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Chapter 1

| ntroduction

That old sorcerer has vanished
And for once has gone away!
Spirits called by him, now banished,
My commands shall soon obey.
Every step and saying
That he used, I know,

And with spirits obeying
My arts I will show.

First verse of The Sorcerer’s Apprentice

by
Johann Wolfgang von Goethe (1779)".

The wish for good spirits is as old as the history of mankind. Already Goethe’s sorcerer’s ap-
prentice wanted to make use of his master’s spirits. In folktales of many cultures there are stories
of little helpers and servile spirits. In German folklore it is the ”"Heinzelmann” who together with
his comrades is said to finish other people’s work during the night when everybody else sleeps.

But not only in dreams these things were conceived. From the abacus of ancient times to the
first calculating machines of Wilhelm Schickard (1623) and modern computers, people have
always developed technical machines which make life easier. In the 1950’s, numerical controls
(NC) were introduced in manufacturing.? In 1954, Georg Devol filed a patent application for a
programmable manipulator. He realized this invention together with Joseph Engelberger in 1956.

Translation by Edwin Zeydel (1955), see appendix B.1
2(SPITERI, 1990), p. 3.
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Two years later in 1958, the robot manufacturer Unimation was incorporated with Engelberger
as its founder.® This is considered to be the beginning of modern robot applications in industry.

The word robot itself originated in the 1921 science fiction play R.U.R. (Rossum’s Universal
Robots) by the Czech author Karel Capek. The term is derived from the Czech word robota,
meaning “forced labour”.* According to this play, a robot is

”[...] any automatically operated machine that replaces human effort, though it
may not resemble human beings in appearance or perform functions in a humanlike
manner.[...]"

In the field of robotics, a vast amount of attention has been payed to stationary robotic manipu-
lators on the one side and to mobile robots on the other side. For a long time, these two branches
developed in parallel but not together. Robotic manipulators can be found in our industrial so-
ciety in a lot of places. One can come across them for example in the car industry for welding,
spray painting and the assembly of modules. They replace humans where heavy, tedious or dan-
gerous work must be performed. But still most of the applications that exist nowadays work with
fixed robot arms.

Mobile robotics however is even one step behind in industrial applications. In a lot of cases,
mobile robots are used as wheeled transport vehicles in warehouses. These constructions follow
paths marked by reflective tape, paint or buried wire. In modern approaches, more autonomous
systems are designed which for example permit to build up mobile delivery systems for hospi-
tals. Autonomous systems in these cases may react dynamically to changes in their environment
or may be easily able to switch between different tasks. The developers of those systems cre-
ated different methods like behaviour-based and bio-inspired approaches or more algorithmic
solution based on physical models to solve the emerging problems. Nowadays, the algorithmic
methods are preferred for industrial solutions because in every case the next step the robot takes
is predictable. People are not yet that familiar with robots in their environment to accept an
unpredictable move from the robot.

However, if a behaviour architecture is used it is difficult to perform a precise positioning of the
vehicle. In a lot of cases, a reasonable trade-off between flexible behaviour and precision is not
possible. Let’s assume a robot has to perform the task of moving from point 1 to point 2. This
is a simple example for a path planning problem. One standard solution is to calculate the exact
trajectory and make the robot follow it. If the robot comes across an obstacle on its journey it has
to find a path around it, which means it has to leave the original plan at least for a while. 1t might
be reasonable to use an avoid-obstacle behaviour for that. But who can decide when to switch
off a precise algorithm and when to use a behaviour or how to mix them? These questions are

3(SPITERI, 1990), pp. 5-6.
4lbid., p. 1.
SEncyclopadia Britannica
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focal points of current research interests. Even more problems occur when a mobile robot carries
a manipulator arm.

1.1 State of the art

In industry, a lot of different transport systems are established. Besides conveyors and fork lifts,
other automated transporters called AGVs (Automated Guided Vehicles) carry parts to different
stations in production halls. Figure 1.1 shows such a system by the manufacturer CORECON.
AGVs act automatically but not autonomous. Usually, they follow marked paths to find their
goal points with high accuracy. But this precision has to be paid with the lack of autonomy.

Figure 1.1: An automated guided vehicle®

If one looks for autonomous systems which can perform transportation tasks, very often,
behaviour-based systems can be found.” These systems allow a certain level of autonomy but
do not obtain a good positioning reliability. Figure 1.2 shows a service robot by ActivMedia
Robotics as an example. Such a service task does no require millimetre precision accuracy.

In fact, these systems need a reactive behaviour in the manner ”cup not above table yet — move
a bit forward”. In this case, results in the shape of numbers do not play a role for this kind of
positioning strategy.

6This photograph is courtesy of CORECON Automated Guided Vehicles.
"See (ARKIN, 1998) for detailed information about the behaviour-based approach.
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Figure 1.2: A service robot by the mobile robot manufacturer ActivMedia Robotics
delivers a cup.®

As a last example in this section, figure 1.3 shows another robot by ActivMedia Robotics. This
one is a model with manipulator arm and a payload of about 100 kg. Again, this system is
controlled with a behaviour-based approach. Especially, mobile robots, which are equipped with
a manipulator arm, are very rarely found as a commercial product. The robot by ActivMedia
Robotics as mentioned above and the mobile robot GenBase Il which is used in this work (see
chapter 2 for a detailed description) are only produced on order. They are mainly used in research
projects at universities. Still, a lot of questions have to be answered until they are suitable to fulfill
industrial or service tasks.

Figure 1.3: A mobile robot with arm and a high payload of about 100 kg by the
mobile robot manufacturer ActivMedia Robotics®

8These photographs are courtesy of ActivMedia Robotics.
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It should be mentioned that behaviour-based robotics is still at the beginning of its development.
Most of the systems are built for scientific purposes only. Last but not least, the above mentioned
disadvantage of low position reliability prevent these systems from being used in industry.

1.2 About this work

The diploma thesis deals with the navigation of a mobile robot in a laboratory environment. The
mobile platform GenBase Il has to perform a transportation task in the cell culture lab of the
Institute of Cell Culture Technology at the University of Bielefeld. For these purposes, a robust
operating control software with high positioning accuracy must be developed.

This task can be separated into seven main parts. Chapter 2 gives an overview on the robot’s
software and hardware. An introduction to Kalman filtering and extended Kalman filters is given
in chapter 3. This is needed to introduce a means for solving the self-localisation problem of the
mobile platform. Chapter 4 introduces a model for the robot which serves as part of the Kalman
filter’s world model. Together with the measurement model and the Kalman filter theory, the
self-localisation for the mobile robot is realized. Based on the preceding chapters, chapter 5
deals with the development of a suitable control system which gives the robot a method for an
accurate positioning. Chapter 6 describes methods for path planning in consideration of map,
robot and path representation. The path planning is based on the local position of the robot and
the desired goal point. The behaviour of the developed software is compared to those of the
original software in chapter 7. For this purpose, two experiments are carried out. The results
are illustrated and discussed. Based on the drawn conclusions, chapter 8 gives an outlook on the
work which still has to be done.

Figure 1.4 on the next page shows a photograph of the mobile platform GenBase Il by the
manufacturer genRob. A Mitsubishi PA-10 manipulator arm is mounted on top of the platform.
This is the hardware basis which is explained in the next chapter.
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Figure 1.4: The figure shows a photograph of the mobile platform GenBase Il with
a PA-10 manipulator arm mounted on top.



Chapter 2

Setup and Hardware

The present chapter gives an introduction to the scenario in which the mobile robot’s task is
embedded. The hardware and software setup is described in the corresponding sections. The
mobile robot is a GenBase Il which is manufactured by the company genRob.! The mobile
platform GenBase Il, equipped with the PA-10 manipulator arm, is to be used in a cell culture
laboratory, where it has to perform a complete sample management cycle. This means that
the robot grasps test tubes and transports them between different biotechnological devices. In
addition, the robot has to operate these devices with its manipulator arm.

A possible sequence might be the following: Firstly, the robot fetches an empty test tube from
the tube storage and brings it to the sample device. A sample is taken from the fermenter’s
content and filled into the test tube. The robot takes the full test tube and transports it to the
centrifuge where it is put into the rotor. The lid is closed and the centrifuge is started. After
the centrifugation has finished, the supernatant has to be pipetted and frozen in a freezer. Again,
the robot provides the transportation to the pipette and to the freezer. The rest of the sample is
brought to the cell counter (CEDEX) which determines the number of cells. During the whole
process, the robot has to operate all devices with its manipulator. That means that all buttons are
pressed and all lids are opened and closed by the robot autonomously.

During that operating sequence, the robot gets the basic commands from another computer. A
coarse overview of the software environment in the cell culture lab is shown in figure 2.1. The
robot is connected to the lab network via WLAN (IEEE 802.11b). The LAN is symbolized
with the red lines in figure 2.1. A database contains all necessary parameters and the positions
of all devices in the laboratory. Furthermore it contains robot scripts which include different
production sequences. The database runs on the same computer as the main program. The main
program controls the general procedures of the transport processes. Moreover, it operates the
sample device. Other devices which are connected via TCP/IP are the cell counter (CEDEX) and

1For more information about the company see the web page http://www.genrob.de.
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the Multi Fermenter Control System (MFCS). The robot itself contains software for the control
of the manipulator arm and for the control of the mobile platform. An image server software
runs on the mobile robot as an interface to the gripper’s micro head camera. The scope of the
different computers is indicated by the dashed lines in figure 2.1.

database main prog. (QNX) MFCS CEDEX

- parameters = g |
- positions main() n
- robot scripts 1 | '

robot control

manipulator
arm

mobile hand
platform camera

image server

Figure 2.1: Overview on the software environment of the mobile platform

2.1 The mobile platform GenBase |

The hardware design of the mobile platform GenBase 11 changed during the development process
because of further development of the navigation software. Figure 2.2 shows the hardware
configuration of the robot in delivery condition. The notable feature of this configuration is
the fact that it is equipped with two control computers. This has the following reasons. Since
the software for the PA-10 manipulator arm needs a Linux operating system to run and the
software for the mobile platform was programmed under Windows 2000, they can only be used
simultaneously when placed on two different computers. In figure 2.2, the Linux control PC
can be seen on the left-hand side of the diagram. It is connected with the PA-10 arm controller
via an ARCNET interface. Furthermore, the Linux PC guarantees the connection with the lab
network by means of a WLAN PCMCIA interface card (IEEE802.11b). Therefore, all work
instructions from the lab computer run through the Linux PC. The control PC on the right-hand
side of the picture is connected with the Linux PC via TCP/IP interface. The operating system
of the PC is Windows 2000 and hosts only genRob software for the control of the mobile unit.
According to its task, the Windows 2000 PC is linked to the measurement and drive hardware of
the mobile platform. This is done via a RS232 interface. A C167 microcontroller controls the
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left and right drive

PA-10 arm o
controller
TCP/IP =4 PA-10 v
1IEEE 802.11b, z Mitsubishi Heavy Industries o
11Mpit = g
A '8
- o | 3
RS232, controller
stationary control control 38400bit Cl167 1
PC PC PC o
connected wlith TCP/IP wilth _ :>13
to other Linux ‘IO/IOOMbi; Win 2000 RS422, 500000 %t
laboratory and “s | andsoft- [
equipment software ware R5422,b_ :
andtoa for the genControl 500000
database robot arm
PA-10

laser range finder
front and back

Figure 2.2: The hardware setup in delivery condition

left and right drive unit and receives the odometry’s data. In addition, the controller reads out
the gyrocompass. These data give information about the rotatory part of the robot’s movements.
The front and back laser range finder of the mobile platform are connected to the Windows 2000
control PC too and can be addressed via an RS422 interface. The goal of the diploma thesis is
the programming of a new precision navigation software. Besides the improvement in accuracy,
this development saves the Windows 2000 PC which then becomes redundant since the software
was developed in Linux. The current hardware setup is shown in figure 2.3.

The changes to the mobile robot’s software structure during this work is documented in figures
2.4 and 2.5. The first shows the delivery condition supplemented by the first part of the propri-
etary development, the path planner (marked in red). The software genControl, displayed on the
right-hand half of the diagram, runs on an independent Windows 2000 PC (see also figure 2.2).
This software solely takes move commands via TCP/IP interface and provides a self-localisation
on the basis of the robot’s odometry and its laser range finders. The control software runs on the
Linux computer. In the diagram, the control software is represented by the class CROBOT. It
can be divided into the software for the control of the manipulator arm (represented by the class
CARM) and into the software for the control of the mobile platform (represented by the class
CMOBILE). CMOBILE mainly contains two classes. The first one is the class CGENBASE
which encapsulates the connection via TCP/IP to the genControl software. The second one is the
path planner which calculates a path from the robot’s current position to any goal position. The
basis for that is a map of the robot’s environment. A description of the path planner can be found
in chapter 6. For each subgoal delivered by the path planner, CGENBASE sends single move
commands via its TCP/IP connection to the genControl software.
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left and right drive

cP-.

PA-10 arm @ """"
PA-10 controller |

A

Mitsubishi = h 4
Heavy Industries % >
g 5
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Figure 2.3: The current hardware setup

Figure 2.5 shows the current software setup which is associated with the hardware setup in
figure 2.3. On the left-hand side of the class CROBOT, the software for the control of the
manipulator arm (CARM) has remained the same as in figure 2.2. The class CMOBILE, for the
control of the mobile platform, still contains the path planner. To save the Windows 2000 PC, the
class CGENBASE has been changed as far as that it contains the direct communication with the
peripheral devices of the mobile platform. CMOTORFEEDER provides the connection with the
C167 drive controller. The two classes called CLASERFEEDER operate both laser range finders.
Furthermore, CGENBASE includes the localisation which is based on an extended Kalman filer
(see chapters 3 and 4) and a trajectory generator which supervises that the desired goal point is
reached.

The coarse procedure of a complete movement of the mobile robot to a new goal point looks as
follows: CGENBASE contains a move command which gets the new position and orientation
of the robot to be taken in. The desired translation and orientation is pushed to a stack. The
trajectory generator fetches the new position and orientation estimate from the localisation and
calculates a trajectory to the goal point based on that estimate and the current move command
from the stack. Based on that new trajectory, new drive commands are transmitted to the left and
right drive by CMOTORFEEDER. On the basis of these drive commands, the odometry and gyro
data and the data from the laser range finders, the position and orientation estimates are renewed
by the localisation. Again based on this, the trajectoy generator updates the trajectory to the goal
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point and so on. This iterative process is finished when the desired position and orientation has
been reached within certain tolerance margins.

CROBOT
CARM CMOBILE
control of the control of the

manipulator arm

mobile platform

TCP/IP

CGENBASE |«

10/100Mpbit

genControl

Ol
[l
<|Z
A 4
arm
controller

Figure 2.4: General overview of the software of the mobile platform in delivery con-

dition

CROBOT
CARM CMOBILE
control of the control of the
manipulator arm mobile platform
CGENBASE
localisation CMOTORFEEDER
RS232 | controller
[ | [cvoror f | “Cier
trajectory generation CLASERFEEDER
RS422
‘ one-dim. filter ‘ ‘ CLASER }‘
RS422

ARC
NET

arm
controller

laser }ange ﬁndef
front and back

Figure 2.5: Overview of the current software structure of the mobile platform
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Figure 2.6 includes technical drawings of the top and back views of the mobile platform. Details
on the castor and drive wheels are also given. The specified dimensions are used, among other
things, to set up a system model of the robot discussed in chapter 4.
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Figure 2.6: Technical drawings of the back and top view and details of the castor
and drive wheels



2.1. The mobile platform GenBase || 13

Figure 2.6 shows a technical drawing of the mobile platform in front, left side and right side
view. The positions of the laser range finders, the gyro, the manipulator arm and the drive lifters
are given.

B | R .
drive lifter R
i i laser

‘ range
_‘ } E/ finder

Tl

@ E ﬂ @ front view

"""""""""""""""""" @ right side view
| ‘ ‘ (i) left side view

O

ZH(€B =3

4 @1{
et

Figure 2.7: Technical drawings of the front, right and left side view
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2.2 The laser range finder on the mobile platform GenBase ||

The mobile robot platform GenBase Il uses two laser range finders for contact-free scans of the
robot’s environment. SICK laser range finders use infrared laser beams to measure the distance
to surrounding objects.

The principle of function is shown in figure 2.8. The sensor operates on the principle of reflex
light time measurement or time of flight. A laser light source S emits short light pulses. These
pulses are reflected by objects and thrown back to the scanner where the pulses are detected by
a receiver E. The time At between emitting a light pulse and receiving it is proportional to
the distance s between the object and the laser range finder. In the laser range finder there is a
rotating mirror which redirects the light pulses so that a semicircular area in front of the scanner
is covered. The mirror angle is detected. Thus, the directions and the distances of objects in front
of the laser range finder are determined.

= U

Figure 2.8: The SICK laser range finder’s principle of function

The light spot, which appears where the emitted light pulses encounter the surface of an obstacle,
has a certain diameter. This diameter depends on the range. The further the object is away from
the scanner the bigger the diameter of the light spot is. The following relation can be found in
the SICK manual

dopot ~ 13+ 0.0046 -+ [mm)]

The light spot’s diameter for a range of 0 m therefore is approximately 13 mm. For a range of
10 m the diameter is approximately 59 mm.
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Depending on the mode of operation, a light spot will be emitted every 0.25°, 0.5° or resp. 1°.
In the mode that is used on the mobile platform the scanning angle is 0.5°. This means that 361
measurements are executed for a scanning range of 180°. While the laser range finder’s mirror
rotates 180° all 361 values have to be taken. This can be done in approximately 26 ms. The
mirror’s direction of rotation can be seen in figure 2.9.

first value last value

Figure 2.9: The SICK laser range finder’s direction of rotation

Another property is the precision of measurements. The manufacturer specifies this as follows:
At a scanning angle of 180° and a resolution of 10 mm the typical precision lies in the range of
430 mm. This value is very important for the use of the laser range finder’s measurements in a
Kalman filter. The connection becomes clear in chapter 4. The physical dimensions of the SICK
laser range finder LMS200 are shown in figure 2.10.

O ™ @
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*® x
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156 .
T
@ @ front view
@ top view
@ side view

Figure 2.10: Technical drawing of the Sick laser range finder LMS200
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From figures 2.6 and 2.10, the installation height of the laser range finder can be determined.
This height is 225 mm. These measuring instruments therefore provide only a two-dimensional
picture of the world in reference to this installation position.

2.3 The gyrocompass on the mobile platform GenBase ||

The featured mobile system uses a gyrocompass which utilizes a one piece, micromachined, vi-
brating quartz tuning fork sensing element. A rotation about the gyrocompass’ rotational axis
leads to the appearance of a Coriolis force. This force causes a displacement of electric charges
resulting in a voltage which is proportional to the rate of rotation. The technical data and draw-
ings are provided in figure 2.11.

( ] ) A
i v
| N
,,,,,, ] v
N
N W, A
. 58.25 N
- Input voltage: +8 to +15 Vdc
- - y - Standard range: +/- 90°/sec
= L. +VDC - Full range output: +0.5 to +4.5 Vdc
o 2. Out + 9Q - Short term bias stability: ~ <0.05%/sec.
g ||| 3 Ref. 25V G 0 (100 sec at const. temp.)
o ;‘ ggD - Operating temperature: -25 to +70°C
< , 3 - Shock: 200g
58.25

Figure 2.11: Technical drawing of the BEI GyroChip Horizon



Chapter 3

State Estimation with Kalman Filters

The Navigation of a mobile robot platform is described in Bar-Shalom and Li (1993) as an
estimation problem.! The state of the platform on which diverse sensors may be located is
to be estimated. Here, the state means the values of different parameters of the mobile robot,
for example the position or the velocity. Then, estimation is to infer the state from indirect,
inaccurate and uncertain observations.

In the first section of this chapter, the Kalman filter (KF) which is an optimal estimator is intro-
duced. ”An optimal estimator is a computational algorithm that processes observations (meas-
urements) to yield an estimate of a variable of interest, that optimizes a certain criterion.”? The
Kalman filter is an estimator for the linear-quadratic-Gaussian problem which is the problem
of estimating the actual state of a linear system perturbed by Gaussian noise with the help of
measurements linearly related to the state, but corrupted by Gaussian white noise. ”The Kalman
filter is statistically optimal with respect to any quadratic function of estimation error.”3

Optimal estimations has its advantages and disadvantages which are described in Bar-Shalom
and Li (1993).# The utilization of the observations, the knowledge about the system and the
appropriate disturbances is an advantage, but the Kalman filter is sensitive to modeling errors
like any optimal technique. In view of this, a clear understanding of the assumptions is important
and, therefore, they are presented in detail in this chapter.

