefit of a unified pro-
gramming environment which eases the exchange of knowledge within a project.
Especially concerning the maintenance of complex robotic systems and the fre-
quent changes of developers in scientific projects and institutions we think this
will be an immense advantage over other robotic development environments.

4 Software Architecture

In this section we propose a novel software architecture to ease the development
of high-level programs combining the functionality of robotic subsystems.

Many service robot systems are developed for a specific task like mail delivery,
hospital service or laboratory services. In order to keep the software maintainable
the low-level details of the system are hidden by a hardware abstraction layer
(HAL). The task-level programs implementing the service are then based on this
HAL. Using the robot for a different service often can not be done by simply
writing a new task-level program, but requires additional low-level changes as
well. In existing systems this cannot be done while the robot operates. We will

explain how our architecture allows easy task-oriented programming by provid-
ing high-level functionality as well as access to parts of the low-level architec-
ture. Otherwise, adding new functionality to perform new or even only slightly
changed tasks would not be possible.

Fig. 1. The software architecture of the robot TASER at the University of Hamburg:
Roblet-servers (RS) are used to provide a hardware abstraction layer. Generalisation
is realised by this hardware abstraction. Distributed applications are independent of
the particular hardware of the robot system. Some Roblet-servers and connections are
left out for clarity. The client application is an example on how different hardware is
encapsulated. The client application uses only the unit camera which unifies the access
to cameras. The actual type of hardware is not known to the client application.

4.1 Roblets

The basics of the proposed framework are realised with Java and use Roblet-
Technology, a concept firstly introduced in [15]. Roblet-Technology is a client-
server architecture where clients can send parts of themselves, referred to as
Roblets, to a server. The server, referred to as Roblet-server, then executes the
Roblets with well-defined behaviour in case of malfunctions. Notice that not
only data is transmitted between the client and server but complete executable
programs. This can be compared to Java Applets but with the difference that
Roblets are not downloaded but sent. Complex setups can consist of multiple
client applications and Roblet-servers. A Roblet terminates if the execution of
its code finishes normally or throws an exception. Exceptions are sent back
to the client application. In addition, a Roblet can be terminated by a client
application remotely or by the Roblet-server directly. After a Roblet terminates,
the Roblet-server resets itself to a well defined state.

In section 5 we give a short example how a simple distributed application
looks like when it is programmed with our framework.

Roblet-Technology is applicable to all kinds of distributed systems but it
has several features that make its integration into robotic applications useful.
In general, high-level applications in service robotics are mostly distributed sys-
tems. Besides one or multiple mobile robots, there are visualisation- and control
applications that run on workstations in a local area network. Sometimes there
is no direct access to the robot systems via keyboard, mouse and monitor but
only through a wireless network. Roblet-Technology introduces the possibility to
develop, compile and execute an application on one workstation. When the appli-
cation is executed it will send parts of itself to available servers and spread in the
local network. Roblets may send parts of themselves to other servers as well. The
network communication is hidden from the programmer by the Roblet library,
which simplifies the overall development. That means, the network is transpar-
ent and developing distributed applications based on Roblet-Technology is like
developing one application for one workstation. Access to the remote servers is
encapsulated in a client library, reducing the execution of a Roblet on the remote
system to one method call.

4.2 Modules

For robotic applications we propose modules to extend the basic Roblet-server
provided by the Roblet framework. A module is loaded when the Roblet server
is started. It is meant to encapsulate a class of similar functionality.

For the robot TASER of the University of Hamburg we developed several
modules. A more detailed explanation of this robot is given in section 6. One
module merges the functionality of the mobile platform, a second module wraps
the manipulator system including the robot arms and the hands. There are
modules for the different vision systems, the pan-tilt unit, a speech module
and other parts of the interaction subsystem. Figure 1 gives an overview of
the main parts of the current software architecture for TASER. The system
incorporates several smaller Roblet-servers and multiple client applications not
shown in the figure for clarity. Notice that the map server and the path-planning
server don’t run on the robot’s control computer but on a workstation in the
local network. This allows the integration of information gathered by multiple
robots. For example, in the case of dynamic map adjustment this relieves the
robot’s on-board computer of some computationally expensive tasks which need
no real-time capabilities.