In the second section, the extended Kalman filter (EKF) is discussed. The extended Kalman filter
enhances the Kalman filter to non-linear systems and measurements that are non-linearly related
to the state. This technique provides a better fitting of the system model which is used by the
Kalman filter for the actual robot system.

L(BAR-SHALOM AND LI, 1993), p. 2.
?Ibid.

3(MOHINDER AND ANDREWS, 1993), p. 1.
4(BAR-SHALOM AND L1, 1993), p. 3.
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3.1 Kalman filters (KF)

In 1960, Rudolph E. Kalman published an article in which he described a mathematical method
for the linear filtering of discrete data.> This set of equations, which is known as the Kalman
filter, provides an efficient recursive solution for the least-squares method. It serves to estimate
the state of a system on the basis of measurements with superimposed random errors. Hence, the
Kalman filter provides an estimate for past, present and future system-states even if the precise
internal structure of the system in question is unknown.

3.1.1 Introduction - examples of three simple Kalman filters in comparison

Kalman filters are used in a lot of different areas of science and technology such as tracking of
objects in image processing or localisation of vehicles in mobile robotics. Based on three simple
examples from the field of robotics, it is shown how this filter is used and which results can be
expected from its application. The following examples deal solely with the self-localisation of a
robot.

In the self-localisation of a mobile robot, particular attention has to be paid to the following
problem: No measuring device is free of errors, i.e. the measurements float or are disturbed by
noise. Moreover, sensors with different levels of resolution and precision are used. The fusion
and processing of sensory data can be done by the Kalman filter. The examples are restricted
to the MonoRob scenario (see below) to make the introduction to Kalman filtering as clear as
possible. For the sake of simplicity, the Kalman filter will be considered as a ”black box” in this
introduction. A more complex system will be discussed in later sections.

The MonoRaob (see figure 3.1) is a one-dimensional robot which is able to measure not only its
own position but also the distances to different features in its environment. A feature can be a
characteristic or an object of the real world that can be obtained from the sensory data, e.g. the
corner of a wall or a reflective label for a laser range finder.

In the experimental set-up of this work, laser range finders with centimetre resolutions are
used for distance measurements. Position measurements, e.g. those gained by GPS (Global
Positioning System), have rather imprecise resolutions of roughly ten metres. As can be seen,
there are extremely different accuracies that can turn up in the same system.

For the simulation with the MonoRob a variance of 10 units is assumed for the accuracy of the
position measurement. The measurement of the distance varies by one unit. The robot moves
with a constant velocity for a time period of 100 units from position zero to position 100. The
position, velocity and measurements of the simulation are shown in figure 3.2. The features are

S(KALMAN, 1960), pp. 35-45.
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distance measurement

EE reflector reflector IE

|

I

feature 1 robot position feature 2

Figure 3.1: MonoRob - One dimensional robot with distance measurement to
known features

situated at positions 20, 40, 60 and 80. The robot moves on a predetermined trajectory. Effects
like slippage are neglected in this simulation for the sake of simplicity.

It needs to be discussed what a Kalman filter does with these data. At first, a model for the whole
system must be created as a prerequisite so that the Kalman filter can operate.

The first model does not know any features. This system is, like all others that follow, a linear
one. This means that the next state of the system ;. ; can be calculated by a linear transformation
from the present state z;.

Tip1 = F&y + 0,

F is a transformation matrix and «@; is the noise at time ¢. In the first simple model, the system-
state vector is two-dimensional, i.e it is based on the present position and the velocity of the

robot.
. position(t)
Ty = .
velocity(t)

The transformation into the next state results from the following equation:
position(t + 1) = position(t) + At - velocity(t)

Applied to the system-state, the equation looks as follows:
Tiy1 = 0 1 Tt w

The vector  stands for the noise of the process. The measured values can be described by the
following equation:
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real position and measurement data
120 T T T T T

100

80F

60

40

20

position/distance

-20
NaeY % X X x 5K x
—— real vehicle position e <X X% .

=40 | — real robot velocity 3SR X% X<

- measurement: vehicle position X 060X

X measurement: feature 1 X X>3<><><X XXXXX
-60-| x measurement: feature 2 XX X

% measurement: feature 3 XX

__measurement: feature 4 % 0
-80 I I I ! ! ! ! ! ! X

0 10 20 30 40 50 60 70 80 90 100
time

Figure 3.2: MonoRob - Simulation of the movement and measurement data

As mentioned above, the vector ¥, is a noise term, which in this case affects the measurement of
the position and therefore results in the corresponding inaccuracy. In this case, Z; and v; are still
one-dimensional. Starting from the initial state, this description of the system is utilized by the
Kalman filter for the estimation of the state vector ;. The output of the Kalman filter, given the
above system, is shown in figure 3.3.

The result, however, is still not satisfactory and seems to be similar to a moving average. Because
of that, the original model is extended by the distance measurement of the robot in relation to the
features. Firstly, the state vector must be supplemented by additional data.

Now two features are added to the experimental design so that the distances between the robot
and these features can be determined.
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Kalman filter with position measurement

T T T T T T T
Kalman filter: vehicle position
100 | — Kalman filter: velocity h
80 A
60 - T
c
e
‘@
o
o
40 T
20 T
0 WJW\/\/\/\,\J
1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
time

Figure 3.3: MonoRob - Result of the Kalman filter with measurement of the position

The new state vector looks as follows:

position(t)

7 velocity(t)
Y7 positionFeaturel
position Feature2

Considering the features are fixed, i.e. they do not change their positions, the equation for the
transformation turns into:

Tiy1 —

SO O =
O O =
O~ OO
—_— o O O
1
1
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Kalman filter with three measurements
T T T T T T T

Kalman filter: vehicle position
100 | — Kalman filter: feature 1 =
—— Kalman filter: feature 2
—— Kalman filter: velocity

80 T

60 - N

position

4OMWWJ

ZOM\/\/—\/\WW\J\/

0 10 20 30 40 50 60 70 80 90 100
time

Figure 3.4. MonoRob - Result of the Kalman filter with measurements of the robot’s
position and its distances from the two features

The new measurement vector z; thus becomes:

- Ty + T

K\

|
— =
S O O
O = O
= o O

Figure 3.4 shows the output of the Kalman filter, which works with the data from the first ex-
ample but is extended by data measuring the robot’s distance to the features that are situated at
positions 20 and 40.

One can clearly see that in this case the estimate of the position and velocity correspond much
better to the simulated movement. If the number of distance measurements is increased by an-
other two features, the result is further improved (figure 3.5). It is easier to perceive the improve-
ment in figure 3.6.
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Kalman filter with 5 measurements

Kalman filter: vehicle position
Kalman filter: feature 1
Kalman filter: feature 2
Kalman filter: feature 3

100

Kalman filter: feature 4
Kalman filter: velocity

position

time

70 80 90

100

Figure 3.5: MonoRob - Result of the Kalman filter with measurements of the robot’s

position and its distances from the four features
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real and estimated robot position
100 T T T T T
— real robot position
estimated position (0 features)
—— estimated position (2 features)
sol L— estimated position (4 features) /]
60 T
S ]
“% 40 - -
o
o
20 B
0 -
_20 | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100
time

Figure 3.6: MonoRob - Comparison between the real position and three different
Kalman filter estimates
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mean square error between real and estimated robot position
50 T T T T T T T

[ A mean square error |
45| .
A

40t .

mean square error
N w
(6] o
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1 1
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o
T
|

15+ B
10+ B
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sl A i
A
A
A A A A A A
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0 1 2 3 4 5 6 7 8 9 10

number of features

Figure 3.7: MonoRob - Mean square error between the estimate of the position and
the real position

Increasing the number of features reduces the mean square error between the estimation and the
real system-state. This is exemplary shown for the robot position in figure 3.7.

These short examples show that a Kalman filter can combine measurements of different kinds
and quality and that it is able to estimate the current system-state. Until now, the Kalman filter
has just been treated as a black box which receives data and outputs the system-state. In the
following sections, it will be explained what the internal design of the Kalman filter looks like
and how precise its results can be.
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3.1.2 Modelling of discrete linear systems

Regarding the Kalman filter as a black box is based on the assumption of a linear world model.
It is possible to have a time-continuous or a time-discrete system. Now the latter case is looked
at more closely.

A world model described by a time-discrete linear system is given by a state vector z;,

Z1
T2

&
|

In ‘

representing all the required internal parameters, and a system equation

ft+1 == F.’Zt + B’L_I:t + U_jt (31)

realizing the projection of the system-state from time step ¢ to time step ¢ + 1. The matrix F' is
called the system matrix. ; is the control input of the system with matrix B transforming it to
influence the system-state. In the following, the addend B, is dropped since this does not result
in a loss of generality. The noise that affects the system at each time step is represented by the
random variable ;.

All measurements of the system are combined in the measurement vector Z;:

21
Zt =
Zm

t

This vector is given as the result of the equation of the measurement

Zy = HT; + 0, (3.2)

where each value of the measurement vector is based on a linear combination of the current
system-state and superimposed noise.

For a better understanding, some assumptions on the noise variables w; and %;, used in the
Kalman filter, are needed. j; represents the statistical part of the system and @; the statisti-
cal part of the measurement. They are assumed to be white uncorrelated noise and can there-
fore be described by Gaussian distributions with zero-mean A (0, Q) where Q = E{ww] } =
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diag(q: ... q,) and N (0, R) where R = E{v,5f'} = diag(r;...r»). Q and R are positive
semi-definite. The system noise and measuring error are not correlated, which means

E{wtﬁir} =0

3.1.3 Kalman equation

The iterative cycle of the Kalman filtering procedure consists of two main steps. The first step
consists of predicting the current state from the estimation of the last state. This prediction is
called the a priori estimation z; of the system-state and is calculated according to the system
equation (3.1), in which the last estimate z,_, substitutes for Z; ;:

&7 = Fif (3.3)

The noise term is set to zero. Because of its zero-mean characteristic, this is the most likely
assumption for the prediction above.

The second main step in the Kalman filtering procedure is the a posteriori assumption of the
system-state. This output of the filter is the correction of the predicted system-state due to
knowledge of the current measurement. It derives from the weighted sum of the system’s a
priori estimation and the measurement vector:

it = K,i7 + K2, (3.4)
K, and K, are weighting matrices which are unknown at this point of the derivation. With
equation (3.2) substituted into equation (3.4), this leads to
i = K37 + K,(HZ, + %)
= K,i; + K,HZ, + K7, (3.5)

Now two estimation errors (a priori and a posteriori) can be defined:
T, =2, — T (3.6)
=2 -7 (3.7)

Using equations (3.6) and (3.7) in the weighted sum for the a posteriori estimation, equation (3.5)
delivers:

7+ if = K,(%, + #7) + K,HT, + K7,
= K, % + K,#, + K,HZ, + K7,
it = K,#, + K,HZ, — &, + K,%; + K7,
:{&+mﬂ—ﬂ@+mg+m@
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The Kalman filter should decrease the a posteriori error Z;~ between the real and estimated state.
In order to achieve this, the expected value is set to zero

E{#f}=0=E{# -7}
:E{[K;JthH—ﬂ] :Et} +E{K£z~c[}—|—E{Kﬁt} (3.8)
:Oa;srumed ;6

Consequently, the first term of the sum of equation (3.8) must be set to zero

[K; + K,H — 11] Z=0 IV,
=K, =1-KH (3.9)
Simple insertion of (3.9) into the original a posteriori estimation leads to
2 =1 - K,H) 2 + K,z

and the linear recursive estimation function (Kalman equation)

g =2, + K, |7 — H&/]| (3.10)
N, e’

innovation

With equations (3.3) and (3.10) a priori and a posteriori estimations of the system-state are
possible on condition that &, is known. K is called the Kalman matrix or Kalman gain. Because
Hz; is a prediction of the measurement, equation (3.10) interprets £, as the weighted sum of
the state prediction plus the error between the measurement and its estimate.

3.1.4 Kalman matrix

In this section, the Kalman matrix K, is determined.® This matrix provides the best weight for
the innovation (see equation (3.10)).

The Kalman matrix should minimize the mean square error between the real and the estimated

system-state
e=B{(@ - (@ -2}

The minimization of e with the help of K is equivalent to the minimization of the trace of P;",
i.e. the covariance matrix of the a posteriori estimation error:

Pf = E{(z-a}) (@ -4)"} (3.11)

6Compare with (KUMMERT, 2001).
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With the Kalman equation (3.10), equation (3.11) needs to be rewritten as follows:

pr=E{(5 4, —K[5-Hi]) (@& - K [a-H,])"}

Inserting the measurement model equation (3.2) leads to

P

Ty — & — K [HZ, + 0, — Hiy|) (20— 3, — K, [Hft—i_ﬁt_Hit_])T}

7, — &, — K,HE, — K0, + K,H3; ) (7, — &, — K,HE, — K0, + KtHi;)T}

(
— (K (7 — 37)" (1= KH)" + (Kidi) (K.)" }
(@ —47)" (1— KtH)T} _E {(11 — K,H) (%, — &) (Ktﬁt)T}

~B{(K) (@ - a7)" (- KH)" Y+ B () ()T )

P =E{(z %) (@ -&)"} (3.12)

further simplification is possible:

Pf = (1-KH)F (1-KH) - (1-KHE{(@ )7} K/

~-
¥ is white noise =F{-}=0

_K,E {Ut (& — @;)T} (1 — K,H)" +K, E {57} KT
N ,, ———

U is white nage =E{-}=0 R
= (1-KH)P  (1-KH)" + K,RK} (3.13)

Now the solution for the minimizing problem min(trace(P,")) must be found. An approach by
means of calculus of variations can be applied which results in the assumption: The optimal
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matrix K, is known and therefore K, < K, + 6 K,."

trace [(]1 - K,H)P (1-K,H)" + K,RKT ]

< trace [(]1 — (K; + 0K,) H) P (1 — (K; + 6K,) H)" + (K; + 0K,;) R (K, + 0K,)"

trace [(]1 - K,H)P, 1-K,H)" + K,;RK] ]
——

drops out

< trace [(11 - K,H - 6K,H) P (1 - K,H — 6K,H)" + K,RKT
N——
drops out

+K,ROKT + §K,RK] + 6K, ROK ]

trace [(11 — K.H)P (1 - K,H)"

drops out

< trace [(11 —- KH)P; (1— K,H)" —(1 - K,H) P, 6K,H)" — (§K,H) P, (1 — K,H)"

drops out

+ (6K,H) P (K,H)" + K,R6K + 6K,RK} + §K,ROK}

0 < trace [— (1 - K,H)P HT6KT —6K,HP (1 — K,H)" + 6K,HP, HT6K[

see appendix AI equation (A.1)
+ K,ROK] +6K,RK] + 6KtR6KtT]
N——
see appendix A.1, equation (A.2)
0 < trace [—5KtHPt_ (1-K,H)" - §K,HP” (1 — K;H)" + 6K,RK[

+6K,RK] + 0K,HP, H"§K] + §K;RSK] ]

0 < trace [—Q(SKtHPt_ (1 - KH)" + 26K, RK] + 0K, HP_ HT6KT + 6 K,R6K} (3.14)

The last two terms of (3.14) are quadratic expressions and thus greater than zero. | follows from

"For transformation rules, see appendix A.1.



3.1. Kalman filters (KF) 31

this that the trace of the first two summands must be greater than zero as well.
0 = trace {—%KtHPt 1-KH" + 26KtRKtT]

— _2trace [51@ <HP; (1 - K.H)" - RK” )]

As assumed in the calculus of variations, 6 K; > 0 is valid. If the trace is expected to be zero, the
second factor in the square brackets has to be zero as well.

0=HP (1- KH)" - RK} (3.15)
= HP; — HP, H'K}! — RKT
HP H"K! + RK] = HP]
(HP, H" + R) K] = HP,
K, (HP H" +R)" = HP]
It follows from (HP; H” + R)" = (HP H” + R) that
K,— HP (HP, H" + R)"

This is known as the gain equation of the Kalman filter:

K,= P HT (HP, HT + R)™' (3.16)

3.1.5 Covariance matrix of the a posteriori estimation

As seen in the derivation of the Kalman filter’s gain equation, the covariance of the estimation
error equation (3.11) can be calculated on the basis of the filter gain, the measurement model,
the measurement noise covariance matrix and the covariance matrix of the a priori estimation.
Equation (3.13) can be used for this, but it can be simplified if it is rewritten as

P} =P — P (KH) - K,HP + K,HP (K,H)' +K,RK/ (3.17)
and the transformation of (3.15) modified as follows:

0=HP  — HPH'K” — RKT
HP, = HP, H'KT + RKT | pre-multiplication with K,
K,HP; = K,HP, H'K! + K,RK} (3.18)
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The right-hand side of equation (3.18) can be found in (3.17), where it is replaced by the left-hand
side of equation (3.18). Equation (3.17) then collapses, and this leads to:

P} =P — P (KH)"
—p (]1 - (KtH)T)

This equation is called the updated state covariance

Pt =(1-KH)P (3.19)

Bar-Shalom and Li (1993) state "that the covariance of the state is the same as the covariance of
the estimation error... [as] a consequence of the fact that the estimate is the conditional mean”8.

3.1.6 Covariance matrix of the a priori estimation

The covariance matrix P,  of the a priori estimation Z; is still not known. The system equation
(equation (3.1)) and the a priori estimation for the system-state (equation (3.3)) are inserted into
the general formulation of the a priori estimation for the covariance of the state vector (equation
(3.12)):

w1 = E{(F&,+ @, — Fi}) (F& + @, Fa})" |

5 — ) FT+ F (& - af) @] +@, (5 - 3})" F" + @] }

+ B{F (&, - 3}) @/} + E{ @ (7 - &})" F"}

see left

Wy is white noise = FE{-}=0
+ B {@a!)
~——
Q

Since white noise is uncorrelated by definition, both summands in the middle of the equation
above can be dropped. This leads to the following description of the a priori estimation for the
covariance matrix:

iy = FPFFT +Q (3.20)

8(BAR-SHALOM AND L1, 1993), p. 210.
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This covariance matrix is often called state prediction covariance or predicted state co-
variance.

3.1.7 Block diagram of the Kalman filter

The elements of the Kalman filter that have been derived can be represented in a block diagram
(figure 3.8).

o)
j
e F Ut

Figure 3.8: Block diagram of the Kalman filter

3.1.8 How to use the Kalman filter
The procedure of applying the Kalman filter consists of the following steps:

1. Definition of the world model = F
2. Definition of the measurement model = H

3. The system and the measurement contain statistical parts = @, and ¥, can be defined as
white noise, i.e. the covariance matrices  and R can have the following shape:

00 - 1

With the knowledge of the system and measurement variances, these can be set as the
diagonal elements of ) and R since these are appropriate choices. This leads to a better
performance of the Kalman filter. °

9See web page of (WELCH AND BISHOP, 2000), chapter 1, section Filter Parameters and Tuning for a short
discussion and chapter 3 section The Smulations for examples.
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leaPO xtiapti

Y

/ Update with measured values \ / \

Prediction

1. Kalman matrix (equation (3.16)) 1. projection of the system-

K,= P H” (HP;HT + R)_l state (equation (3.3))
A — — FA+
2. a posteriori estimate for the T = S

system-state using the measure-

ments , (equation (3.10)) 2. projection of the covari-

ance matrix of the a priori

&f =i, + K, (27, _ Hi;) estimation error (equation
(3.20))
3. covariance matrix of the a poste- -
P Pt+1:FPt+FT+Q

riori estimate (equation (3.19))

Y P =(1-KH)P AN y

A
“t pt
T, P

Figure 3.9: Kalman filter - sequence of operations

4. Aninitial estimate for 2, and P, has to be made

5. Iteration as shown in figure 3.9

3.2 Extended Kalman Filter (EKF)

As pointed out in section 3.1, the use of a Kalman filter for state estimation is appropriate for
linear systems. Non-linear systems have to be linearized, or an extended version of the Kalman
filter has to be applied. The fundamental idea of extending the standard Kalman filter in order
to deal with non-linear systems was first proposed by Stanley F. Schmidt.X® In the following
sections, it is presented how this extended version is derived from the original Kalman filter.

10(ScHMIDT, 1970), (SCHMIDT, 1976).
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3.2.1 Modelling of discrete non-linear systems

The foundation of the standard Kalman filter is the modeling of a linear system and its measure-
ments with the equations (3.1) and (3.2):

-ft—kl = Fft + C’ljt +’U—jt

2;5 - Hft + Ut
As in section 3.1, 7; denotes the current system-state and Z; the measurement at time ¢.

Hence a non-linear system and measurement model can be described in a similar fashion:

ft—{—l = f(ftvﬁta _’t) (321)
5 = h(Z,7) (3.22)

In this case, the non-linear function f in equation (3.21) relates the system-state of the previous
time step to the current time step. ; is the controller input and «@; is a random zero-mean variable
representing the process noise. In the measurement equation (3.22) the non-linear function h
relates the current system-state z; to the measurement z;. The random variable v; represents the
noise of the measurement process. It also has zero mean.

3.2.2 Kalman equation

In order to derive the Kalman equation for the standard Kalman filter, the first step is to get an a
priori estimation of the system state. In analogy to equation (3.3)

& = Fi/ |
the system-state estimation z, for the non-linear system is:
& = f(&1,,10) (3.23)

As in the linear case, the value of the system noise ), is unknown at time ¢ and therefore is
approximated with zero because of its zero mean.

For the extended Kalman filter, another estimation of the approximation of the measurement at
time step ¢ is made. In the standard Kalman filter, this estimation is the second summand in the
innovation term (see equation (3.10)). The estimation in a linear system is

5, = Hiy,

and becomes
2 = h(%,_4,0) (3.24)
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for the non-linear system. Similarly to the a priori system-state estimation, a zero-mean charac-
teristic of the noise of the non-linear system is assumed.

With the help of equation (3.23) a Taylor series for the non-linear system equation (3.21) is
derivable for the evaluation point ¥ = %, @ = 4; and @ = 0:

i"t+1 = f (-i':_pﬁtao)
0 L 0 L 0 .
—i—a—;f_jj-(xt—xt)—k B_Ji . (ut_ut)+a_£ . (w; — 0)

+ ... (higher order terms)

If equation (3.23) is applied to the first summand of the Taylor series and the higher order terms
are left out, the value for z; ., can be approximated as follows:

= o= Jacobian = A Jacobian =
T~ +F (T -2+ W, - Wy (3.25)
with
[ ofh 8 ... Of1
o1 Ozo OTn
5 o Ok ... Ob
FJacobian _ _f ozry  Oza Oz,
t - — . . .
oz F=i} : : oo
Ofn  Ofn ., Ofn
L Oz1  Ozo Ozn j‘:ij‘
and
f Ofi OfH .. Ofr
Owr  Ows Own,
5 b Of ... op
WJacobian _ _f _ w1 Owa Own,
t i I : :
w=0 : : .o
Ofn  Ofn ., Ofn
L Qw1  Ows Own, =0

In the same way, a Taylor series for the measurement equation (3.22) is generated for the evalu-
ation point © = z, and ¥ = 0:

Oh

oh
Z=h(%,,0) + 37

(T —2,) + 9 (7 —0) + ... (higher order terms)

=0

- a—
=

1

Using equation (3.24) and again leaving out the higher order terms leads to an approximation of
A

2—:; ~ 5+ Hiacoblan . (fi"t _ i't ) + V;Jacoblan . 'Ut (3.26)
with

a 0, 102

HJacobian _ _ Oz1 Oz Oxn
t - a—» - .
Tlg=z- : .o
-t

Ohy,  Ohyy .. Ohp

oz1 Oz2 Oxp F=%,
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and

ov1 Ovag Ovm
oh Ohy  Ohy  Ohg
}/Jacobian _ =% _ Ovi  Ovg Ovm

t - — - . . .

ov =0 : : Lo
Ohm  Ohm  ,  Ohm

v Ova Ovm =0

With the help of equations (3.25) and (3.26), both the prediction error

€, = Ty — iy (3.27)
and the innovation

& = % — 4 (3.28)

can be formulated. After re-indexing equation (3.25) and inserting it into the prediction error
equation (3.27), it is possible to give the approximate value

€z, ~ CIA,'; + FtJiclobian . (ftfl _ i';,tl) + VVtJiclobian . w’tfl _ i‘;
— EJicloblan . (ft—l _ ‘%2—71) + Wt.]icloblan 'U—jt—l
= éj‘t
It follows from inserting equation (3.26) into the measurement residue equation (3.28) that
€ ~ f’:'t + Hgacobian . (J—;»t o j:t_) + V;Jacobian . 'Ut o 2t
— Ht.]acobian . (ft o :i,t—) + V;Jacobian . Ut

Jacobian Jacobian =
Ht €z, T V;f “ Ut

~
= Cgt

If the two noise terms are re-defined as

— Jacobian
Ur Wt * Wy
= Jacobian =
Y+ = Ht - U

the error estimations are re-written as
és, = FPO™™- (ft—l - i’j_l) + 7 (3.29)
gi‘t — Hi]acoblan . éi"t + ’7t (3.30)

Looking at the comparison in table 3.1, Welch” and Bishop’s (2000) idea of a [...] (hypothetical)
Kalman filter to estimate the prediction error [...]"* &z, is applied to equations (3.29) and (3.30).

11See web page of (WELCH AND BisHOP, 2000), chapter 2, section The Computational Origins of the Filter.
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system description of

. rediction error
the Kalman filter P

i1 = FiZy + Wy €z, = FtJicloman : (ft—l - j;ftl) + 7

measurement description of

g measurement residue
the Kalman filter

_ Jacobian | 2
= Ht

Zy = Hixy + v, €3, c€z T Ve

Table 3.1: Comparison between the Kalman filter system and measurement de-
scriptions and the prediction error and innovation estimations

Such an estimate is used [...] to obtain the a posteriori state estimate for the original non-linear

process [...]"*2. The a posteriori state estimate which is gained in this process is
& =2 +é;, (3.31)

At this point, a closer look at the (hypothetical) Kalman filter is sensible. This Kalman filter
requires the following assumption about the probability distributions. The random variables ¢z, ,
n; and , are approximated as normally distributed. Yet in practice they are not because of the
respective non-linear transformations of the original random variables. ”The EKF is simply an
ad hoc state estimator that only approximates the optimality of Bayes’ rule by linearization.”*3
Hence the assumptions’ formal descriptions are:

p(z) ~ N(0,E{é&éL})
p(m) ~ N (E{m},E{nmn })
ply) ~ N(E {%},E{%%;[})
where
E{n} = 0
E {ntn?} = FE {WtJacobian Ty - (WtJacobian ) wt)T}
= F {WtJaCObia” AT (WtJacobian)T}
= b g {U‘jt . @'g’} ) (Wgacobian)T
= Wt‘]aCObianQ (Wt\]acobian)T

12See web page of (WELCH AND BisHOP, 2000), chapter 2, section The Computational Origins of the Filter.
131pid., chapter 2, section The Process to be Estimated.
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and
E{vw} =0
E {'ytfytT} = FE {V;Jambian Ty (Vt-Jacobian ) Ut)T}
= F {V;Jacobian - U - {;’? . (V;Jacobian)T}
= e g {5, - o)} (VtJacobian)T
= V;Jacobian R (VtJacobian)T

i~

Some variations of the extended Kalman filter have been developed by Julier and Uhlmann
(1996), preserving the normal distributions throughout the non-linear transformations.4

To sum up, the Kalman equation for the (hypothetical) Kalman filter is
gggt = O-l-Kt(th—O)
- Ktezt

In conjunction with equation (3.31), this leads to the following Kalman equation for the non-
linear system:

I = & 4 K,
= I + K (Z— %)
= & + K, (% —h(2,0)) (3.32)

With this result, the (hypothetical) Kalman filter is not really needed, and equation (3.32), which
is similar to the Kalman equation for the linear system (3.10), is utilized for state estimation.

3.2.3 How to use the extended Kalman filter

As in section 3.1.8, the same sequence for filtering is used for the extended Kalman filter. In
figure 3.10 this procedure is shown with the appropriate substitutions for the error covariance
matrices. The raised index Jacobian is abbreviated to J in order to make the figure easier to
read.

Bar-Shalom and Li (1993)*° present a flowchart which explains the operation sequence of one
cycle of the extended Kalman filter in a more detailed way. Figure 3.11 shows this flowchart
adapted to the notation used so far. There are time-variant system and measurement functions
fi+ and h; used, which require that the Jacobians need to be calculated for each time step. Some
previously introduced calculations are fragmented to facilitate the understanding of the flowchart.

14(JULIER AND UHLMANN, 1996).
15(BAR-SHALOM AND LI, 1993), p. 387.
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l"EOaPO xtapt
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@ N

Update with measured values

1. Kalman matrix
K=y (87" (1 Py (m7) vy R(VY))

2. a posteriori estimate for the system-
state using the measurements Zz;

&f =87 +K:(Zi—h(270))

3. covariance matrix of the a posteriori
estimate

P =(1-K.H] )P

\ /

4 N

Prediction

1. projection of the system-
state
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I
S+ Dt
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Figure 3.10: Extended Kalman filter - sequence of operations
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If put to use, the formulations which have been introduced for the standard and extended Kalman
filter can cause numerical problems. For example, due to rounding errors, the properties of a
covariance matrix, namely symmetry and positive definiteness, can be lost. Different implemen-
tations and variants of the Kalman filter such as information filter, sequential updating or square
root filtering can be used to avoid or at least reduce numerical problems.'® One example is the
covariance update equation (3.19), which can be written in the following algebraical equivalent
form

i i - i ian1T - ian\ T
Pt+ — []l _ WtJacoblan Hi]acoblan} Pt [1 _ WtJacoblan Hiacoblan] + WtJacoblan R, (WtJacoblan)

This form is called the Joseph form covariance update. It is computationally more expensive
but less sensitive to rounding errors. "With the proper implementation of the products of three
matrices it will preserve symmetry. Furthermore, since the only place it has a subtraction is in
the term 1 — W H, which appears ’squared’, this form of the covariance update has the property
of preserving the positive definiteness of the resulting updated covariance.”!’ In the software
implementation which will be explained later in this chapter, this form of covariance update is
used.

16(BAR-SHALOM AND L1, 1993), chapter 7.
Tbid., p. 294.
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Figure 3.11: Flowchart of the extended Kalman filter (one cycle)



Chapter 4

Salf-L ocalisation of a M obile Robot

After the Kalman filter has been suggested as a means of state estimation for a dynamic system
in the previous chapter, it will now be shown how the Kalman filter can be used for the self-
localisation of a mobile robot. This is done with respect to the mobile robot platform GenBase 11
which is used for the experiments of this work. By analyzing the kinematics?, it will be shown
that the GenBase 1l platform is a mobile robot with two degrees of freedom (DOF).? Because
of this, the results of this chapter can be easily transferred to any mobile robot with the same
kinematics.

In section 4.1 a general model of a robot with two degrees of freedom will be presented. This
includes considerations about the coordinate transformations of the mobile robot platform and
an in detail explanation about the robot kinematics. In section 4.2 a system model for the Gen-
Base Il robot is set up with the obtained knowledge about the kinematics of a robot with two
degrees of freedom. The derived system is used in conjunction with the extended Kalman filter
to solve the self-localisation problem. The last section of this chapter describes the software
which implements the developed self-localisation system.

4.1 Model of a mobile robot with two degrees of freedom
(DOF)

This section is divided into two parts. Firstly, a closer look is taken on the coordinate transforma-
tions of the mobile robot GenBase I1. The knowledge about the transformations allows to convert

In general, kinematics is the science of objects in motion, including aspects of position, velocity and acceler-
ation. This includes, in particular, all of the robot’s geometric and time-based physical properties.” (ARKIN, 1998),
p. 89.

2See section 4.1.2 for details on the term degrees of freedom.
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coordinates from one coordinate system into those of another coordinate system, e.g. from the
laser range finder’s coordinate system to the robot’s base coordinate system. The information is
used to provide suitable measurements for the extended Kalman filter and to tell the manipulator
on the mobile platform where its base is in world coordinates. Secondly, a kinematic model for
mobile robot’s with two degrees of freedom is discussed.

4.1.1 The coordinate transformations of the mobile robot platform Gen-
Basell

In 1987, Muir and Neuman formulated the kinematic equations of motion for a variety of wheeled
mobile robots.® Their kinematic models depend heavily upon the concepts of manipulator kine-
matics. There are differences between the kinematics of a mobile robot and a manipulator arm
which are stated in McKerrow (1993).4

The kinematics can be decomposed into internal and external kinematics. The internal Kine-
matics describe the relationships within the robot and the external kinematics characterize the
relationships between the robot and its environment.

In this section the assignment of different coordinate frames to the robot and the transformations
between the frames are discussed. Since the joint order of a mobile robot may not be obvious, the
Denavit-Hartenberg convention for coordinate frame assignment leads to ambiguous transforma-
tion matrices.> This problem can be avoided using the Sheth-Uicker (1971) convention.® In the
Sheth-Uicker convention, coordinate frames are assigned to both ends of each link. When these
frames coincide the joint variable is zero. The coordinate frames for the mobile robot GenBase
I are shown in figure 4.1. Some coincident frames are not drawn in this figure.

The links of a wheeled robot are the floor, the robot body and the steering links. They are
connected by three joints (the wheel, the steering axis and the robot’s centre point). Since in all
frames the z axis is vertical, it is neglected in a two-dimensional analysis. The floor coordinate
frame is stationary and serves as a reference frame for the moving robot. Since all wheels of a
mobile robot are in contact with the ground, the set of transformations forms a multiple closed-
link chain. In contrast to that, a manipulator arm has a single open-link chain.

Homogeneous transformations’ are used to describe the conversions between different coordi-
nate systems. The transformations are simple because in the two-dimensional case rotation only
occurs about the z axis.

3(MUIR AND NEUMAN, 1987).

4(McKERROW, 1993), pp. 402-403.

5See (DENAVIT AND HARTENBERG, 1955) and (DENAVIT AND HARTENBERG, 1964) for details on the
Denavit-Hartenberg convention.

6(SHETH AND UICKER, 1971).

See appendix A.2 for details on homogeneous transformations.
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Figure 4.1: GenBase Il - coordinate systems
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Robot

hip joint

steering links

wheel contact
point

manipulator

Floor

Figure 4.2: GenBase Il - transform graph

Thus, a transformation matrix for a wheeled mobile robot is

cos¢p —sing p,
BTy = | sing cos¢ p,
0 0 1

where ¢ = B¢y is the rotation angle between two arbitrary frames R and N.

The complete transform graph for the mobile robot GenBase Il is shown in figure 4.2.

following contexts can be derived from the robot’s transform graph:

RFTRB _ RBTSBI SBlTSLl SLlTCLl CLlTC’Fl C’FlTF
RBTS'B2 SB2TSL2 SL2TCL2 CL2TC’F2 CF2TF
_ BBy SBST_ . SIST . CI3T. . CF3p.
RB TSB4 SB4TSL4 SL4 TCL4 CL4 TCF4 CF4 TF
RBTSB5 SB5TSL5 SLSTCLS CLSTCFS CFSTF
T ot 7 Ty 07 Tp TThi

RB L LF; F
TLback back TLFback back TF TRF

— RB TM M TMF MF TF F TRF

FTrp

FTre

The

(4.1)
(4.2)
(4.3)
(4.4)
(4.5)
(4.6)
4.7
(4.8)

The transformation between any two coordinate frames is the multiplication of the intermediate

transformations.
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With the equations (4.1) to (4.8), the position of any point p on the robot, defined with respect to
one frame N, can be found with respect to any other frame R (reference frame):

fp = Py Vp
The transformation is done by premultiplying the appropriate transformation matrix.

The robot has two drive wheels whose steering angles are fixed. This means that the drive wheels
cannot swing around. Therefore, the coordinate systems SB1, SL1 and CL1 as well as SB2, SL2
and CL2 coincide. Thus, the coordinate transformation is simplified and becomes the identity
matrix:

SBiTery = STen = BT, = ST = 1

The following matrices can be set up for the transformation between robot base coordinate sys-
tem and the contact coordinate systems of the drive wheels:

10 I,
BBTopi=101 0
00 1
1 0 —l,
RBBTea=101 0
00 1

The simplification used above cannot be applied to the three castors. Their matrices for the
transformation can be subsumed as follows:

RBTors = BPTspy “PTsrs *"Tops
[1 0 0 cosf; —sinf; 0 10 0
=101 = sinfl3 cosf; O 01 -1,
| 0 0 1 0 0 1 0 0 1
[ cosf; —sinbs l.sin 65
= | sinfs cosl; —l.cosf3— I
0 0 1
BBTore = BPTspy 5P'Tspy SMTcp4
1 0 ly cosfy —sinfy; 0 10 O
=101 [ sinfy, cosfy O 01 —I,
00 1 0 0 1][oo0 1
[ cosf, —sinf, I.sinf, + ly
= | sinfy cosf; —l.cosls+ 1,

0 0 1
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BBTors = RPTsps PTsps “M5Tcrs
1 0 —lf cosfls —sinfs 0 1 0 O
=101 I4 sinfls; cosfs 0 0 1 —I.
|00 1 0 0 1 00 1
[ cosf; —sinfs [.sinfs — ly
= | sinfs cosfs —l.cosfs+ 1,
| 0 0 1

The transformation matrix between the robot’s base coordinate system and the base coordinate
system of the manipulator arm is a simple translatory transformation:

0
l

RBTM — "
1

S O =
O = O

With the help of the above transformation matrix, the position p of a point in manipulator base
coordinates can be calculated with respect to the world coordinate frame F'. This is done using
the following equation:

Fp = M7p Mp (4.9)

It has already been stated that any transformation between two frames is the multiplication of all
intermediate transformations:

MTp = MTyp M Tr = FTrp ™ 'Trp *PTy (4.10)
With the help of equation (4.10), equation (4.9) can be rewritten:
Fp =" Trp ™ 'Trp *"Tu Mp

Now, the resulting equation to calculate the world coordinates of any point which is given in
manipulator base coordinates is:

10 Trobot COs ¢1‘obot —sin ¢robot 0 10 0
Fo=10 1 Yrobor SIN Qropot ~ COS Probor 0 01 I | Mp (4.11)
00 1 0 0 1 0 0 1

Let, for example, the position of the mobile robot in world coordinates be x,..: = 2.0 m and
Yrobot = 3.0 m, the orientation of the robot is ¢, = 45° and I, = 0.1675 m.2 Then, the world
coordinates of the manipulator arm’s base are = ~ 1.8816 m and y ~ 3.1184 m, which can be
easily calculated using equation (4.11).

8The value of ,,, is taken from figure 2.6.
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The transformations between the mobile robot’s base and the laser range finders’ coordinate
frames are simple translatory transformation matrices as well:

100

BB, =10 114 (4.12)
00 1
10 0

BB, =101 — (4.13)
00 1

These transformations are used to represent the distance and angle measurements of the laser
range finders in robot base coordinates.

If, for example, a reflector mark is seen in front of the robot at a distance d; = 2.0 m and under
an angle o; = 60°, the coordinates of the reflector mark can be calculated with respect to the

laser range finder:
< : ) i ( ( l) )
Ui ! Sin(oq)

The coordinates can be transformed with the use of the homogenous transformation matrix in
equation (4.12). Therefore, the coordinates x, and y, of the reflector mark with respect to the
robot base’s coordinate system are:

Ty 1 00 d; - cos(ay)
Yr =011 dj - sin(al)
1 0 01 1

Now, the measurement can be expressed with respect to the robot base:

dy =124+ 1y2 = +/(d;-cos(ay))? + (d; - sin(ey) + 1;)? (4.14)
d; - sin(oy) + 1
_ w) ! ! l 41
o arctan ( $r> arctan( a1 - cos(an) ) (4.15)

where d,. is the distance from the robot base to the reflector mark and «, is the angle between the
x axis of the robot base’s coordinate system and the vector pointing at the reflector mark. With
the equations (4.14) and (4.15), the example measurement is d, ~ 2.2971m and o ~ 64.194°
with respect to the coordinate frame attached at the robot’s centre point.® Later, these equations
provide measurements for the extended Kalman filter.

The equations to transform the observations of the laser range finder at the back of the mobile
robot can be derived using the homogenous transformation of equation (4.13). The only differ-
ence to the equations (4.14) and (4.15) is that [, is negative. Therefore, the calculations are not
additionally presented.

9The value of I; can be received from figure 2.6 and is 0.336 m for the robot platform GenBase 1.
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4.1.2 Kinematic model

Although Muir and Neuman (1987) described the kinematics for robots with two degrees of
freedom, their approach is not presented here.’® Besides Muir and Neuman’s way of using
the previously introduced transformations and their Jacobian and Hessian matrices, an easier
approach can be applied. This method, which is presented in this section, results in a number of
equations which can easily be used with the extended Kalman filter later.