4.3 Units

Modules are further divided in units. Units are Java interfaces that are imple-
mented within the modules. Units build the hardware abstraction layer in our
framework. For example, a module encapsulates the localisation subsystem of
a mobile robot and a Roblet wants to query the current pose estimate1 of the
robot. Then the module would implement a unit which defines a method to get
1 A pose is the triple of 2D position coordinates and the robot’s orientation.

the pose. On another robot there may be another localisation system encapsu-
lated by another module. But, if the module implements the same unit, the same
Roblet can be executed on both robots and works without changes. Nonetheless,
special features of a subsystem are made available to Roblets if module-specific
units, e.g. to change special parameters of a subsystem, are implemented. There-
fore, a Roblet has only access to units, it does not know anything about a module
and a module’s implementation of the interface. The whole concept is strictly
object-oriented.

By introducing units, the framework is able to generalise access to similar
classes of subsystems without loosing access to their special features. Addition-
ally, units introduce a possibility of versioning into the system. If new features
are integrated into a module then new units will be introduced. As long as older
units are still available, all client applications and their Roblets using these old
units still work. This has proved to be of great use since complex applications
often consist of dozens of client applications and Roblet-servers. A transition to
new units can be accomplished step by step for each client application.

Figure 2 shows a chart of the structure of a Roblet-server.

Fig. 2. The chart shows the structure of a Roblet-server and how it hides the hardware
from a Roblet.

4.4 Platform Independence

There were several reasons to use Java to implement the concept of Roblet-
Technology: First of all, Java virtual machines and compilers are available for a
variety of different platforms from embedded system over PDAs to workstation
computers. All these different systems can be found in the field of robotics. Since
Java source code is compiled into bytecode, the programs can be compiled on
any of these systems and executed on another system without change. Besides,
Java provides a vast standard library available on all of these systems. The
standard libraries include techniques for network communication like RMI or
Jini used within the Roblet framework. These well-tested libraries ensure reliable

operation of the framework since they are used in millions of Internet applications
as well.

For the developer of a client application the view of the system is unified. He
does not need any knowledge about the heterogeneous network structure, the
differences between operating systems and so on. All he has to be familiar with
is Java and programming becomes like programming on one single machine.

In contrast, using other programming languages like C/C++ would require
the compilation of the source code for each target machine. Additional libraries,
e.g. CORBA, Ice or ACE, are required for network communication, which de-
mand additional knowledge of the programmer. Further on, these libraries may
sometimes be only available for a subset of systems present in a robotic scenario.
In future, the .NET framework from Microsoft may become an alternative to
Java since it also compiles source code into a bytecode first. Nonetheless, to
date .NET is only available for Windows platforms. The open-source projects
implementing .NET for other platforms do not provide full support yet.

Since Java has no real-time capabilities, programs written within a Roblet
are not intended to contain real-time control loops. There exists a specification
for a real-time java virtual machine but at present no implementation [16]. The
Roblet framework allows less skilled programmers to design and develop robotic
applications without in-depth knowledge about the used subsystems. First expe-
riences using the Roblet framework in lectures for graduate students have proved
this.

Nonetheless, the developers of modules still must have knowledge about spe-
cific technologies they want to use. For example, if we want to encapsulate a
C/C++-library that controls a hardware component the module developer will
have to write a wrapper for that library using the Java Native Interface (JNI).
That requires at least knowledge about C/C++ and Java. But, we think in fu-
ture the number of developers of client applications will be much greater than
that of module developers.

5 Roblet application

In this section we will give a short example how software components are used
in our Roblet-Framework. We present two Java classes. The first class illustrates
how Roblets are sent from the client application to a server. The second class
includes the Roblet code which is executed on the server side.

Our example explains how path planning capabilities are integrated into a
robotic application. We need the basic Roblet-server from the Roblet-Framework
and the path planning module for our robot TASER which is loaded when the
server starts running. For our client application we use the client library of the
Roblet-Framework. With the client library we send Roblets to the server.