First and foremost, it has to be defined what is meant by the term degrees of freedom. It means
the capability of a robot to translate into the direction of one of the coordinate system axis or
to rotate around them. Altogether, there are six different degrees of freedom. A manipulator
arm for example has six degrees of freedom if it can translate into any desired direction or rotate
around any desired axis. If a robot has more than six degrees of freedom it is called redundant.!

Wheeled mobile robots can have different degrees of freedom. For example, robots equipped
with Mecanum wheels'? have omnidirectional mobility. They follow any xy path across a plain
in an arbitrarily desired orientation. Hence they have three degrees of freedom, translation in the
direction of x and y and rotation around the z axis.

Most robots have drive wheels which are diametrically opposed to each other. Because of this
simple design, they have only one degree of translation and one degree of rotation. In contrast to
a general-purpose robot, a robot with two degrees of freedom has singularities'? in its workspace.
This means that it must first turn in the direction in which it wants to go. Despite that limitation,
the simple design consequently leads to simple kinematics.

Based on figure 4.3, the translatory velocity vector ¢ of the robot base is separated into its
components. From now on, the absolute value of the vector ¥ is denoted by v.

T = vV-Ccosp (4.16)
Yy = v-sing (4.17)

The angle between the velocity vector and the x axis and likewise the orientation of the robot is
called ¢. Its change over time determines the robot’s angular velocity w

_d

= (4.18)

p=w

During the motion of a robot on a plane, w is needed to calculate the velocities v and vy, of the

10(MuIr AND NEUMAN, 1987).

1For example, the Mitsubishi PA-10 manipulator used on the GenBase | platform has seven joints and, therefore,
is redundant with its seven degrees of freedom.

12The Mecanum AB, a Swedish company, developed and patented the Mecanum whee! under its inventor Bengt
llon in 1973. This drive system has a unique steering system that provides simultaneous vehicle motion in all three
directions: longitude (forward/backward), latitude (right/left) and yaw (rotatory).

13The meaning of the term singularity is described in (CRAIG, 1989) in detail.
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VR
RUTRRPREL
VL o ewemmmmmT A
Tep
NG
NEET Ry
’ 21, N
Tep = radius of circular path
RB = robot base
c = centre of rotation
@ = angular velocity of robot rotation
Vi, VR = translatory velocities of wheels
v = translatory velocity of robot
21, = distance of the two wheels’ centres

Figure 4.3: GenBase Il - kinematic model

drive wheels’ contact points:

vp = (la+7ey) w (4.19)
v, = —(lg—7Tep) w (4.20)
The robot base is assumed to be coincident with the center of the wheel axis as shown in figure

4.3. The length of the segment between the axis’ center and one wheel is [,. The distance
between the rotation point and the robot base is the radius of the rotation .

Most robot drive wheels include encoders for the measurement of the wheel speed. With the help
of this information about the angular velocities wg and w;, of the left and right drive wheel, the
translational velocities vy and vy, are calculated

VYR — W1 TR (421)
v, = wy T (4.22)

where rg and r;, are the radii of the wheels.
Based on this, w is calculated. A simple transformation of equation (4.19) and (4.20) provides

vp—vr = 2, -w
VR — Vg,
= 4.23
w ol (4.23)
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The rotation radius r., is determined by another transformation of the same equations

UR
lo +7ep
lea — ULTep

(%

la - Tcp

_URla — VULTep

(vp —VR)Trep = —lo(vR+ L)
VR + v,
Tep = _la
VL — VR
S (4.24)
Vr — Vr,

Now, equations (4.23) and (4.24) provide a routine to calculate the linear velocity v of the robot

center Rp on a circular motion

W= Tep

VR — VU, y VR + VL
2la a’UR — Uy

YR+ UL (4.25)
2

Inserting the translatory velocity equation (4.25) and the wheel-floor contact point velocities of
equations (4.21) and (4.22) into the equations (4.16)-(4.18) provides the following dependencies
between the angular wheel velocities and robot base velocities:

z

V- COS P
VR + VU,
2
WRTR G+ wrrr

2
v - sing
VR + VL
2
WRTR 4+ wrrr
2
VR — VL
21,
WRTR — WLTL
21,

- COS

cosp (4.26)

sinp

-sin ¢ (4.27)

(4.28)

The equations from (4.26) to (4.28) describe the robot’s kinematic model.

The inverse direction of the kinematics can be obtained by solving the equations (4.26) and (4.28)
for wg and wy,. Transforming equation (4.26) into

WRTRCOSY = 2% — WLTL COS P

2T Tr

WR = —Wwr—

TrRCOS Y TR
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and equation (4.28) into

WLTL

wr,

WRTR — 2@la
5,

wRT_R _9¥la
L TL

leads to an equation for the angular velocity wg of the first wheel

2% < TR @la> L
WRr = - wR——2— —
TR COS Y L L ) TR
% o
= z —OJR+2§0—
TR COS TR
1 < T . )
Wp = — (Pla
TR \ COSQ

Correspondingly, an equation for the angular
transforming equation (4.26) into

velocity wy, of the second wheel can be derived by

WLTLCOSY = 2T — WRTRCOSY
2z TR
wr = —WR—
77, COS rr
and equation (4.28) into
WRTR = Wrrr -+ 2gbla
r I,
wr = wp— + e
TR TR
Combining the above equations results in
24 Ol
v - 2 _<w;_L+2w_>T_R
T COS @ TR TR TrL
2 Iy
= — WL — 2(10_
7L COS L
1 ( 0 : >
wr, = — - Sola
T, \ COS Y

Finally, the orientation of the robot has to be calculated. This can be done by using the translatory

velocities = and y

- rctn ()
¢ = arctan | =
T

(4.29)
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4.2 Localisation using the Kalman filter and the kinematic
model of the robot

In section 4.1.2, a kinematic model of a mobile robot with two degrees of freedom was developed.
The model can be used with the GenBase Il platform. In this section an extended Kalman filter
which uses this model is discussed to obtain a localisation system for the mobile robot. In order
to set up the Kalman filter system equation f(Z;, @, ), some assumptions about the hardware
and control of the mobile robot’s drive system must be made. With the help of these assumptions
the system and measurement models for an extended Kalman filter are achieved. This extended
Kalman filter is used for the localisation of the mobile robot.

4.2.1 Assumptions about the drive system

Since no detailed information is available from the manufacturer, a simple system, like the one
presented in figure 4.4 is proposed for the drive system of the mobile robot GenBase II. It is

controller motor drive wheel
with gearbox wheel  encoder
A P o ‘
g4 O, - ()
+ > (
- ————~*

Figure 4.4: GenBase Il - simple model of the drive wheel’s velocity controller

assumed that the motor is controlled by a simple P-controller and the controlled system has a
proportional transmission characteristic. The rotation of a drive wheel is measured by a wheel
encoder and is fed back to the P-controller. This control circuit leads to the following mathemat-
ical description
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0t) N (oa - w(t))

ot
= —Aw(t)+ A wq

where wy is the desired angular velocity of a drive wheel.

The above equation is a linear first-order differential equation. This equation can be solved in
three steps. Firstly, the associated homogeneous differential equation or characteristic equation
is solved. Secondly, the non-homogeneous case is calculated to receive an expression for the
constant C' (see below). This can be achieved by using the method of variation of the constant.
Finally, the solutions for the homogeneous and the non-homogeneous cases are put together to
obtain a general solution.

The associated homogeneous differential equation looks as follows:
wp(t) + A-w(t) =0

The general solution for the homogeneous differential equation from above is calculated in a first
step:

wh(t) - . e—fAdt — (O e — O e e

= C-e™ (4.30)

In equation (4.30), the constant C' and the variable A are not known. They will be identified
later. In the second step, the solution for the inhomogeneous differential equation can be found
by variation of the constant. The variation of the constant is shown in the equations (4.31) and
(4.32). The constant C' is considered to be a function of time for this method.

w(t) = Ct)-walt) (4.31)
O(t) = C(t)-wn(t) + Ct) - walt) (4.32)

The insertion of equations (4.31) and (4.32) into the inhomogeneous differential equation leads
to

Equation (4.33) can be simplified:

C(t) - wp(t) + X - C(t) - wp(t) + C(t) - wi(t) = X-wy
C(t) . Swh(t) + A wh(t)) +C(t) . wh(t) = A Wq

7

~
=0, see homogeneous differential equation

Clt) = w, () A-wy (4.34)
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Because of the simplification which is achieved in (4.34), an expression for C(t) can be found

C(t) = /0 t wp HE) X wg dt! (4.35)

If the expression for C(t) in equation (4.35) is inserted into equation (4.31) this results in an
expression for w(t):

() = /0 W) A woadt - won(?)

t
= / C .M Nowydt -C e ™
0

t
= / e Mg N Wd
0
= Wspecial (t)
Now, the general solution can be calculated:

t
= / e Mgt N wg+C e
0

t
= {l . e_)‘(t_t,)} A c Wy _+_ C . e_At

A 0
= % [e_)‘o — e_)‘t] Awg+C-e™
= wi—wg-eM+C.e™M (4.36)
The expansion of equation (4.36) with —C' + C' and reorganization of the result leads to
w(t)=C+ (wa—C) (1—e™) (4.37)

The value C of equation (4.37) can be determined by setting the time ¢ to zero. It can be seen
that C' becomes w(0). This results in:

w(t) = w(0) + (wa — w(0)) (1 — e ) (4.38)

The following assumption can be made: If equation (4.38) describes the behaviour of the system
which evolves from a time step ¢ to a time step ¢ 4+ 1 and the time which has passed within that
step is denoted by At then the equation can be rewritten:

w1 = wp + (wg — wy) (1 — effm) (4.39)

with 7 = %

Equation (4.39) is assumed describing the development of the angular velocity of the mobile
robot GenBase II’s drive system.



4.2. Localisation using the Kalman filter and the kinematic model of the robot 57

4.2.2 System model for the extended Kalman filter

With the assumptions about the drive system made in section 4.2.1 a non-linear system model for
an extended Kalman filter can be developed. The description of a drive wheel’s angular velocity
in equation (4.39) has to be specified for each drive wheel. Since the system which is used in
a Kalman filter is assumed to be disturbed by Gaussian noise, a random variable w,, with zero-
mean is added to each of the following system equations. Therefore, the drive wheel’s angular
velocities are formulated as follows:

—At
WRit1 = Wrt+ (Ut — WRy) (1 —er ) + wy
—At —At
= WRttURt —URt € ™ —WRtTWRt €™ + W
—At
= URr:+ (WRrt —URtE T + Wi (4.40)
—At
Wiit1 = Urg+ (Wpe—urg)e ™ + wo (4.41)

It is possible to describe the translatory and angular velocities of GenBase 11’s robot centre in
terms of the wheel velocities. This is known from the equations (4.26), (4.27) and (4.28) which
were derived in section 4.1.2. If the equations (4.40) and (4.41) are substituted in the equations
(4.26) and (4.27), the translatory velocity of the robot centre can be rewritten:

WRt+1 TR+ WLt+1 " TL

Ty = 9 " COS 41 + W3
—At —At
_ [(uRﬂg + (wR,t — uR,t)eT + W1) ‘TR + (uL,t + (wL,t — uL,t)eT + Wg) . ’I‘L] )
B 2

cos <g0t + oAt + %(Atf) + w3

1 —A —At

—At —at
= 3 [UR,t TR+ TR(WRt —uRrt)e ™ +Wi-Tr+urs T +ri(wrLy —ur)e r +wa- TL] .

CoS ((pt + oAt + %(At)Q) + w3 |r=rgp=rrL

—At

. n . ;
= 3 [UR,t +urs+ (WRt +wrt —URt —uLz)E T ] cos <90t + Qi At + %(At)2)

r ) D
+3 [W1 + w2] cos <<Pt + oAt + %(At)2) + w3

At

, N B . ..
= 3 [(UR,t +ur ) (1 - 67t> + (wrt + wr 1) 67} cos (<Pt + oAt + %(At)2)

+g [w1 + wa] cos <(Pt + oAt + %(At)z) + w3 (4.42)
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Yiy1 =

WRt+1 TR+ WL t+1TL
2

sin@s41 + wa

g [(uR,t +ur ) (1 — e_TAt> + (wrt + wrt) e_Tm] sin <g0t + Qi At + %(At)Q)
+g [w1 + wo| sin ((pt + @At + (At) ) + Wy (4.43)

For the angular velocity of the robot’s centre, equations (4.40) and (4.41) are inserted into equa-

tion (4.28):

Pry1 =

WRt+1 TR — WLt+1"TL

o, + ws
—At —At
<uRt+ (Wrt — uRt)e T +W1) TR — <ULt + (wrt —urg)e +W2) TL
+ ws
21,
1 —At
oL | VRt rrR+rr(WRt —URt)E T +Wi-TR
—At

—ury L —ri(wpg —urg)e Tt —wa-rp| 4+ ws |r=rr=rL

r =At
T [UR,t —urt+ (Wrt —URt —wrt +urg)e = + (wyp — W2)] + ws

Ta —At —At
or [(UR,t - UL,t) <1 —e ) + (th —wr t)e = 4+ (w1 — W2)] + ws (4.44)

a

The translatory and angular accelerations of the GenBase Il robot’s centre point can be calculated
as the difference between the velocities at time ¢ + 1 and ¢ divided by At¢. With the above
equations for the velocities (4.42) to (4.44), the following equations for the acceleration can be

established:

Tyl =

Y41 =

Tiy1 — Tt
At

r At At . .
gz |(wre tung) (1= ) + (@re +wrg)e ™ | cos (Sot + gt + %(At)z)

+ wg

Ty
- A A - = 4.4
+2At [W1+W2]Cos<g0t+50t t—l— ( t)) w3 At+W6 (4.45)
Yt+1 — Ut
AL + wr

r At —At] ) D
2—At [(UR,t +ur) (1 —er ) + (wpt +wrs) e~ } sin (<,0t + oAt + %(At)2)

[w1 + wo] sin <<pt + P At + — Pt (At) ) +wyg— =+ wy (4.46)

2At At
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. Pt — Pt
Pt+1 = T AL + wg
r =At —At
- — ]_ — T ) — T — :|
2, At [(“R’t “Lvt)< ¢ + (Wrt —wrt)e ™ + (w1 —wa)| +ws
Pt
B 4.47
At Ve (4.47)

Now, the equations of motion for the mobile platform can be formulated. The position and
orientation at time ¢ + 1 can be calculated from the positions, velocities and accelerations at time
t. The respective equations for the z and y position and the orientation are:

Typ1 = T+ T AL+ %(At)2 + wg (4.48)
Yr1 = Y+ BAL+ %(At)Q + Wi (4.49)
o1 = o1+ Gt %(At)2 + Wiy (4.50)

Finally, the positions of the features which are laser reflector marks in this work have to be
addressed. This is rather simple because the features are expected to be fixed. This means, the
position of feature ¢ at time ¢ + 1 is the same as at time ¢:

Tfgr1 = Therl + Wiz (4.51)
Yfitl = Yfit+1 T Wi3 (4.52)

With the equations from (4.40) to (4.52), a system is specified which can be used with the ex-
tended Kalman filter. The system-state vector used for the mobile robot GenBase Il is:

T

ft = (vawLaivya ¢a:‘izay7¢7xaya ¢’ Ty Yfrye-- 7wf¢7yf¢)t

The vector function f is given by the non-linear equations from (4.40) to (4.52) and transforms
the system-state from time step ¢ to ¢ + 1:

:z:t—i—l — f (ft)ﬁta v_\;t)

4.2.3 Measurement model for the extended Kalman filter

Still, the measurement model which is needed by the extended Kalman filter has to be put up.
It describes how the measurements can be formulated in terms of the system-state. Each mea-
surement is disturbed by Gaussian noise, so therefore, a random variable v,, with zero mean is



60 CHAPTER 4. SELF-LOCALISATION OF A MOBILE ROBOT

added to each equation. Because of the types of sensors which are available on the GenBase 1l
platform, five different measurements can be made. The first two are the measurements of the
drive wheel velocities. These are direct measurements of system-states and lead to two simple
equations:

measured
WRt = Wpt+ Vi (4.53)
measured

W = wrs+ Vo (4.54)

The gyrocompass measures the angular velocity of the mobile platform’s centre. This next mea-
surement is also a direct measurement of one of the system-state’s components. The resulting
equation for the measurement is again simple:

- measured

o = ¢+ s (4.55)

The last two measurements are made for each feature f;. One measurement is the distance dy, ;
from the robot’s centre point to the feature at time ¢. The other measurement is the angle ay, ;
between the robot’s orientation vector and the vector from the robot’s centre to the feature. Both
measurements can be calculated from the system-state as follows:

dfis = \/(xt —Z0)? + (% — Ypt)® + Vs (4.56)
ayp, = arctan?2 (M) —pr+ vy (4.57)
wfiat - xt

The equations from (4.53) to (4.57) specify the non-linear measurement model ~ which describes
the measurements Z; in terms of the disturbed system-state at time ¢:

Z‘, = h (:i:ta ‘_;t)
The measurement vector Z; for the GenBase Il platform looks as follows:

> measured measured measured T
Rt = (wR,t YWt » Pt 7df1,t7 Cfrty - 7df¢,t7 afnt)

At the end, the Jacobians of the system and measurement model have to be calculated. They are
presented in figures 4.5, 4.7, 4.6 and 4.8.

With this framework, the extended Kalman filter can be used for the localisation of the mo-
bile robot platform GenBase I1. The filter algorithm must be started with an initial guess of the
system-state. Then the position and orientation at time step ¢ can be read off the state vector ;.

How the information of the extended Kalman filter is used to control the robot’s movements is
presented in the next section.
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4.3 Software implementation

During this work, a C++ software library for the self-localisation has been developed. It im-
plements an extended Kalman filter with the system and measurement model described in the
previous section. The library includes six classes. The hierarchy of these classes can be seen in
figure 4.9. The inheritances are indicated by green arrows. The relations between the different
classes are marked by red lines. The digits at the end of the red lines represent the number of
instances of the respective classes. In figure 4.9 only some important attributes and the public
methods of the classes are shown.

Localisation

_ekf: EKF

predict (u, deltaT)
updatelaser (z)
updateOdometry (z)
getSystemState ()
getStateCovMatrix ()

1
has»
1

EKF

_f: SystemModel
1 _h: MeasurementModel 1

predict(x, P, u, deltaTl)
update (x, P, z)

has» hasp
1 1
SystemModel {virtual} MeasurementModel {virtual}
FJacobian() {virtual} HJacobian () {virtual}
WJacobian () {virtual} VJacobian() {virtual}
apply(x, u, deltaT) {virtual} apply (x) {virtual}
GenBaseSystemModel GenBaseMeasurementModel
_FJMatrix: CMAT _HJMatrix: CMAT
_WiMatrix: CMAT VJMatrix: CMAT

FJacobian ()
WJacobian ()
apply(x, u, deltaT)

HJacobian ()

VJacobian ()

apply (x)
setSeenMarksNumbers (marks)
setUpdateFlag (u)

Figure 4.9: The figure shows the flowchart with the hierarchy of the self-
localisation’s classes. The inheritances are indicated by green arrows. The relations
are indicated by red lines, the digits at their ends represent the number of instances.
Only some important attributes and the public methods are stated.
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The main class is Localisation. By creating an instance of this class, the self-localisation is
ready to start. The constructor of the class takes the initial estimate of the system-state vector
and its covariance matrix as arguments. The class Localisation has one instance of the extended
Kalman filter class EKF as a member variable. The predict and update methods of Localisation
are basically wrappers of the methods predict(...) and update(...) of the class EKF.

The constructor of the generic class EKF takes one instance of each of the virtual classes Sys-
temModel and MeasurementModel. Derived from these are the classes GenBaseSystemModel
and GenBaseMeasurementModel which are the implementation of the system and measurement
models set up earlier in this chapter.

Since the measurements of the odometry and the laser range finders are not synchronized, two
update methods updateOdometry(...) and updateLaser(...) are provided by Localisation. Before
these methods call update(...) of the extended Kalman filter object, they change the measurement
model. This is done by calling setSeenMarksNumbers(...) and setUpdateFlag(...). The class
GenBaseMeasurementModel is thereby adapted to the measurement which is to be passed to the
extended Kalman filter. The sizes of the internal matrices and vectors are fitted to the appropriate
sizes. Furthermore, some flags and the numbers of the seen marks are stored. This is necessary
to deal with the changing number of reflector marks which the laser range finders detect.

#

# Paraneter file for GenBase ||

#

Weel Radi us =77 # mm
Di st anceDri veWeel s = 600 # mm
MaxDi st anceMar kMeasur ement = 200 # mm
# OdonetryVari ance

Cdonet ryVari ance = 0.01

# GyroVari ance

GyroVari ance =0.1

# SystenVari ance

Syst enVari ance =1.0

# Tau

Tau = 0.08

# Laser Di stanceVari ance

Laser Di st anceVari ance = 4900.0

# Laser Angl eVari ance

Laser Angl eVari ance = 0.01

# Laser MarkVari ance

Laser Mar kVari ance = 0.01

Figure 4.10: The figure shows the parameter file for the extended Kalman filter
which is used by the self-localisation library.
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The calls of predict(...), updateOdometry(...) and updateLaser(...) of Localisation control the
operating sequence of the self-localisation. Thus, this class can be seen as a facade of the library.

The parameters of the extended Kalman filter are stored in a file. It includes the dimensions
of the mobile robot and the variances of the system-state and measurement components. As an
example, figure 4.10 presents the parameter file used for the experiments of chapter 7. The results
of these experiments demonstrate that the parameters are particularly suitable for the GenBase 11
platform.

The positions of the reflector marks are stored in another file. Each line of the file contains the
x and y coordinates of a specific reflector mark. An example file is shown in figure 4.11. It
contains the coordinates of the reflector marks which are installed in the cell culture laboratory.

#
# Positions of the reflector marks
#
# units: [mmj
#
+15.0 +0.0 # mark at origin
+1045.0 +680.0 # ultrafiltration right
+2290.0 +680.0 # ultrafiltration |eft
+3555.0 +1000.0
+2525.0 +3650.0
+2870.0 +5245.0
+2760.0 +5800.0
+2770.0 +7295.0
+2755.0 +9475.0
-1420.0 +10610.0
-80.0 +6885.0
-1425.0 +5780.0
-1040.0 +4175.0

# door to e02-220, left side
+1745.0 +10625.0

# blue control cubicle
-1740.0 +9895.0

# under cedex
-2265.0 +8625.0

Figure 4.11: This figure shows the file with the positions of the reflector marks.

In both files, empty lines and those lines beginning with the character *#’ are ignored. Thus, it is
possible to add comments to the files. The files can be easily changed using a text editor.



Chapter 5

Control of a mobilerobot with 2 DOFs

In this chapter, the control of the movements of the robot is explained. The motions of the robot
are divided into translational and rotatory movements (see sections 5.3 and 5.4). For the rotation
and translation controller, two different methods are brought together. The first one is the PI-
controller. In this work it is used in combination with the second method called one-dimensional
filters which is explained in section 5.2.

The rotation controller uses a one-dimensional filter to adjust the desired orientation of the mobile
robot. In this case, a PI-controller does the fine-tuning of the orientation at the end of the whole
motion. The translation controller again uses a one-dimensional filter to generate the translational
velocity values for the robot and simultaneously a Pl-controller to correct deviations from the
desired straight path from the start point to the goal point.

5.1 PIl-controllers

Pl-controllers are used for a lot of technical control problems like controlling the rotational speed
of electrical machines, especially for d.c. motors. In this section, the basics of PI-controllers are
explained.

Pl-controllers are commonly used to regulate the behaviour of dynamic systems in the time
domain. They are integral parts of control systems. A control system can be classified as either an
open-loop or a closed-loop system. In an open-loop system, the value of the controlled system’s
output variable y(t) is directly determined by the input (or desired) variable z4(t). A closed-loop
control system is shown in figure 5.1. The output value y(t) of the controlled system is measured
and fed back to the input of the system where it is subtracted from the desired value z4(¢) to form
the error signal e(t). The error signal e(t) is the input signal to the controller.
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Figure 5.1: A closed loop control system with a Pl-controller

The task of the PI-controller is to generate the control variable u.(¢) from the error signal e(t).
The transfer behaviour of the PI-controller can be led back to the two basic forms of the linearized
P- and I-element. Therefore, a Pl-controller can be represented by a parallel connection of the

respective elements as shown in figure 5.2. The block diagram shows the transfer functions of
every element in the Laplace domain.

P-part
k +
E(s) +y  Uc(s) E(s) B IERE. l Uc(s)
+ or I_p, 'TIS‘
)k
TS
[-part

Figure 5.2: Block diagram of a PI-controller

From the left-hand side in figure 5.2 follows the transfer function of the PI-controller

This transfer function can be rewritten after introducing some parameters:

k. = k, proportional gain

T; = -= resettime or integral time
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The transfer function for the Pl-controller, using the above parameters, looks as follows:

Gu(s) = k. (1 + T,l. S) (5.1)

The shape of equation (5.1) leads to the PI-controller’s representation of the right-hand side
in figure 5.2. Application of the inverse Laplace transformation to equation (5.1) leads to a
representation of the control variable in the time domain

ue(t) = ke - e(t) + % /t e(r)dr (5.2)
IJo

where e(t) = Zgesirea — x(t) s the control deviation or error signal.

Equation (5.2) is called the integral equation of the PI-controller. This equation can be easily
used to find the controller’s response to a step impulse o (t) at its input. The step response h(t)
for e(t) = o(t) is shown in figure 5.3.

h(t)
[-part k
kc P _> - T]
P-part PI
—_— v >t
-Ty 0
step response symbol

Figure 5.3: Step response of a Pl-controller and the dedicated symbol

At time 0, h(t) jumps because of the proportional part of equation (5.2). While ¢ grows, h(t)
rises linearly due to the integral part of equation (5.2). The shape of the step response in figure
5.3 is drawn in the Pl-controller’s block symbol. The characteristical parameters k. and 77 are
given in the block symbol as well.

The Pl-controller is provided with advantages as well as some disadvantages. It is a special case
of the PID-controller. In a PID-controller, the D-part achieves a faster transient time. It is left
out because this is a minor advantage compared to the fact that a controller with a D-part is not
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always easy to handle. The Pl-controller overshoots as much as the P-controller and it has also
an equivalent transient time. It yet has no permanent offset because of its I-part.

In this work, the PI-controller is not used in the shape of an electronic circuit but in an algorithmic
version which can be used on a computer. Throughout the implementation of Pl-controller on a
computer system, it has to be the goal, that the output of a Pl-algorithm must be essentially the
same as the output of an analogous PI-controller. More precisely, the step response of a digitally
controlled system must not differ from the results of an analogous controlled system. For to reach
that goal, a requirement has to be met to process the digital implementation successfully. The
sample time T, Which appears because of the sequential mode of operation of a computer,
has to be very small compared to the time constant of the controlled system T'sysemm. Only if this
is guaranteed, the digital control circuit can be assumed to be quasi continuous. In that case,
the data from the analogous closed-loop control design can be used to parameterize the digital
Pl-controller. As a rule of thumb, the following numerical proportion is valid:

1
Tsample S 1_OTsystem

If the sample time of the digital controller is too big, it becomes unstable and cannot be used.

There are two different versions of the Pl-algorithm. The first one is the position algorithm and
the second one is the velocity algorithm.

5.1.1 The position algorithm of the PI-controller

The integral equation of the Pl-controller (equation (5.2)) can be transferred from the time con-
tinuous domain to the time discrete domain. For small sample times T'sq,pe, the integral can be
replaced by a sum

T K
Uk = ke <eK + TL’ > je,,_1> (5.3)
I v=1

with K = —t— =0,1,2,--- = discrete time unit

Tsample

Mathematically, the exact calculation of the area under the curve for the control deviation is
approximately replaced by the summation of small rectangles. This algorithm is referred to
as the position algorithm of the Pl-controller. In this form, the Pl-algorithm is rarely used on
computers because the summation of the last K — 1 control deviations can be done differently
with a recursive version of the algorithm, which is called velocity algorithm of the Pl-controller.
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5.1.2 The velocity algorithm of the Pl-controller

The velocity algorithm of the Pl-controller uses only the current value of the control deviation to
correct the summation. In order to achieve this, the sum in equation (5.3) can be broken down
into the previous K — 1 summands and the current K™ summation.*

Towmple < T,
Ue, K = k‘c -ex + kc sanIzple Vzl €y,_1+ kc s;:r;ple €K1 (54)
The output of the controller for K — 1 is
T K-1
U, K—1 = kc cex_1+ kc sample Z €r—1 (55)
1 v=1

Equation (5.5) can be subtracted from equation (5.4). The result is the following algorithm:

Tsam e
TIpl €K-1 (5.6)

Uekk = Uek—1 1 ke (ex — €x—1) + ke

Equation (5.6) represents the velocity algorithm of the Pl-controller. It can be interpreted as
follows: The first term is the previous history of the control variable. The second term represents
the current P-part of the controller, and the third term is the current I-part of the controller.
Because of the discrete time unit, the current value K just has to be distinguished from the old
value K — 1. Thus, only two values, namely the control deviation e and the control variable u.,
have to be stored. All values which are older than K — 1 can be deleted.

In the following, the step response of the velocity algorithm of the Pl-controller is shown. A
constant control deviation ex = ex_1 = const is assumed for equation (5.6). The step response
in staircase form can be obtained by calculating the control variable for a few sample steps. The
result can be seen in figure 5.4.2The linear rise of the step response, which is known from the PI-
controller’s block symbol, becomes a staircase shape. The smoothness of the staircase is directly
correlated with the sample time Tz ppie-

1(HoFER, 1998), pp. 83.
2|bid., p. 85.
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Figure 5.4: The step response of the Pl-controller’s velocity algorithm in staircase
form

Finally, the velocity algorithm is shown in figure 5.5. The control variable «. can be calculated
via equation (5.6).

PI-algorithm

get controlled variable x
get desired value x4

’ calculate control variable ug k. ‘

’ output of the control variable u¢ x ‘

UeK-17 Ue K
k-1 =€k
end

Figure 5.5: Flowchart of the Pl-algorithm
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5.2 One-dimensional filters

The concept of one-dimensional filters is known from the field of manipulator and arm robotics
for the generation of a trajectory. John Lloyd (1998) showed that one-dimensional filters are
stable.> This section explains what a one-dimensional filter does and examines the different
ways of calculating a profile. The explanations are mainly derived from Torsten Scherer (1998)
who followed Lloyd’s approach but used different computations.*

The one-dimensional filter is the task to bring a point p, which has a velocity v, at the beginning,
to a constant target ¢ with the help of a velocity profile. ”This velocity profile must be computed
so that the velocity v(t) does not exceed some maximum velocity v,, and that the area under the
profile equals the distance d towards the target.”>The minimum time ¢,,, which the point p needs
to reach the target can be calculated. The time ¢,,, can be stretched to ¢, > ¢,,, so that the velocity
limit v, is not violated. Furthermore, the possibility of stretching the time is useful to sync more
than one filter but this aspect is not needed in this work.

Depending on the initial condition, different types of velocity profiles can be computed. If the
initial condition is static, which could mean that the velocity of the point p is zero, the computed
profile is referred to as a static profile. Alternatively, the initial condition may be dynamic, which
means that the velocity of the point p is not zero, the computed profile is then called a dynamic
profile.

For the purpose of this work, the target velocity is assumed to be zero. As a result of this, the
actual robot stops at the end of each profile. At this point, it should be mentioned, that the
following computations could include a target velocity as well. This would result in more case
switches.

5.2.1 Static profiles

A static profile is easy to compute. Let without loss of generality the distance to the target be
positive. The point p is accelerated to a peak velocity v, and decelerated so that it stops exactly
on the target. Figure 5.6 a) shows an example for such a static profile.

From Scherer (1998), it is known that the distance d between the starting and the target position
has to be equal to the area under the profile and can be computed with the following equation
because of the symmetric situation

d:

S |'3§m

3(LLoYD, 1998).
4(SCHERER, 1998), pp. 17-27.
SIbid., p. 17.
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Figure 5.6: Static profile

where a is the acceleration.® Given the distance and acceleration, the peak velocity can be calcu-

lated as
vp = Vad
The time ¢, which the point p needs to reach the target is

. 2
y a

If v, exceeds the allowed maximum velocity, the profile must be clipped as shown in figure 5.6
b). The resulting profile has a phase of constant velocity and the distance computes as

Then, the time ¢, is

5.2.2 Dynamic profiles

Under an initial condition, which is dynamical, the computation of a profile is more complex.
Three different situations are possible:

1. Velocity towards target

2. Velocity towards target, but too fast to stop on the target

3. \Velocity away from target

5(SCHERER, 1998), p. 18.
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In the first situation, the point p has to be accelerated to the peak velocity v, and then decelerated
to stop exactly on the target. In some cases, only deceleration is necessary to stop the point on the
target. A closer look on this situation will be outlined later. In the second situation, the point p is
decelerated to full stop. Since the velocity was too fast to stop on the target with given maximum
deceleration, the point p overshoots. In this case, the target can be reached with the help of a new
movement with a negative static profile. In the third situation, the point is decelerated to stop
and then moves to the target with a static profile. In all situations, the velocity has to be clipped
if v, > v,,. Then, the point moves some time with constant velocity v,,. The three situations are
shown in figure 5.7.

\4 v v
V, V,
Yo —> t —> t
1 ts 1 ts
—t v Vi
) p 0
a) I"situation b) 2"situation c) 3“situation

Figure 5.7: Dynamic profiles

The second situation can be recognized by checking if the travelled distance % to full stop is
larger than the real distance d. The third situation can be recognized by comparing the sign of
the velocity with the sign of the distance. The first situation has to be paid more attention, let
again, without loss of generality, the distance be positive. In this situation, the distance d is larger
than the distance g—?i which is the distance the point p travels when doing a full stop. The point
has to be moved an additional distance d*

which can be achieved very fast ”[...] by accelerating to some peak velocity v, > v, and from
there decelerating back to vy [...]"". The resulting profile can be seen in figure 5.8.

"(SCHERER, 1998), p. 21.
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The peak velocity of the resulting profile can be computed as follows:

Figure 5.8: Extra distance d*

2

v,

= 1/ad+ 2
Up a+2a

If v, is larger than the velocity limit v,, two cases can occur. They are shown in figure 5.9.

<
<

v
—

ts

Figure 5.9: Ramping up or down

It is possible that v, has to be ramped up or down to v,. Therefore, the travelled distance com-

putes as:

dv°<v” Upls 2a B 2a
2
v (v, — vg)
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The time ¢, needed for the motion can be computed in the following ways

d v,—v V3
Svg<v = - + +
i Up a 2avp
d v w
t3v0>vp - -

and the peak velocities for the two cases are

o+ at, — \/2avpt, + ot — dad — v2

UPUO <vp 2

2
vh ad

Upuo>up 2(vg — ats) vy — at

More details about the derivation of these equations for dynamic profiles can be found in Scherer
(1998).8

5.2.3 Discretization

The introduced one-dimensional profiles have still to be fitted to an application like robot tra-
jectory generation. Therefore, the continuous profiles are converted to discrete profiles. Let At
be the time interval of the trajectory generator. The discretization is achieved by integrating the
profile from 0 to At. This yields the new position as well as the new velocity of the robot. Since
the robot system is inertial, it may not be able to reach the desired velocity and position of the
profile. This problem is dealt with in the following sections. The input to the one-dimensional
filter profile is the estimate of the current system-state obtained by the extended Kalman filter.

5.3 Control of the rotation

The rotation controller adjusts a desired orientation of the mobile platform. It consists of two
stages. At the first stage a control cycle with a one-dimensional filter adjusts the desired ori-
entation angle coarsely. At the second stage a Pl-controller (target controller) performs a fine
tuning of the robot’s orientation angle. Figure 5.10 shows the two-stage structure of the rotation
controller.

In every cycle of the first stage, the one-dimensional profile for the rotation is calculated by the
filter. In figure 5.11, the profile is shown exemplarily. With an assumed angular acceleration
Wrobot, & Maximum angular velocity wyopotmaz @nd the desired orientation which the robot has to

8(SCHERER, 1998), pp. 22-26.
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reach, the whole shape of the profile is determined. Even the time ¢4, Which the robot needs
for this motion is known but is of no importance for further considerations in this section. The
definite integral under the profile between two points of time is equivalent to a small fragment
Ay of the whole rotation.

Just as in the translation controller in section 5.4, the output w’,_,, Of the one-dimensional filter
is passed through the collision avoidance. Depending on the presence of objects in the vicinity
of the mobile platform, the robot’s angular velocity w; ., is bounded by the collision avoidance.
Its output w,.pe: = ¢ IS transformed into the drive wheels’ angular velocities wy and wg which
are sent to the drive controller.

1" stage 2" stage s
(P d
(profile) d (target controller) -0
LN one-d. filter AP (very smal)
o L4\ %1
(‘D‘mbm PI
Q)]
v robot
collision v
avoidance
wrobot
O‘)mbot (P (1):
"""""" Viobot 0
v
O‘)L
() robot (D R
®, v
® .
R mobile robot
O‘)L
0‘)R
A 4
mobile robot mobile robot state vector

—

mobile robot state vector

Figure 5.10: Block diagram of the rotation controller

At the beginning of each new cycle, the one-dimensional filter calculates the angular velocity
profile due to the actual orientation ¢ , the desired orientation ¢4 and the angular velocity w;opo-
Once the filter has done that, it puts out the current w!. ., Which is the profile’s amplitude at that
time.
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If the filter has reached the target and the filter’s output has become zero, the first stage is finished.
At this point, the target controller (PI-controller) takes over the control. As shown in figure 5.10,
the difference between the desired angle ¢4 and the current orientation ¢ is calculated. The PI-
controller generates the output value w,.»,; Which, again, is transformed into the angular velocity
for the left and right drive wheel. The PI-controller is stopped after 7,4, cycles.

A robot

\A(P

NN

Figure 5.11: Rotation profile which is generated by the one-dimensional filter.

If the motion has become small, the Pl-controller is stopped earlier but not before a minimum
number of cycles n,,.;,. A ”small motion” in this case means that the difference between the
orientation in a cycle and the orientation in the preceding one is smaller than a bound b (¢,, —
©n_1 < b). Practical values for all parameters in this section are shown in table 5.1.

parameter | value
k. 2.0
17 0.5
Nmaz 200

b 0.15°

Table 5.1: Values of the parameters used in the rotation controller

5.4 Control of the translation

The translation controller generates the control commands to steer the mobile robot from a start
point Py 10 @ goal point py,e ON a straight line. It is a precondition that the orientation of the
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mobile platform before the beginning of the translation must be approximate to the goal point.
The deviation from the straight line during this motion must be kept as small as possible.

The translation controller can be divided into two functional parts. The first part is a one-
dimensional filter as described in section 5.2. In every cycle, this filter generates a dynamical
profile based on the current position p,..,.; and the velocity v,...; 0f the mobile robot as well as
the goal position F,.,. The filter output is the translational velocity v.. ., of the mobile robot.
The second part is a Pl-controller which minimizes the deviation from the desired trajectory from
Dstart 10 Pyoar- 1tS OUtpUL is the angular velocity w),

robot*

In figure 5.12, the geometrical setup for the described situation is shown. With the aid of the ex-

robot

_>
p start

Figure 5.12: Geometrical diagram for the mobile robot’s motion from pisart t0 Pgoar

tended Kalman filter, the current robot position p,..s.¢ IS identified in every cycle. The orientation
of the robot is specified by the vector fzmbot. In a first step, the position p,....¢ 1S projected onto
the desired trajectory, which is the straight line from g, 10 pyoq represented by an associated
unit vector. The vector d,.s; marks this projection point on the trajectory. After the difference
VECtOr d.gpor — Dstart NAS been determined, the ratio between ||d:obot — Pstart|| @Nd || Dyoat — Pstart ||
can be computed. It indicates the robot’s progress along the trajectory. Based on this ratio and
on the robot velocity v,..¢, after being bounded by the collision avoidance, the filter updates the
one-dimensional velocity profile for the remaining distance to the goal. Then it gives the output
of the current velocity value for the robot in direction of its translation.

Due to small velocity differences between the left and right drive wheel, induced by differences
of the low-level motor controllers and slippage errors, the robot drifts away from the desired
trajectory. In a second step, the PI-controller minimizes this drift by steering the mobile platform
back to the desired path. For this purpose, an auxiliary point g, is introduced which is located
on the trajectory in a certain distance from the projection point d..opo: IN forward direction. In
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practice, a value of 0.5 m for the above mentioned distance has proven to be reasonable. The
deviation angle « between the current viewing direction ﬁ,.obot of the mobile platform and the line
through p,.p0: @aNd P, 1S calculated. « is the input value to the Pl-controller which decreases
this angle by providing a suitable controller output w.. ..