Listing 1.1 shows the Java class Pathplanner that can be used for path plan-
ning on the client side. An object of this class is created with a string containing
the IP address and the port of the Roblet server with the path planning module.
Instead of the IP address a hostname can be used. We could start the server on

import genRob . genControl . c l i e n t . C l i en t ;
import genRob . genControl . c l i e n t . Server ;

public c lass Pathplanner
{

private f ina l Server s e r v e r ;

public Pathplanner (f ina l Cl i en t c l i e n t ,
f ina l St r ing serverName)

{
s e r v e r = c l i e n t . ge tSe rve r (serverName) ;

}

public Path plan (f ina l RobotPropert ies p rope r t i e s ,
f ina l Point s ta r t ,
f ina l Point end)

{
return (Path) s e r v e r . g e tS l o t () . run

(new PathPlanningRoblet (p rope r t i e s , s t a r t , end)) ;
}

}

Listing 1.1. This Java code example shows a class that can be used within
a client application to question a Roblet server which provides path planning
capabilities. Each time a path is requested a Roblet is send to the server. The
Roblet invokes a path planning algorithm on the server and returns the answer
to the client application. Some imports as well as appropriate exception handling
routines are left out for clarity.

the same machine where we develop the client application. If we use port 8000
the parameter string for the constructor is localhost:8000.

Each time the method plan() is called an instance of the class PathPlanning-
Roblet is created, marshaled and sent to a slot of the server. A slot is a sandbox
environment the server provides. This sandbox is a security layer that restricts
the access of the Roblet code to the underlying system. Listing 1.2 shows the
Java code of the class PathPlanningRoblet. A Roblet has to implement the
Java interface Roblet which only specifies the method execute(Robot robot).
In addition, we implement the interface Serializable since the object will be
serialised by the client library to send it over a network. On the server the
method execute() of the Roblet is called.

First, the Roblet code queries the server for path planning capabilities. The
path planning module of the server provides an implementation of the Unit
Planner which can be received by calling getUnit() on the Robot parameter. If
the path planning module was not loaded the return value of the getUnit() call
equals null. Then, we throw an exception that ends the Roblet. The presented
exception handling is very basic to keep the example simple.

If the Roblet gained access to the path planning unit it computes a path from
a start to a target point. Internally the path planning algorithm contacts the
map server to query the current information about the environment. The start
and target point were parameters of the constructor of the Roblet as well as some

import org . r ob l e t . Roblet ;

public c lass PathPlannerRoblet
implements Roblet , S e r i a l i z a b l e

{
private f ina l RobotPropert ies p r op e r t i e s ;
private f ina l Point s t a r t ;
private f ina l Point end ;

public PathPlanningRoblet (f ina l RobotPropert ies props ,
f ina l Point s ta r t ,
f ina l Point end)

{
this . p r op e r t i e s = props ;
this . s t a r t = s t a r t ;
this . end = end ;

}

public Object execute (Robot robot)
throws Exception

{
f ina l Planner planner

= (Planner) robot . getUnit (Planner . class) ;

i f (p lanner != null)
return planner . plan (p rope r t i e s , s t a r t , end) ;

else
throw new Exception (”Planner un i t not provided . ”) ;

}
}

Listing 1.2. The above class implements the Roblet interface. It is instanti-
ated on a client machine. The instance is serialized and send to a server which
calls the method execute(). The Roblet requests an implementation of the unit
Planner to calculate an appropriate path for the robot. Some imports as well
as appropriate exception handling routines are left out for clarity.

properties of the robot that will drive along the path. These member variables
were serialised when we sent the Roblet to the server. Therefore, they are now
usable on the server side of this distributed system. If we instantiate other objects
which are not present on the servers classpath, the server notifies the client
application. Then, the client application will provide the class descriptions to
the server.

The path from the start to the goal point is returned to the client application.
A Path object is return by the execute() method. The server sends this object
to the client. On the client side the path is returned as the result of the method
call run() on the Slot object.

How the path is computed depends on the properties of the robot and is out
of the scope of this simple example. If there is no path that the robot can drive
this is encapsulated in the Path object and can be queried.

This elementary example gives an insight into the Roblet-Framework. Writ-
ing two similar classes for the module that controls the mobile robot gives the
developer all that he needs to drive a robot safely in our office environment. On
the other side with only four small classes of Java code he creates a distributed
system that connects a client application with a robot, a path planning service
and a map database. The structure of such a system is visualised in figure 3.

Fig. 3. The flow chart visualises the structure of the distributed system described in
appendix 5. A roblet is sent by the client application to the path planner. The path-
planner contacts the server with the map data and receives the obstacles currently
stored in the map. After that the pathplanner calculates a path and sends the answer
back to the client application. Then, the client application could contact the mobile
robot to control its motions. The mobile robot uses the map for localisation purposes.
In addition, it sends information about newly detected obstacles to the map server.

A Roblet can establish more advanced network communication channels be-
tween the server and the client. It may start threads which open sockets or use
the Remote Method Invocation provided by Java’s standard libraries. A Roblet
ends when the method execute() finishes. If a thread is started by a Roblet

the thread will stay alive in the slot on the server until the thread ends. There-
fore, Roblets may only be needed to distribute code onto a number of different
servers when the application starts. These Roblets establish network connec-
tions to the client application. Roblets can send Roblets themselves to other
servers and thereby create complex distributed system structures. As a result,
each client application can create the communication network that is most ap-
propriate. One may choose to use XML data for communication, another may
compress all data before transmission and a third one may implement special
encryption algorithms to increase security.

6 Applications in Service Robotics

In this section we will describe two applications which emphasise the capabili-
ties of the proposed architecture. The applications show TASER when it accom-
plishes high-level tasks using a combination of its various components. TASER
is a multi-modal service robot located at the institute TAMS of the University
of Hamburg.

6.1 Interaction with the environment

The first example is a combination of localisation, planning of paths, object
manipulation and interaction where the robot is instructed to operate a light
switch. An operator chooses a light switch and commands the robot via speech
commands or an interactive dialogue to operate it. The application uses various
Roblet-servers shown in figure 1.

First, a Roblet on the Roblet-server for the speech IO informs the client
application that a light switch is to be operated by the robot. Then the position
of the light switch which is stored as a point of interest in a map is requested
from a map server. This Roblet-server encapsulates a database in which map
elements like obstacles and points of interest are stored. Multiple applications
can get, alter or add map elements of the database concurrently through this
Roblet-server. Then, a Roblet is sent to the path-planning server to get a path
to the light switch. The Roblet sends a new Roblet to the robot. There, the new
one drives the robot to a suitable position at the light switch, so that the arm can
reach the switch. The position of the arm relative to the switch is obtained form a
method call to the arm-operations library which is provided by the corresponding
Roblet-server. By solving the kinematic chain, the robot computes a position and
orientation suitable to operate the switch. After this position has been reached by
the robot arm, a Roblet tries to fine-position the manipulator in front of the light
switch with the hand camera by visual servoing. A separate Roblet-server for
the hand camera provides positioning errors calculated on the observed images.
When the arm is centred in front of the switch, an approach move is made by the
arm which is force controlled by sensor input of the BarrettHand. The sensors
of the hand are precise enough to stop the movement of the arm when the finger
touches the switch. In the final step the finger operates the switch. By using a

final movement of individual fingers, even switches like a double-switch can be
operated independently.

6.2 Grasping and Transportation

The second example is given by the task of object grasping and transport. The
user can advise the robot to fetch and carry objects lying on a table via an inter-
active dialogue. Each source of information about humans interacting with the
robot is encapsulated into its own Roblet-server and can thereby be employed
by Roblets. The robot plans its path to the object using the Roblet-server for
path-planning. After reaching a position suitable for object grasping, the robot
tries to identify the object by means of object recognition. In case of ambiguities
the interaction system is used with other Roblet-servers to resolve the situation.
For example, if the robot cannot distinguish objects on the table, it uses the ac-
tive vision system to recognise pointing gestures and gaze to resolve the position
the manipulator of the robot is intended to move to. Additionally, the user can
teach the robot new grasping motions and grasps [17].

When the object is successfully recognised, the robot selects a suitable grasp
for the object from an internal grasp database and executes it. After grasping the
object the robot moves the manipulator back into a safe transporting position.
If the transport position has influence on the security outline around the robot,
this outline is modified and a path to where the object is to be placed will be
calculated based on the new outline. When the final position has been reached
the robot will set down the grasped object and is available for new tasks again.

7 Conclusion

The presented software architecture enables the building of high-level applica-
tions for service robots using standard components for robots as well as spe-
cialised hard- or software. We proved is with the application of our framework
to the service robot TASER at the University of Hamburg. The software ar-
chitecture of the robot based on the Roblet-Technology is a powerful medium
for robots. The feature of running client programs as a distributed software of-
fers the possibility to run algorithms which need great computation power on
different machines which provide this power. The type of communication, e.g.
encrypted or compressed communication, can be changed during runtime. Each
client application can use its individual and appropriate type of communication.

The convenience of used proved in several lectures we gave where student
were able to build applications for our robot. Some of these application are used
in our daily routines when we work with the robot.