The respective control flow for the control of the translation is shown in figure 5.13. As one
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Figure 5.13: Block diagram of the translation controller

can see, the filter’s output of the translational velocity v. . and the Pl-controller’s output of
the angular velocity w, ., are both bounded by the collision avoidance module which reduces
the above values depending on the distance to an obstacle. The outputs v,.qp0: aNd wWyepe: OF the
collision avoidance then serve as inputs to the following modules where they are transformed
into angular velocities wy, and wg for the drive wheels. The transformed outputs of the one-
dimensional filter and of the Pl-controller are superimposed. Finally, wz and wg build the drive
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command which is sent to the mobile platform’s drive. This alters the robot’s speed, its position
and orientation. In the next cycle, the new projection of the robot position onto the trajectory and
the velocity v,.p.¢ @s Well as the new deviation angle « serve as inputs to the one-dimensional
filter and to the PI-controller.

The robot has finished its trajectory when the one-dimensional filter reaches the target or over-
shoots. In this case, wy, and wg, are set to zero and the mobile platform is brought to a rest which
can be assumed to be a rather slow velocity. In the case of overshooting, no more correction is
applied to the robot’s position because in the regarded setup errors in x/y positioning are much
more tolerable than errors in orientation, which can occur when the robot tries to go back a small
distance after overshooting. The parameters for the PI-controller are given in table 5.2

parameter | value
ke 1.2
Ty 50.0

Table 5.2: Values of the Pl-controller's parameters used in the translation controller



Chapter 6

Path Planning for M obile Robots

When a mobile robot moves through its environment, avoiding collisions is a crucial problem to
be solved. This problem can be divided into two main tasks. Firstly, the robot has to be able to
calculate a collision-free path from its present position to a desired goal point. The foundation
for this could be a map in the classical sense (as in this work). Secondly, the robot could come
across a dynamic obstacle while following its route to the target. Managing the latter problem,
however, is not dealt with in this work. Suggestions for dynamic obstacle avoidance are given in
Arkin (1998).! The robot platform GenBase |1 already has a low-level collision avoidance which
stops the robot immediately whenever an obstacle is within a predefined range of the robot centre
point.

This chapter begins by giving a brief overview of different approaches to map, robot and path rep-
resentation and by discussing which of these approaches are suitable for the GenBase Il platform.
In section 6.2, the particular representation used for the robot and its environment is explained
in detail. In consequence of the chosen form of representation, section 6.3 provides conclusions
for the generation of collision-free path segments. In this context, a detailed description of the
V-Graph and T-Graph models is given. Finally, in section 6.4, the A* Algorithm is utilized to
find the shortest path from start to goal via the set of calculated path segments.

6.1 Approaches to map, robot and path representation

For the development of mobile robots, it is fundamental to find the right design to represent a
map. A map is here understood to be the robots knowledge about its environment. It is the
only pattern against which the robot can try to match its sensory input, which is very often
high-dimensional, and hence difficult to project onto the map. Once a map representation of the

L(ARKIN, 1998).
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environment is found, the next step is to find a suitable representation of the robot itself within
this map. Thereafter the path the robot needs to take must be entered into the map. Depending on
the representation of the path, an appropriate search algorithm must be used. The algorithm has
to find the final path which satisfies a given optimality criterion (for example finding the shortest
path). There are different solutions for those four sub-tasks. In the next four sections, a brief
overview of approved methods will be given, resulting in a conclusion for the GenBase Il robot
platform.

6.1.1 Map representations

One aim of research in mobile robotics is to increase a mobile robot’s efficiency in performing
certain tasks. A task in this sense is a particular aspect of the mobile robot’s abilities, for ex-
ample path planning, self-localisation or obstacle avoidance. Performing a task is influenced by
the robot’s environment. For example, in a real-world scenario the environment can be either
dynamic or static, restricted or unrestricted as well as known or unknown to the robot. A highly
dynamic setup is represented by the robot soccer (RoboCup?) in which a robot has to be aware
of all its moving opponents and teammates. Another task with a different characteristic of the
environment is the planetary exploration in an unknown landscape. These examples show that
the choice of a particular map representation of the environment can be helpful to accomplish a
task.

Charles Gallistel (1990) has stated a geometric concept that he called “strength”. It allows to
compare different map representations. The ”strength” is ”[...] the range of geometric relations
among the mapped points that could in principle be recovered from the map [...]” 3

The following description holds four basic categories of map types with different strengths™:*

Recognizable Locations: The map consists of a list of locations which can be reliably recog-
nized by the robot. The recognition is only a qualitative but not a quantitative one, which
means that no exact values for the positions are available.

Topological Map: In addition to the recognizable locations, the map records which locations
are connected by traversable paths.

Metric Topological Map: This term is used for maps in which distance and angle information
is added to the path descriptions.

Full Metric Map: Object locations are specified in a fixed coordinate system. Precise positional
information is provided.

2For detailed information about robot soccer and the RoboCup see http://www.robocup.org.
3(GALLISTEL, 1990).
4(LEE, 1996), p. 18.
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Another approach to map representation is to think about a way in which all objects of the real
world, the paths and restricted areas as well as free spaces can be stored. These aspects are shown
in the following short list.

Path: A list of sub-paths, which can be combined to get the final path, is stored. Obstacles are
not considered. A sub-path can be obtained by recorded motion. This is often used in
industrial robotics.

Free space modelling: Free spaces in the environment are partitioned with the help of Voronoi
cells. The Voronoi cells are stored in a graph.®

Object modelling: Obijects in the environment are stored in graphs. The objects can be repre-
sented by their vertices (vertex graphs).

Composite space: The environment is partitioned by using grids, quadtrees or octrees. Each
element of the grid, the quadtree or the octree is either free space or restricted area.

The mobile robot application which underlies this work requires great accuracy in self-
localisation and self-positioning. A full metric map is the only representation which gives a
precise description of all obstacle positions with respect to a global coordinate system. There-
fore, it is an appropriate choice for obtaining the desired accuracy. Since blueprints of buildings
are always available, they can easily be converted into an object modelling representation. This
representation is employed in combination with the full metric map approach in this work (see
section 6.2).

6.1.2 Robot representations

It is crucial for collision avoidance to know the physical dimensions of the mobile robot. There-
fore, a high level of detail for the representation of a robot in a map is useful. On the other hand,
manageable methods for collision avoidance must be available. A trade-off between an appropri-
ate level of detail and manageable methods has to be found in order to establish a suitable robot
representation. The following list shows some common description methods.

Actual physical shape: The shape of the robot is modelled in detail.

Surrounding rectangle: The mobile robot is modelled in the shape of a rectangle whose edges
lean against those parts of the robot that stick out furthest.

Surrounding circle: This follows the same idea as the surrounding rectangle, but uses a circle
instead.

5(SEDWICK, 1992), pp. 465-467.
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Surrounding circle with negligible radius: The surrounding circle’s radius is made infinitely
small (dot-shaped) and the other objects in the map are expanded by the original radius of
the robot.

Path planning for a detailed robot representation is computationally more expensive than for a
robot represented by a rectangle or circle. There are even more simple and robust algorithms for
robots represented by a negligible radius. The V-Graphs and T-Graphs are designed for this kind
of representation (see section 6.3.1 and section 6.3.2). Since there is a fast and stable way to
expand an object’s representation in a map (see section 6.2), a dot-shaped robot representation is
used in this work.

6.1.3 Path representations

In path planning, there are different possibilities to generate and represent a path. Some of them
are given in the following list:

Functional description: The path is described by functions, for example with B-Splines.

Vector of coordinates: In a grid-shaped representation, the path is a chain of positions of the
mobile robot (with a statistical probability of the robot’s location).

Linear representation: This is a description of the path based on simple line segments.

The first option provides a closed mathematical solution but it is computationally expensive.
The second option is memory consuming depending on the map representation’s level of detail.
The linear representation can be stored efficiently. Algorithms like the V-and T-Graph generate
functional descriptions of paths given by line segments. This makes the linear representation of
a path advisable. It is used in the following sections.

6.1.4 Search algorithms

Depending on the type of map, robot and path representation, an algorithm must be chosen for
finding a complete path from a start point, which might be the current robot position, to the
robot’s goal point. In computer science, a lot of different search strategies are known. In order to
make the right choice for the current path-finding problem, one can distinguish search strategies
as follows:

Uninformed search: This is a search that does not make use of prior knowledge about the prob-
lem. Instead, new states are generated systematically and then compared with the goal.
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Informed search: Problem-specific knowledge is used if it is available.

If the environment of a mobile robot is known informed search algorithms can be applied. Russel
and Norvig (1995) split up informed search methods into four subgroups.®

1. Best-first search

e minimization of the estimated cost to reach a goal (Greedy search)

e minimization of the total cost of a path (A* search)
2. Search with heuristic functions

e minimization of a cost function which is an estimate of the unknown real cost func-
tion of the solution

3. Memory-bounded search

e iterative deepening A* search (IDA*)

e simplified memory-bounded A* search (SMA*)
4. Iterative improvement algorithms

e hill-climbing search
e simulated annealing

e applications in constraint satisfaction problems

The first search strategy in this list, the best-first search, fits in with the given presentation of
the problem of finding an entire path from a start point to a goal point. The idea of minimizing
total path costs from the robot’s current state to its goal can be easily applied to the path-finding
problem. Therefore, the A* algorithm has been chosen to solve this problem (see section 6.4.1).

The cost function which is used for the A* algorithm is divided into known costs and a heuristic
estimate of the unknown costs. Because of this cost function, the A* algorithm is better than the
search with purely heuristic functions. Memory-bounded search, as its name suggests, reduces
the memory requirements during the search operation. The representation of maps chosen in
this work does not indicate the necessity to reduce the amount of required memory. Iterative
improvement algorithms like hill-climbing search are less suitable in this context because of
their well-known drawbacks like local minima (maxima), plateaux and ridges.

8(RUSSEL AND NORVIG, 1995), pp. 92-115.
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6.1.5 Conclusions for the mobile robot platform GenBase |

For the present system, some preconditions have already been stated.

e The positioning abilities of the system must have a precision in the order of a few millime-
tres.

e The orientation must be adjustable in the order of less than one degree.

e The shortest amongst all possible paths must be found.

If all these prerequisites are taken into consideration, the choice of reasonable map representa-
tions is restricted. The composite space representation can be excluded because a discretization
of the environment using a millimetre-grid needs a lot of memory space especially for big maps.
Furthermore, areas of small interest would be represented with undue accuracy. As stated at the
end of section 6.1.1, a full metric map representation together with object modelling fits best to
the prerequisites. In addition, object modelling provides further advantages. For the generation
of the robot’s configuration space, the objects can be easily scaled.’

For solving the path-finding problem, the A* algorithm has been suggested in section 6.1.4. This
choice implies the representation of the robot as a circle with negligible radius. Moreover, a
linear path representation is used. These approaches are described in the following sections.

6.2 Representation of the robot and its environment

In this section, the design of the map and robot representation chosen for this work is explained.
The concept of configuration maps is introduced. The resulting problems and their solutions are
pointed out.

6.2.1 Shrinking of the robot, expansion of the map

A full metric map can be represented geometrically by a set of lines or a set of polygons. At the
end of section 6.2.2 it is shown that using polygons results in difficult problems. These problems
can be avoided by using a set of lines instead. A line is given by its start and end point (x,y pair).

“For a detailed explanation of the concept of configuration space, see section 6.2.1. In section 6.2.2, the concept
of map expansion is explained.
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expanded line shrunk robot

r+s r+s

r = base radius of the robot
s = additional safety radius

Figure 6.1: Line expansion ("cigar shape”) and shrunk robot

Each line is interpreted as an impassable obstacle for the robot. For the solution of the path-
planning problem, this means the robot is never allowed to cross a line. The algorithms in-
troduced in the following sections conduct a path search under the assumption of a dot-shaped
robot. Obviously, no existing robot can satisfy this constraint. For practical use, however, it is
suitable to describe a robot as a disc which encloses the robot’s real physical shape. Expanding
each line of the map by the radius of that disc allows to shrink the robot to an infinitely small
circle. Exemplarily, the expansion process is described in figure 6.1. Path planning now means
to find a path for the disc’s centre point in the expanded map.

The expanded map is referred to as the configuration map or the configuration space.

For the sake of security, the radius of the disc is considered to consist not only of the robot’s
actual shape, but also of an additional safety ring around it (see figure 6.1).

Whereas the earlier restriction required that the robot must not cross any line of the map, the
robot is now not allowed to be in any of the cigar-shaped line expansions.

The revised strategy has the following advantages and disadvantages:

Advantages:

e Every path in the configuration map is passable for the actual robot.

e A minimum safety distance can be simply selected.

No attention has to be paid to the orientation of the robot.

Map expansion is only a one-time computational effort.

Map expansion can be done in linear time O(n).
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Disadvantages:

e Possibly existing paths can be lost through the assumption that the robot is disc-shaped.

e The approximation of the configuration map is another source of error (see following sec-
tion).

For drawing a conclusion, there is a need to pay attention to the disadvantages. The loss of paths
concerns mainly those which lead through small gaps in the original map. These gaps are closed
because of the line expansions due to the assumption of a circular robot. The real robot might
be able to pass these gaps. Since at least one point of the robot’s body lies on the bounding
circle, it wouldn’t be able to rotate when being in the gap. Therefore the above strategy avoids
situations in which the robot is not allowed to rotate. In the following sections it is shown that
the disadvantage of approximating the configuration map can be eliminated.

6.2.2 Problems of map expansion

Map expansion causes problems in its practical implementation. The correct expansion of a line
segment L; is the union of all discs C,, with the radius » + s. The centre points ¢, of the discs
have to be elements of the line segment L;.

Expansion(L;) = {U C,eC | é=ILMN¢e Li}
with C being the set of all possible circles
C ={Cn(Cn,7 + 3)}
and L; being the set of all points belonging to the respective line segment
Li = {0 | & = Batart + MNBiena = Prstart) AN € [0-..1]}

Each line segment is described by its start point p; ., and its end point p; .,q. The result of a
line expansion can be seen in figure 6.2 a).

The cigar-shaped line expansion can be approximated with any desired degree of precision by a
polygon. In principle, there are two options:

The approximating polygon lies within the cigar shape: The area which is covered by the
polygon is restricted for the robot. This area is smaller than the real area which is re-
stricted by the cigar shape. That may allow the path planning to generate paths which the
robot can not follow.
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a) b) ©) d)

Figure 6.2: Line expansion ("cigar shape”)(a) and approximations with different de-
grees of precision (b-d)

The approximating polygon lies outside the cigar shape: The area which is covered by the
polygon is bigger than the area which is restricted by the cigar shape. The path planning
can not find all possible paths.

For practical use, the second approach is the better choice for two reasons. First of all, safety is
a key constraint, as it is important that only paths are found which the robot can follow without
bumping into an obstacle. Secondly, one can conclude from figures 6.2 b), ¢) and d) that the loss
of drivable area becomes negligible when the number of polygon lines used for the approximation
IS increased.

An algorithm to generate a polygon that lies outside the cigar shaped line expansion is given in
algorithm 6.1. This algorithm must be applied to both ends of a line segment. The result is the
polygon P described in terms of its vertices. With this algorithm, it is possible to expand the
map with linear time effort O(n;) with n; being the number of lines in the original map.

Figure 6.3 illustrates how the line-expansion algorithm is applied to a given line segment.

If the map contains a closed series of line segments, the cases given in figure 6.4 and figure 6.5
can occur. Figure 6.4 shows an expansion of a set of lines of the original map by a radius which
is small in comparison to the actual size of the line segments. A drivable area inside the contour
is maintained. At first sight, this might look odd. If the object is considered to be a table, for
example, in the majority of cases it is interpreted as an obstacle for a mobile robot with no free
space inside at all. The path-planning algorithm introduced later generates only those paths that
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Require:
e empty polygon P
e expansion radius r

e line segment given by piiar: (OF Peng) and a normalized vector diriine. Which indicates
the direction from p,,q t0 Psiars (OF FrOM Pyars 10 Pend)
[Depending on the side of the line segment which is created, diT 1ime goes from start to
end or the other way around.]

e number of lines n; to be used for the approximation of each semicircle

begin
calculate oz a = (J- +1)
dfrp = vector perpendicular to dfrlme
forz':ltomdg .
ﬁ: ﬁend + (dirp : 7’) (Orﬁ: ﬁstart + (dirp ‘ T))
dfrp, = rotate p’counterclockwise by angle o
ﬁ/ = ﬁend + (d;rpl : T) (Orﬁ = ﬁsta’rt + (dgrpl * 7’))
calculate the line [ going through p'perpendicular to dfrp
calculate the line I7 going through p7 perpendicular to d?rp,
add intercepting point p; of line [ and I/ to the polygon P
d;rp = dgrp,
end for
end;

Algorithm 6.1: Pseudo-code for the line expansion

do not cross any lines. That means that only those paths are produced which avoid obstacles.
Therefore a path into an obstacle is never generated. Taking the example with the table, the
mobile robot is also allowed to plan a path on the table. The path planning guarantees that the
mobile platform will never fall off the table. If the closed series of line segments represents
a room (an office for example) the usefulness of this approach becomes clear. Because the
robot must be able to operate in a room, it makes no sense to restrict this closed line structure.
Considering the fact that doors or gaps which are too small for the mobile robot lead to restricted
areas due to line expansion, one can assume that this example is in no way unrealistic.

If it is necessary to introduce blocked areas in a map, this can be done rather easily by just adding
appropriate lines to the map. If the object’s lines are expanded by a relatively big radius as shown
in figure 6.5, the resulting polygons overlap without leaving any free space.

The method of line expansion described here has considerable advantages over a method called
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Figure 6.3: Line expansion for one point of a given line segment (in the figure it is
Pend)- The point p; is constructed geometrically and added to the Polygon P.
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a) b) c)

Figure 6.4: Generation of the configuration space for a robot with a small radius: a)
original map element made of line segments, b) expansion of each line segment, c)
configuration map (grey) for the original map element.
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B VANEVAN
C =y

2) b) c)

Figure 6.5: Generation of the configuration space for a robot with a big radius: a)
original map element made of line segments, b) expansion of each line segment, c)
configuration map (grey) for the original map element.

edge shifting.® In edge shifting, a closed series of line segments is interpreted as an object that
is represented by a polygon. The expansion of this polygon is a parallel displacement of its line
segments to the outside direction by a value §. The expanded polygon has new edges at which
the shifted lines intersect. This causes problems because every expansion of a line segment can
only be done in relation to its neighbours. Typical problems are portrayed by the examples in
figure 6.6. In a), a part of a polygon with an indentation which is called an eye is shown. The
edge-shifting method does not work properly because the generated edges cross each other. The
line shifting in b) transfers a polygon into a self-overlapping polygon with a hole. In c), another
problem of this method becomes apparent. Sharp edges with acute angles project into free space
when extended. If this method was applied, the underlying map would have to avoid these cases.
For example, Hunn (1993) suggests to use maps with a lower level of detail.’

All these problems do not occur when line expansion of every single line segment is used. This
method is computational less expensive and no constraints must be kept in view.

Another approach using polygon triangulation'® can eliminate the disadvantages of edge shifting.
Here polygons are divided into triangles. Then the triangles are expanded with the edge-shifting
algorithm. This approach is not suitable for this work because the given maps may include single
lines or series of lines and are not constrained to consist of polygons only.

8(HUNN, 1993), pp. 18-22.
9bid., p. 19.
105ee chapter 1 in (O’ROURKE, 1994) for detailed explanations.
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/

Figure 6.6: Problems of objects expansion

6.3 Generating paths

An exemplary situation for a path-planning problem is shown in figure 6.7. A mobile robot,
represented by a circle with a negligible radius (the black dot in the figure), is to be moved from
its start position S to a desired goal position G. The direct path is blocked by obstacles. If the
conditions stated in section 6.1.5 and 6.1.3 respectively are met, the path has to be the shortest
connection between start and goal, and it should be a combination of straight lines (sub-paths) as
in figure 6.10 (black line). This combination of straight lines joins the start with the goal point
via a sequence of object vertices. Moving along the path always means that the robot moves
from vertex to vertex until the goal point is in sight.**

6.3.1 Visibility graph (V-Graph)

Path finding can be performed on a visibility graph. A visibility graph can be calculated on the
basis of a set of polygons and two points, the start S and the goal point G. It is a graph whose
nodes correspond to vertices of the polygons and to S or G. It’s edges correlate to the straight
lines which join the vertices of the polygons in the sense that these straight lines do not cross the
inside of any polygon. Descriptively, this means that any two vertices will only be connected if
they can “see” each other. The V-Graph is visualized in figure 6.8.