One next step will be to implement further software to improve the usability
of the robot system and create a toolbox of reusable program parts. In this step
the variety of the high-level functions like object grasping and multi-modal inter-
action will be increased. Furthermore, the possibilities of autonomous navigation
and map building will be extended.

Another step will be the port of some modules to other robot platforms. With
this we can show that the hardware abstraction provided by units is reliable,
when we do not need changes in the client applications.

Additionally we try to integrate components of other robotic software envi-
ronments like these of section 2. Our framework will help to connect the various
great efforts that are carried out in all these projects.

References

1. A. Orebäck and H.I. Christensen: Evaluation of Architectures for Mobile Robotics.
Autonomous Robots, vol.14(1), pp. 33-49, Springer, Netherlands, 2003.

2. J. Kramer and M. Scheutz: Development Environments for Autonomous Mobile
Robots: A Survey. Autonomous Robots, vol. 22(2), pp. 101-132, Springer, Nether-
lands, 2007.

3. Workshop on Robot Middleware towards Standards, International Conference on
Intelligent Robots and System (IROS’04), Sendai, Japan, 2004, http://www.is.

aist.go.jp/rt/events/20040928IROS.html.
4. Workshop on Principles and Practice of Software Development in Robotics, IEEE In-

ternational Conference on Robotics and Automation (ICRA’05), Barcelona, Spain,
2005.

5. Davide Brugali (ed.): Software engineering for experimental robotics, Springer tracts
in advanced robotics, Springer, Berlin, Germany, 2007.

6. H. Bruyninckx: Open robot control software: the OROCOS project, Procedings of
the IEEE 2001 International Conference on Robotics and Automation (ICRA’01),
Vol. 3, pp. 2523–2528, Seoul, Korea, 2001, http://www.orocos.org.

7. A. Brooks, T. Kaupp, A. Makarenko, A. Orebäck, S. Williams: Towards Component-
Based Robotics, Proceedings ot the 2005 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS’05), Alberta, Canada, 2005, http.//

orca-robotics.sourceforge.net.
8. M. Henning: A new approach to object-oriented middleware, Internet Computing,

Vol. 4, Nr. 1, pages 66–75, 2004.
9. B.P. Gerkey, R.T. Vaughn, K. Stoy, A. Howard, G.S. Sukhatme, M.J. Mataric: Most

Valuable Player: A Robot Device Server for Distributed Control, Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’01),
pages 1226–1231, Wailea, Hawaii, 2001.

10. C. Cote, D. Letourneau, F. Michaud, J.-M. Valin, Y. Brousseau, C. Raievsky,
M. Lemay, V. Tran: Code Reusability Tools for Programming Mobile Robots, Pro-
ceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS’04), pages 1820–1825, Senda, Japan, 2004.

11. D.C. Schmidt, D.F. Box and T. Suda: ADAPTIVE — A Dynamically Assembled
Protocol Transformation, Integration and eValuation Environment, Concurrency:
Practice and Experience, Vol. 5, Nr. 4, pp 269–286, 1993.

12. N. Karlsson, M.E. Munich, L. Goncalves, J. Ostrowski, E. Di Bernado, P. Pirja-
nian: Core Tehnologies for service Robotics, Proceedings of the 2004 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS’04), Senda, Japan,
2004.

13. Microsoft Robotics Studio: http://msdn.microsoft.com/robotics/
14. T. Scherer: A mobile service robot for automisation of sample taking and sample

management in a biotechnological pilot laboratory, University of Bielefeld, Ph.D
Thesis, 2005, http://bieson.ub.uni-bielefeld.de/volltexte/2005/775/.

15. D. Westhoff, H. Stanek, T. Scherer, J. Zhang, A. Knoll: A flexible framework for
task-oriented programming of service robots, Robotik 2004, VDI/VDE-Gesellschaft
Mess- und Automatisierungstechnik, VDI-Berichte (ISBN 3-18-091841-1), Munich,
Germany, 2004.

16. The Real-Time JavaTM Expert Group: The Real-Time Specification for Java
(RTSJ), 2002, http://rtsj.dev.java.net.

17. M. Hüser, T. Baier, J. Zhang: Learning of demonstrated Grasping Skills by stereo-
scopic tracking of human hand configuration, To Appear, IEEE International Con-
ference on Robotics and Automation, Orlando, Florida, May 2006.