1(LozANO-PEREZ AND WESLY, 1979), p. 561.
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Goal
®
/
/
o
Start
Figure 6.7: Simple map
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Figure 6.8: Basic V-Graph
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The above description for an undirected visibility graph V' (N, E) can be put into a formal defi-
nition.!? Let V(Ny, Ey) be the V-Graph and Ny and Ey are sets, then the following conditions
must be valid:

e The node set Ny is the set union of all polygon vertices V,, and the start and goal point:
Ny =V, U{S,G}

e The edge set Ey is the set of pairs (n;,n;) where n; and n; are elements of Ny and the
edge from n; to n; does not overlap any polygon Vi # j.

The visibility graph gains its simplicity from the very fact that the object to be moved (for exam-
ple a mobile robot) has no dimensions, i.e. it is only a point. V(Ny, Ey ) includes all necessary
lines to find the shortest path (the red lines in figure 6.8). Now a suitable search algorithm can be
applied to find that optimal path. Examples for such an algorithm is the Dijkstra or A* algorithm
(see section 6.4.1).

6.3.2 Tangent graph (T-Graph)

After the visibility graph has been calculated on the basis of the set of polygons, a lot of lines
are left that are not part of the shortest path. A question that can be formulated at this point
is how the set of lines can be further reduced to minimize the effort for the search algorithm.
An instrument to achieve this is the tangent graph (T-Graph). It was first proposed by Liu and
Arimoto (1991).% The tangent graph is a subset of the visibility graph in section 6.3.1, but its
nodes correspond only to those vertices of the participating polygons that are tangent points. The
expression “tangent” in this context deserves a specific definition.

Tangent: If the elongation of a line segment with the endpoints n; and n;, which are either
a vertex of a polygon or S or G, does not intersect with any small polygon region near
point n; and n;, this line is said to be a tangent, and n; and n; are tangent points to their
respective polygons.

If the visibility graph in figure 6.8 is reduced by those lines that are not tangents, the result is a
tangent graph as in figure 6.9. It has to be noted in particular that vertices that build a concave
corner in a polygon do not belong to the tangent graph.

A formal definition of the T-Graph can be given. Let T'( N, Er) be the T-Graph and Ny and Er
are sets, then the following conditions must be valid:

12(LozANO-PEREZ AND WESLY, 1979), pp. 561-562.
13(Liu AND ARIMOTO, 1991).
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Goal

Start

Figure 6.9: Basic T-Graph

e The node set Ny is the set union of all convex polygon vertices V,7o"<* and the start and
goal point:
Np = Vgerver U {S, G} or Nr = {plp € V, Apis convex} U {S, G}

e The edge set By consists of pairs (n;,n;) whose edge from n; to n; is a member of the
corresponding V-Graph and a tangent.

In other words, the T-Graph contains only those straight lines whose elongations at both ends do
not intersect with the involved polygons.

6.4 Finding the optimal path

For the problem of finding the optimal path, costs are assigned for each possible path from start
to goal. In this work, every sub-path’s length is taken to be its cost. Then the cost of moving
from the start to the goal point is the total sum of the associated sub-path costs. The optimality
criterion is to find the shortest path. Thus, finding the optimal path means to find the path with
the lowest costs.
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Beyond that, other costs are conceivable in real-world path planning. Firstly, it could be expen-
sive for a mobile robot to turn in the range of big angles because it might cost time. In that case,
a path which might be a bit longer but less time-consuming could be a better choice. Another ap-
proach to formulate costs for path planning is to choose the “safest” path instead of the shortest.
The safest path could be the one with the biggest distance between the robot and the obstacles.
The cost for a path segment could be the distance to the nearest obstacle. Then the optimal path
would even be the one with the biggest costs. Since the calculations for those costs are more
expensive, they are not used in this work.

6.4.1 The A* Algorithm

The T-Graph in section 6.3.2 encompasses all possible sub-paths or path elements that are neces-
sary to build a complete path from a start point to a goal point. The search algorithm A* is used
to determine the best path, which, under the constraints stated above, is the shortest one. The
foundation for the algorithm is discussed in this section.

The A* algorithm was developed by Hart, Nilsson and Raphael (1968).# This algorithm has the
property of finding the minimum-cost path whenever a path exists at all. This is done under some
restrictions which are specified below.

From now on, the graph will be denoted by G and each node in the graph by N.

The A* algorithm starts with the first node N, Which is the initial point of the mobile robot
on its progress to the goal position. Since the algorithm is iterative, it has already visited a set of
nodes at the beginning of every new cycle whereas a decreasing number of nodes has remained
unvisited so far. For every node N that has been visited, there are some connecting paths to the
start node N..;. But only one of those is the cheapest at any time and that one is stored by the
algorithm as the best path from the start to the current node N. For the whole set of visited nodes
N, the algorithm builds a spanning tree 7', which contains associations between nodes N and
their respective parent nodes.

The cost of path planning has only been regarded as the total length of the resulting path so far.
But as already mentioned, the A* algorithm is iterative and the real total cost can only be known
at the end of the whole search process. The question arises, how the algorithm deals with the
fact that it only knows costs of sub-paths and why it nevertheless finds the shortest (cheapest)
path. The answer is that the A* algorithm combines two procedures to form an evaluation (cost)
function. The first takes into account that - because of the spanning tree 7" - the total cost from
the start node N,,; to the current node can be calculated by following the pointers back to the
origin. This function is called g(N). If only those “costs so far” were taken into consideration,
the procedure would be inefficient. This is the reason why a second function ~(N) is used. h(N)

14(HART ET AL., 1968).
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is a function that estimates the costs from the current node N to the goal node Ngq.

In order to solve a geometric problem like path finding, it is reasonable to estimate the remaining
costs from the current point to the goal point by using the Euclidean metric, i.e. the direct
distance.

The combination of the two strategies mentioned above leads to the following evaluation func-
tion:

f(N) = g(N) + h(N)

with

g(N) = costs Nggre — N
h(N) = costs N — Nyou (heuristic estimate)

Every node N in the current 7' is assigned a value by the cost function f(N). f(N) is the estimate
for the cost of the best path going from the start node N, vVia N to the goal node Ng,q. The
value of f(IN) may change from cycle to cycle of the iteration.

As mentioned at the beginning of this section, one constraint must be satisfied to guarantee that
the minimum-cost path is found by the A* algorithm. It concerns the heuristic estimate h(NV).

The h function must not overestimate the cost to reach the goal state!

VN € G : 0 < h(N) < h*(N)

The real, but yet unknown costs of the path from the current node N to the goal node Ngoq
are referred to as h*(V), and h is called admissible heuristic. One could say that admissible
heuristics are optimistic. Since A is admissible heuristic and g represents the already known
costs from Ny, to N, f has to be admissible heuristic as well.

A very simple and apparently underestimating choice for the h function is to set it to 0 (h(NV) =
0, VN). This heuristic function is then referred to as non-informed. This version is known as
Dijkstra’s algorithm. For the A* algorithm, used in path search, the Euclidean metric mentioned
earlier is an appropriate choice for A(N). The informed search algorithm best-first search (A*)
IS given priority over breadth-first search (Dijkstra) in this implementation.

Mathematical proofs for the optimality and completeness of the A* algorithm can be found in
Russel and Norvig (1995).%°

15(RusseL AND NORVIG, 1995), pp. 96-101.
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Based on Latombe (1996),¢ an iterative version of the A* algorithm is described below.

The following implementation of the A* algorithm uses a list called OPEN. The OPEN list
contains nodes of G sorted by their f values. This list must support the following five operations:

FIRST(OPEN) This operator determines the node with the smallest f value of OPEN and re-
moves it from the list.

INSERT(N, OPEN) The node N is inserted into the list.
DELETE(N, OPEN) The node N is removed from the list.

MEMBER(N, OPEN) The MEMBER operation returns TRUE if IV is in the list, otherwise it
returns FALSE.

EMPTY(OPEN) This operator returns TRUE if the OPEN list is empty and FALSE in all other
cases.

The algorithm in pseudo-code is shown in algorithm 6.2.17 The parameter list of the algorithm
takes five arguments. The first argument is the graph G with all nodes N marked as unvisited.
Apart from the start and goal node, the heuristic estimate A is specified. The last argument c in
the parameter list of the A* algorithm is a cost function which defines the cost for an arc from
node N to node N’ in G. Therefore, c is the following mapping:

c:NxN—RT
where N is the set of nodes N. The costs are always positive.

The inner for loop in the flowchart of algorithm 6.2 is called the expansion of N. The else if
part deals with the case that the expanded node N’ has already been visited. In this case, N’ is
removed from OPEN and inserted again. This causes the parent pointer of N’ to be set to the
best predecessor. If the current path is ”cheaper” than the last one, the pointer is set to the current
parent V.

6.4.2 Resulting path

The application of the A* algorithm to the T-Graph in figure 6.9 delivers the shortest path for the
example map in figure 6.7. This resulting path, which is coloured in black, is shown in figure
6.10.

16(LATOMBE, 1996), pp. 604-608.
7\bid., p. 606.
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procedure A*(G, Nsarts Ngoats R(N), ¢)
begin
install Ny, into T,
INSERT(Ngiart, OPEN); mark N, Visited,;
while (- EMPTY(OPEN)) do
N <+ FIRST(OPEN);
if (N = Nyoar) then
exit while-loop;
end if
for (every node N’ adjacentto N in G) do
if (V' is not visited) then
add N’ to T with a pointer toward N;
INSERT(N', OPEN); mark N’ visited;
else if (g(N') > g(N) + ¢(N, N')) then
modify T by redirecting the pointer of N’ toward N;
if (MEMBER(XN’, OPEN)) then
DELETE(N’, OPEN);
end if
INSERT(/N', OPEN);
end if
end for
end while
if (- EMPTY(OPEN)) then
return the constructed path by tracing the pointers in 7" from Ng,q; back to Nyyqp;
else
return failure;
end if
end;

Algorithm 6.2: Pseudo-code for the A* algorithm
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Goal

A 4

Start

Figure 6.10: T-Graph with path

If the robot is assumed to be circular-shaped, the map is expanded by the robot’s radius 7 gopot,
as suggested in section 6.2.1. This can lead to an overlap between objects so that gaps which are
impassable for the robot are closed.

The outcome of the expansion procedure is displayed in figure 6.11.

Due to the overlap, the impassable gap between the two objects on the right-hand side is closed.
The plotted path is the result of the A* algorithm’s application to the changed T-Graph.

If one compares figures 6.10 and 6.11 it becomes clear that the usage of map expansion produces
passable tracks for the mobile robot. It is obvious that the example robot in figure 6.11 with the
radius rg.pe; Would not be able to follow the path in figure 6.10.
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N

I‘Robot

Figure 6.11: Expanded map with path

6.5 Software implementation

The introduced algorithms for path planning have been implemented as a C++ software library.
The library includes eleven classes. They can be used for planning a path for the GenBase Il
platform.

A map of the robot’s environment must be provided before a path can be planned. Therefore,
a file has to be created which includes all the line segments the robot must not cross. As an
example, the file with the map data of the cell culture laboratory is shown in figure 6.12. A drawn
map can be seen in figure 7.2. The character ’#’ is placed in front of comments. The software
ignores these comments as well as empty lines. Each line of the file contains the parameters for
one line segment of the map. A line is defined by the coordinates of its start and end point.

After a map file has been created, the library can be used. The hierarchy of the classes is shown
in figure 6.13. The inheritances are indicated by green arrows. The relations are marked by
red lines. The digits at the ends of the red lines indicate the number of instances of the respec-
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#

# Map of the cell culture |aboratory
# at the University of Bielefeld
#

+0. 000 +0. 000 +3.565 +0. 000

+3. 565 +0. 000 +3.565 +5.140
+3.565 +5.140 +2.880 +5.140
+2.880 +5.140 +2.880 +5.515
+2.880 +5.515 +3.565 +5.515
+3.565 +5.515 +3.565 +10. 625

+3. 565 +10. 625 +2.730 +10. 625

Figure 6.12: The figure shows the first part of the file with the map data of the cell
culture laboratory.

tive classes. The graphical representation of the classes in figure 6.13 is reduced to the public
methods and the most important attributes.

An instance of the class Pathplanner has to be created to start path planning process. Its con-
structor is called with the path to the file which contains the description of the map. This file is
used to create an object of the class Map which serves as a basis for generating the configuration
space. It is represented by an instance of the class Maze and it is created using the line expansion
algorithm of section 6.2. All expanded lines of the configuration space are objects of the type
Polygon.

The class Pathfinder searches for a path from a given start to a given goal point using the A*
algorithm on a tangent graph. The search process is started automatically when getPath(...) of the
class Pathplanner is called. GetPath(...) takes the start and goal point of the path as arguments.
The return vector of this method contains the start, the goal and all computed intermediate points.

Most of the classes of figure 6.13 are used for internal computations. They are not explained
in detail here. Furthermore, some methods are not shown in the figure because they were only
used for visualization purposes. For example, the class Pathplanner has methods to provide the
representations of the map, the configuration space and the path. These methods were used to
create figure 7.2.
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Pathplanner Polyline
Map
_map: Map polyPoints: vector<Points>
. * has —
_maze: Maze . 1 hasy 1 mapVecPoly: vector<Polyline> 0..*hasw 1
7path: vector<Point> — getPoints ()
_pt: Pathfinder - - popFront ()
loadM?p{fllename, unit) popBack ()
getPath (xStart, yStart, getPolylines () pushFront (point)
xGoal, yGoal) pushBack (point)
1 1 0.*
Maze Polygon
hasp hasp 1 0.* hasp» 1
_polygons: vector<Polygon>
_precision: Integer
_radius: Integer
getObstacles () 0..*
hasp
has
uses >
1
Pathfinder 1
_start: Point Point
_goal: Point «
_tGraph: Matrix2Dim 0.. hasp» 1| x: Integer
path: vector<Point> _y: Integer
_ ee « |
H < > .. it
_openList: set<Vertex 0 asp getx ()
gety ()
set (start, goal) usesp
getPath () 1
1 has»
has»
1 1 2
Matrix2Dim Vertex Line
_matrix: Integer adjascent: vector<Integer> _start: Point
_size: Integer Tf. Integer _end: Point
generateEmptyMatrix (size) 7g;at' iiiigii crossesLine (line)
elem (i, j) — K g getDistance (point)
. number : Integer
getSize () - getStart ()
_predecessor: Vertex etEnd (
_visited: Bool g
calcF ()
uses»
GeomToolbox
ccw (p0, pl, p2) {static}
distancePointRay (point, rayOrigin,
dirRay) {static}
distancePointSeg (point, startSeg,
endSeg) {static} usesp

getAngle (vectorl, vector2) {static}
segIntersectsSeg(p0, pl, p2, p3) {static}

Figure 6.13: The figure contains the flowchart with the hierarchy of the path plan-
ning classes. The inheritances are indicated by green arrows. The relations are
marked by red lines. The digits at the ends of the red lines represent the number
of instances of the respective classes. The most important attributes and the public
methods are specified.



Chapter 7

Experimental Results

In the previous chapters, different methods for the navigation of the mobile platform GenBase
Il have been introduced. The qualities of these methods are analyzed in this chapter. For this
purpose, two experiments were made. Each experiment was done once with the original soft-
ware genControl which was delivered by the manufacturer genRob, and once with the software
developed in this work (UniBiControl). This allows the comparison of the proposed methods
with commercial software which represents the current state of the art in the field of navigation
of an autonomous mobile robot.

The first experiment investigates the quality of the control system that was introduced in chapter
5 as well as the accuracy of the self-localisation using the mechanisms proposed in chapter 4. The
task is to position the robot platform at a predefined location. The errors of the self-localisation
and control system are analyzed. The second experiment is concerned with the problem of
following a desired path. The genControl software and the control system developed in this work
use the same strategy which is a motion that is divided into three sub-moves. Firstly, the robot
turns to the goal point. Secondly, it tries to move straight to the goal. Finally, it turns into the
desired orientation at the goal point. Since both softwares behave similarly, their performances
can be compared and their different deviations from the desired path can be analyzed.

Both experiments were done in a pilot scale cell culture laboratory which can be seen in figure
7.1. The map that was used is shown in figure 7.2. The positions of the available laser reflector
marks are indicated by blue crosses.

The chapter ends with a conclusion about the experimental results and points out the advantages
and disadvantages of the two softwares.
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Figure 7.1: Cell culture laboratory at the University of Bielefeld
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Figure 7.2: The figure shows a screenshot of the graphical user interface for the
path planning test program. On the right hand side, there is a map of the cell culture
laboratory at the University of Bielefeld where the experiments took place. The map
contains all obstacles and the reflector mark positions which are indicated by blue
crosses.
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7.1 Experiment one: localisation and control

The first experiment analyzes the quality of the used localisation algorithms and the control
system of the robot. Since the input of the control system is the position and orientation obtained
from the self-localisation module, the control system reacts sensitively to all perturbations of that
module.

7.1.1 Experimental setup

The experiment was done in the cell culture laboratory of the Institute of Cell Culture Technology
at the University of Bielefeld. The robot was placed on a marked position in the laboratory. The
coordinates of the position and the orientation of the robot were determined using the respective
localisation software.

The task in the first experiment was to position the robot on a predetermined coordinate with
a predetermined orientation. Therefore, two additional coordinates were calculated. The first
coordinate was a point two metres in the backward direction of the goal orientation. The robot
had to move to this coordinates and turn back into the original orientation. The second coordinate
was an intermediate point in the middle of the line segment to the goal point. The robot had to
stop at this point and had to correct its heading. The last step for the mobile robot was to move
to the goal position and to take in the desired orientation.

The reason for the intermediate point was given by the manufacturer software genControl and
the original task of the mobile robot which is the transport of probe tubes between the different
laboratory devices. During the tests with the mobile robot and the improvement of the softwares
it turned out that the best positioning results with the manufacturer software were received if
the robot moves to the goal point from a point one metre in the backward direction of the goal
orientation. Thus, the first experiment was designed to represent this situation, which reoccurs
in the original scenario, namely the approach to a given goal point and orientation.

After the robot reached the goal point, the position and orientation given by the respective local-
isation software were stored. With the help of two rods at the left front side and the right back
side of the robot, the “real” position and orientation of the robot were measured. In this case
real” means that the marked goal point is assumed to have the coordinates determined at the be-
ginning of the experiment. The coordinates and orientation at the goal point were measured with
respect to this “real” position. Figure 7.3 shows the position of the rods for the measurement.
The dimensions which are needed for the calculation of the position and the orientation can be
found in figure 7.6. The experiment was repeated 50 times with the original manufacturer setup
and 50 times with the software setup of this work.
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Figure 7.3: The position of the measuring rods

7.1.2 Analysis of the control system

The control system works on the output of the self-localisation. The goal is to move the mobile
robot as near as possible to the goal point. Figure 7.4 and 7.5 illustrate the accuracy of the
robot’s controller. The closer the position of the mobile unit at the end of the motion lies to
(z =0,y = 0,9 = 0) the better the controller is.

A closer inspection of figure 7.4 shows that the expansion of the scatter plot in x-direction
is bigger than in y-direction. Since the approach to the goal position took place horizontally
along the x-axis it can be seen that the controller of the genControl software stopped the robot
clearly further before the goal point than the controller of the UniBiControl software. The mean
deviation in x-direction amounts to u, = —8.1 mm with the genControl software and with the
UniBiControl software it amounts to p, = —0.7 mm. The mean deviation in y-direction amounts
to p, = 0.4 mm with genControl and to p,, = 0.8 mm with UniBiControl. Contemplating the
standard deviation around the respective mean values, it follows a value of o, = 7.5 mm in x and
o, = 4.1 mm in y-direction for the genControl software. As can be gathered from figure 7.4, the
values of the UniBiControl software lie closer together. This is reflected by the smaller standard
deviations (o, = 2.2 mm, o, = 0.8 mm). Furthermore, it is of some importance to consider the
maximum error. A deviation from the goal point which is too large leads to a situation in which
the manipulator arm, mounted on the mobile unit, cannot reach certain points anymore.
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self-localisation’s estimate of the position after the motion has stopped
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Figure 7.4: Experiment 1 - The mobile robot had to move 50 times to the goal point
(x = 0,y = 0, = 0) with each software. The figure shows the self-localisation
software’s output of the position when the robot has stopped.

The maximum positioning error for the genControl software is —40.1 mm in x and 8.6 mm in
y-direction. For the UniBiControl software the maximum positioning error results in 5.6 mm in
x-direction and 2.7 mm in y-direction.

Figure 7.5 shows the orientation angle ¢ that the mobile platform has reached at the end of the
motion. The mean value for genControl is p,, = 0.14° and for UniBiControl it is z, = 0.02°.
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Figure 7.5: Experiment 1 - The mobile robot had to move 50 times to the goal point
(z = 0,y = 0, = 0) with each software. The figure shows the self-localisation
software’s output of the orientation when the robot has stopped.

The standard deviation o for the genControl software amounts to o, = 0.86° and for the UniBi-
Control software it amounts to o, = 0.06°. The maximum error of the orientation angle - comes
to 1.57° for genControl and 0.22° for UniBiControl.

7.1.3 Analysis of the localisation

During the execution of experiment one, the position of the mobile unit was measured with the
help of the two measuring rods which are mounted on the robot. For this purpose, a coordinate
system was drawn onto the floor. Figure 7.6 shows the geometrical setup which is necessary for
the determination of the mobile robot’s position and the orientation at the end of the motion. The
positions of the two measuring rods with respect to the world coordinate system is given by the
tWO VECLOIS 7front AN Tpqck. Thus, the robot’s position is determined by

— 1 — —
DProbot = 5 (rfront + rback:)
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rod position front
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® rod position back
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Figure 7.6: The figure shows the basics for calculating the position of the robot’s

centre based on the rod positions.

The orientation of the mobile robot is calculated as follows

—a. — 1 —
(p = arccos (#) = arccos < ) #
2] - [17%]] 0/ {175

where
7, = Rd
with
COS & S1n &
R B [ I }
—SIina CosS«
and

J: (Ffront - ﬁreal)
The angle o between d and 7, is

(283
o = arctan

222 ) = 43.33°
300)

Figure 7.7 contains the robot’s position and figure 7.8 the robot’s orientation which were both
determined with the above method. The mean of the deviation using the genControl software

amounts to p, = —10.1 mm, p, = —1.4 mm and p, = 1.58°.
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measured position obtained my measuring with the external rods
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Figure 7.7: Experiment 1 - The mobile robot had to move 50 times to the goal point
(x = 0,y = 0, = 0) with each software. The figure shows the real position which
has been measured with the help of the measuring rods.

The values for the UniBiControl software are p, = —1.2 mm, pu, = 0.1 mm and p, = 0.23°.
The standard deviations around these means of deviation are o, = 6.9 mm, o, = 1.3 mm and
o, = 1.9° for genControl and o, = 1.6 mm, o, = 0.9 mm and o, = 0.3° for UniBiControl.
If compared with the results in section 7.1.2, the above values show only a very small deviation
in the positioning of the robot. This means that both self-localisation systems deliver a good
estimate of the real position of the mobile unit.
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measured orientation by measuring with the external rods
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Figure 7.8: Experiment 1 - The mobile robot had to move 50 times to the goal point
(zx = 0,y = 0, = 0) with each software. The figure shows the real orientation
which has been measured with the help of the measuring rods

In this context, genControl shows a difference of the mean values of 2 mm in x and 1.8 mm in
y-direction. With UniBiControl the differences are 0.5 mm in x and 0.7 mm in y-direction.

Figure 7.8 shows the real orientation which has been measured with the help of the measur-
ing rods. It can be seen that UniBiControl deviates less than 1° from the desired orientation
(ny = 0.23°, 0, = 0.3°). The genControl software shows a (counterclockwise) tendency of the
orientation angle to positive values (u, = 1.58°, o, = 1.92°).

It is very important that the mobile unit reaches its goal orientation with a preferably small error
since already small errors of a few degrees in the orientation lead to a miss-positioning of the
outstretched arm’s end effector of a few centimetres.
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7.2 Experiment two: accuracy of the trajectory

The second experiment was also carried out in the cell culture laboratory of the Institute of Cell
Culture Technology at the University of Bielefeld. With this experiment, the trajectory of the
mobile robot is compared to a straight line from the start point to the goal point. Again, the
manufacturer software and setup is compared with the software and setup introduced in this
work. As mentioned before, the control systems of both robot setups follow a similar strategy
when the robot moves to a goal point. In both cases, the robot first turns into the direction of
the goal point and then it tries to reach the goal point on a straight line. At the goal point, the
robot turns into the desired goal orientation. In this experiment, the movement along the desired
straight line is surveyed.

7.2.1 Experimental setup

The experiment started at a given position and orientation in the laboratory. The robot moved on
a straight line to its goal point. The distance to the goal point was about 7.5 m. While the robot
moved, the position and orientation values which were obtained from the localistaion software
were stored with a frequency of about 50 Hz. The robots maximum velocity was limited. The
experiment was repeated 40 times, each time with three different velocities. The first run was
done with the maximum possible robot velocity of 0.5 . The second run was done with 66%
and the third run with 33% of the maximum.

7.2.2  Analysis of the trajectories

Figure 7.9 exemplarily shows a trajectory with a covered distance of 7.5 m which was driven
by the mobile platform GenBase II. The velocity in this case Was vy,q, = 0.5 =, It can be seen
that UniBiControl shows no large deviation from the desired straight path. Table 7.1 in section
7.3 contains the accurate values. Experiment two has shown that all trajectories of one software
have a characteristical shape, independently from the velocity of the mobile platform. At certain
spots on the path perturbations in the self-localisation occur. A possible explanation for that is
that some laser reflector marks disappear from the visual field of the robot’s laser range finders
and others appear at the same time.

The deviation of the genControl software, which is visible in particular in the right hand part of
figure 7.9, can be put down to the fact that this software does not try to follow a trajectory but to
go in direction to the goal.

Figure 7.10 contains the orientation angle ¢ during the movement of the mobile platform. The
UniBiControl software shows an angular deviation of up to one degree. The explanation for that
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example of trajectories during experiment two
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Figure 7.9: Experiment 2 - example of a trajectory driven by the mobile robot with
genControl and UniBiControl (original coordinate system is turned 90 degrees clock-
wise).

behaviour is that the software always tries to get back onto the trajectory.

In the context of the analysis of the trajectories in experiment two, the kurtosis of the deviations
from the desired trajectory was computed. The kurtosis specifies how peaked or flat a distribution
is compared to a normal distribution. A value of zero is equivalent to a normal distribution. A
larger value signalizes a peaked distribution and vice versa. The values which result from the
genControl software lie near a normal distribution for all velocities, whereas the values which
result from the UniBiControl software have a larger kurtosis the smaller the velocities get. This
means that the UniBiControl software can follow the trajectory better if the velocity is smaller.

7.3 Summary of the results

The UniBiControl software represents the implementation of the self-localisation and control
mechanisms which have been introduced in this work. The experiments have revealed that this
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robot orientation during experiment two
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Figure 7.10: Experiment 2 - the robot’s orientation during the trajectories shown in
figure 7.9.

software provides a sufficient precision to fulfill the described transportation task in the cell
culture laboratory. In comparison to the genControl software, which was provided in delivery
condition of the mobile platform GenBase Il, the obtained results regarding the precision are
even better. This can be seen in table 7.1 where all results are assembled. It can be expected that
the transportation task benefits from the higher precision of the UniBiControl software.
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Results of the experiments

deviation of the self-localisation software’s position/orientation
from the goal position/orientation

genControl | UniBiControl
x -8.1 mm -0.7 mm
mean p of the deviation from the goal Y 0.4 mm 0.8 mm
% 0.14° 0.02°
x 7.5 mm 2.2 mm
standard deviation o of Y 4.1 mm 0.8 mm
® 0.86 ° 0.06 °
T -40.1 mm 5.6 mm
maximum deviation from the goal Y 8.6 mm 2.7 mm
® 1.57° 0.22°
deviation of the measured position/orientation
from the goal position/orientation
genControl | UniBiControl
x -10.1 mm -1.2 mm
mean p of the deviation from the goal Y -1.4 mm 0.1 mm
® 1.58° 0.23°
z 6.9 mm 1.6 mm
standard deviation o of Y 1.3 mm 0.9 mm
© 1.92° 0.30°
x -51.3 mm 3.9 mm
maximum deviation from the goal Yy -14.3 mm -9.8 mm
© 6.88 ° 0.71°
deviation from the desired trajectory
genControl | UniBiControl
Vmag = 0.5 9.3mm -3.5 mm
mean p of deviation from desired trajectory | vma. =0.363™ 9.3 mm -1.4 mm
Umaz = 0.1815 8.3 mm 0.7mm
Vmaz = 0.5 7.8 mm 4.1 mm
standard deviation o of u Umags = 0.363™ 7.0 mm 3.7mm
Umag = 0.1815 6.3 mm 3.3mm
Umas = 0.5 51.0 mm -52.4 mm
maximum deviation from desired trajectory | vma. =0.363™ 80.1 mm 37.8 mm
Umaz = 0.1815 69.8 mm -44.8 mm
Umas = 0.5 -0.25 4.29
kurtosis Vmas = 0.363™ 0.60 5.61
Umas = 0.1815™ 0.64 11.24

Table 7.1: In the table, the results of the experiments in the Cell Culture Laboratory
are subsumed. The first and second block show the statistical results of the first

experiment, the third block shows the results of the second experiment.




Chapter 8

Conclusion and Future Work

This diploma thesis addresses three important topics in mobile robotics. These are the self-
localisation, the path planning and the control of a wheeled mobile robot. Compared to the
software provided by the manufacturer, improvements have been achieved in position accuracy.
In order to achieve that goal, a precise self-localisation mechanism has been developed. This
mechanism together with a path planning algorithm is the basis for the robot’s capability of
following a certain route through its environment. The results obtained by this procedure provide
an adequate basis for the robot to successfully perform the transport task which it was expected
to carry out in the cell culture laboratory of the University of Bielefeld. Within the scope of
this diploma thesis, however, a lot of alternative approaches could not be tried out. Thus, a
comparison of this work’s methods with others would be desirable for the future. Some direction
for that will be given in the following sections.

8.1 Luocalisation

For achieving improvements in the control system as well as in the path planning module it is
crucial to increase the precision of the self-localisation. A first step in this direction could be the
redesign of the used system-model. Such a refined model would have to overcome the problem
of occasional perturbations that can be observed in the robot’s estimate of its position when new
reflector marks appear within the measuring range of the laser range finders. The design of the
model can be altered to improve the noise immunity of the self-localisation which occurs due to
noise of the measuring devices. A higher noise immunity automatically improves the behaviour
of the motion controllers. Besides improving the model, for example by using higher-order
extended Kalman filters, alternative estimators like particle filters could be implemented.

Another problem of the introduced self-localisation is the lack of global positioning informa-
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tion. The estimates of the robot’s position can be ambiguous. Especially when the features
are distributed symmetrically, the calculation of the position is not unique. Methods like multi-
hypothesis tracking could help to find a solution for this problem.

A valuable extension of the self-localisation module could be further extended by methods which
allow the robot to explore its environment and to generate its own map from scratch. This
problem is referred to as the SLAM-problem.> An attempt at solving this problem is presented
in Dissanayake et al. (2001).?

Another interesting aspect of the self-localisation could be the use of natural features. These
natural features can be calculated from the robot’s measurements. They could be used to replace
the reflector marks which are detected by the laser range finders. A lot of different natural
features are conceivable. For example the intersections of lines in the laser scans or features like
symmetry points in the robot’s environment. In addition, data from other measuring devices like
vision systems could be used.

8.2 Path planning

As mentioned in chapter 6.4, different optimality criteria can be used for the search of the path.
The current path planning module looks for the shortest path. Other applications may need
different criteria such as finding the safest path or the one with the lowest energy consumption.
Furthermore, it would be possible to compose the path of other functions than the line segments
used so far. An example for such a set of functions are splines. This would require a control
system that is able to follow this kind of trajectories. Another matter of interest is the extension
of the collision avoidance. Up to now, the collision avoidance brings the robot to a halt in front
of an obstacle. An obstacle avoidance would be able to compute a detour around the object in
the way. Moreover, the detected obstacle could be added to the map. When planning the next
path, this object could be avoided a priori.

8.3 Control

Apart from an implementation of an obstacle avoidance in the path planning layer, as suggested
in the previous section, an integration into the motion control system is possible. This approach
is mainly used in behaviour based robotics and can be found in Arkin (1998).2 As mentioned
above, a control system which is able to follow a non-linear trajectory is desirable. This controller
has to be able to handle changing set values at its input.

1SLAM = simultaneous localisation and map building
2(DISSANAYAKE ET AL., 2001).
3(ARKIN, 1998).
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M athematical Comments

A.1l Notes for the Kalman filter

1. note: Some features of positive semi-definite (psd) matrices

(a) the diagonal elements are not negative, i.e. > 0

(b) let A be a psd matrix of the size n x n, then for every matrix B of the size m x n it
follows that BABT is psd!

2. note: With trace A” = trace A the following holds

(1 — K,H) (PrH"6KT))" = (PrHT) 6K])" (1 — K,H)" | with (AB)" = BTAT
(A1)

— 6K, (P, HT)" (1 — K, H)"
— 6K, H (P7)" (1 — K,H)"

= §K,HP (1 — K,H)" |P7 = (P;7)" because sym.
3. note
(K,RSK!)" = 6K, (K,R)" (A2)
= 0K,RTK}

= §K,RK} |RT = R because R diag. matr. and sym.
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A.2 Homogeneous Transformations

The concept of homogeneous transformations was introduced in Forest (1969). The basis of
the concept are the homogeneous coordinates. Forest introduced them into computer graphics
to overcome problems in matrix calculation. The idea is to represent an n-dimensional space
by n 4+ 1 dimensions. A point (z,y, z) in the three-dimensional space is represented by a point
(hz, hy, hz, h) in the four-dimensional space, where h is an arbitrary number. In robotics, a
direct mapping between the spaces is used. Thus, A is set to one. The additional coordinate A
can be seen as a scaling factor. This was needed in computer graphics, but may also be useful if
the computational capacity of a computer is limited.

The transformations and coordinates are referred to as homogeneous because the representation
for a class of objects involves no explicit constant. For instance, a two-dimensional line which is
given by the equation y = az + b becomes the homogeneous equation ax — y + bz = 0, where
z = 1. This equation is a three-dimensional representation of a line.

Homogeneous coordinates have the same meaning if each component, including the scale factor,
is multiplied by a constant. Let 7, 7, and & be unit vectors along the z, y and z axis. Then,

T=ai+bj+ck

IS a point vector. In homogeneous coordinates it is represented as a column matrix:

x aw a
o bw b
Vv = y = =
z cw c
w w 1

where w = 1.

The use of homogeneous coordinates solves a problem of main interest in robotics. While a 3 x 3
matrix can describe the rotation, scaling and shear of a three dimensional object, a translation can
not be described. The introduction of an extra column can solve the problem, but leads to a matrix
that is not square and, therefore, does not have an inverse. This difficulty can be overcome by
defining a 4 x 4 transformation matrix which describes the rotation, translation, shear, projection,
local scaling and overall scaling transformations between two views of an object.

rotation | translation |
T_ shearing | | 3x3 | 3x1
| local scaling | N |
projection |  scaling 1x3 | 1x1

In contrast to computer graphics, in robotics the only interest lies in rotation and translation
transformations. Since the scale factor is one, the four-dimensional transformation maps directly

L(FOREST, 1969).
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into three dimensions. Thus, transformed homogeneous coordinates are the same as transformed
ordinary coordinates.

|
T_ rotation | translation
a |

0 | 1
A general transformation matrix, corresponding to a translation by a vector p is:

Trans(pz y Dz pz) -

OO O
O O = O
=
S

Rotation is more complex. Rotation about a general axis can be decomposed into a sequence of
rotations about the coordinate axes. There are three rotation transforms corresponding to rotation
about the z, y and z axes by an angle ¢:

_ 1 0 0 0 T
|0 coste) —sin(e) o
Rot(z,¢) = 0 sin(¢) cos(¢) O
L 0 0 O ! 3
— COS((b) 0 sm(gb) 0 7]
0 1 0 0
ROy, @) = | _gin(g) 0 cos(é) 0
0 0 0 1]
[ cos(¢) —sin(¢) 0 0]
Rot(z,¢) = Smo((b) Cosb((b) 8 8
I 0 0 01 i

A detailed explanation with examples in two- and three-dimensional space can be found in Mc-
Kerrow (1993).2

2(McKERROW, 1993), chapter 3.
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A.3 Moments of distributions

For the examination of the experiments in chapter 7, the mean, the standard deviation and the
kurtosis of the measured values have been calculated. They represent different moments of sta-
tistical distributions.

The mean is referred to as the first moment. It is calculated as follows:

1 N
F=N Z Zj
j=1
where x4, ...,z are the measured values. The mean y estimates the value around which central

clustering occurs.

The width of a distribution is characterized by the standard deviation. It is referred to as the
second moment and defined by:

1 N
g = mZ(%‘ — )’
j=1

J

The peakedness or flatness of a distribution in comparison to a normal distribution is described
by the fourth moment. It is termed kurtosis.

st el

The —3 term makes the kurtosis zero for a normal distribution. For a flat distribution, the value
IS negative. A positive value describes a peaked distribution.

More details on the moments of a distribution can be found in Press et al. (1988).

3(PRESS ET AL., 1988), pp. 472-476.
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Poetry

B.1 The Sorcerer’s Apprentice

The Sorcerer’s Apprentice by Johann Wolfgang von Goethe 1779, translation by Edwin Zeydel,
1955:

That old sorcerer has vanished
And for once has gone away!
Spirits called by him, now banished,
My commands shall soon obey.
Every step and saying
That he used, I know,

And with spirits obeying
My arts | will show.

Flow, flow onward
Stretches many
Spare not any
Water rushing,
Ever streaming fully downward
Toward the pool in current gushing.
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Come, old broomstick, you are needed,
Take these rags and wrap them round you!
Long my orders you have heeded,

By my wishes now I’ve bound you.
Have two legs and stand,

And a head for you.

Run, and in your hand
Hold a bucket too.

Flow, flow onward
Stretches many,
Spare not any
Water rushing,
Ever streaming fully downward
Toward the pool in current gushing.

See him, toward the shore he’s racing
There, he’s at the stream already,
Back like lightning he is chasing,

Pouring water fast and steady.
Once again he hastens!
How the water spills,
How the water basins
Brimming full he fills!

Stop now, hear me!
Ample measure
Of your treasure
We have gotten!
Ah, | see it, dear me, dear me.
Master’s word | have forgotten!

Ah, the word with which the master
Makes the broom a broom once more!
Ah, he runs and fetches faster!

Be a broomstick as before!

Ever new the torrents
That by him are fed,

Ah, a hundred currents
Pour upon my head!
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No, no longer
Can | please him,
I will seize him!
That is spiteful!
My misgivings grow the stronger.
What a mien, his eyes how frightful!

Brood of hell, you’re not a mortal!
Shall the entire house go under?
Over threshold over portal
Streams of water rush and thunder.
Broom accurst and mean,
Who will have his will,

Stick that you have been,
Once again stand still!

Can | never, Broom, appease you?
I will seize you,
Hold and whack you,
And your ancient wood
1’1l sever,
With a whetted axe I’ll crack you.

He returns, more water dragging!
Now I’ll throw myself upon you!
Soon, 0 goblin, you’ll be sagging.
Crash! The sharp axe has undone you.
What a good blow, truly!

There, he’s split, | see.

Hope now rises newly,

And my breathing’s free.

Woe betide me!
Both halves scurry
In a hurry,
Rise like towers
There beside me.
Help me, help, eternal powers!
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Off they run, till wet and wetter
Hall and steps immersed are lying.
What a flood that naught can fetter!
Lord and master, hear me crying! -

Ah, he comes excited.
Sir, my need is sore.
Spirits that I’ve cited

My commands ignore.

’To the lonely
Corner, broom!
Hear your doom.
As a spirit
When he wills, your master only
Calls you, then ’tis time to hear it”
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Editorial

This diploma thesis is the result of a team work. The chapters were composed by Axel Schneider
and Daniel Westhoff.

Axel Schneider wrote:
In chapter 1: section 1.1

In chapter 2:  section 2.1
In chapter 3:  section 3.1
In chapter 4:  sections 4.1 and 4.3
In chapter 5:  sections 5.1 and 5.3
In chapter 6:  sections 6.1 and 6.3
In chapter 7:  sections 7.1 and 7.3

Daniel Westhoff wrote:
In chapter 1: section 1.2

In chapter 2:  sections 2.2 and 2.3

In chapter 3:  section 3.2

In chapter 4: section 4.2

In chapter 5:  sections 5.2 and 5.4

In chapter 6: sections 6.2, 6.4 and 6.5
In chapter 7:  section 7.2

Chapter 8 and the appendix were written by Axel Schneider and Daniel Westhoff together.
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