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Abstract—1In this paper we propose a novel concept for the
programming of multi-modal service robots. The presented soft-
ware architecture eases the development of high-level applications
for service robots. The software architecture is based upon the
Roblet-Technology, which is a powerful medium for robots. It
introduces the possibility to develop, compile and execute an
application on one workstation. Since the Roblet-Technology uses
Java the development is independent of the operation system.
With the feature of running programs as a distributed software,
the framework allows running algorithms which need great
computation power on different machines which provide this
power. In this way, it greatly improves programming and testing
of applications in service robotics. The concept is evaluated in the
context of the service robot TASER of the TAMS Institute at the
University of Hamburg. This robot consists of a mobile platform
with two manipulators equipped with artificial hands. Several
multimodal input and output devices for interaction round off
the robot.

I. INTRODUCTION

The field of service robotics has seen a lot of advances over
the last years, but still lacks usability and robustness. We think
that one reason for this is the absence of a unifying software
architecture that handles the miscellaneous challenges which
the software engineers encounter. These challenges vary from
the development of distributed applications to the handling
of the diversities of different hardware platforms present in
service robotics.

In this paper we propose a framework that meets these
challanges and enables a programmer to develop advanced ap-
plications for service robots. A main feature of the framework
is the ability to integrate existing solutions to specific robotic
problems. We will show that it is possible to encapsulate
libraries for motion control for manipulators as well as for
mobile robots. A variety of hardware devices connected to the
service robot will be integrated into the architecture. A layer
of abstraction will generalize the access to these devices. Thus,
developed applications can be transferred to other robotic
systems without changes.

The proposed approach is applied to the service robot of
the TAMS Institute at the University of Hamburg. The TAMS-
Service-Robot (TASER) is built from standard components. It
is a mobile robot with two manipulators and a multi-modal
man-machine interface. Figure 1 shows TASER. The robot
operates during normal workdays in an office environment. It
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Fig. 1. TASER, the mobile service robot of the Institute TAMS at the
University of Hamburg.

is used as an experimental platform to point out the usability
of the proposed approach.

The remainder of this paper is organised as follows: In
section II an overview of existing software architectures in
robotics is given. Section III gives a description of the hard-
ware of TASER and shows how the resulting problems occur
in service robotics in general. The next section introduces the
software architecture and how the hardware is encapsulated
by the proposed framework. In Section V some preliminary
experimental applications with our robot are presented. Section
VI gives a conclusion and an outlook on future work.

II. RELATED RESEARCH

This section gives an overview of existing software archi-
tectures for service robots. Recently, a workshop during the
2004 conference on Intelligent Robots and Systems (IROS)
tried to list the various research activities in the field of robotic
middleware [1]. In the following, some of these activities are
discussed. Besides, further related research projects are stated.



The OROCOS project started in 2000 as a free software
project due to the lack of reliable commercial robot control
software [2]. It is devided into two decoupled sub-projects:
Open Realtime Control Services and Open Robot Control
Software. The first one is a real-time software framework for
applications for machine control. The second one is a set of
libraries and an application framework including generic func-
tionality mainly for manipulators. Support of mobile robots is
still in its early stages.

In 2004 the Orca project emerged from the OROCOS
project [3]. It adopts a component-based software engeneering
approch using Ice' for communication and the description
of interfaces. The project’s goals are to enable and to sim-
plify software reuse and to provide a generic repository of
components. The use of different middleware packages for
inter-component communicaton is extensivly discussed on the
project’s home page.? Beside writing custom middleware, the
use of CORBA and XML-based technologies is compared
to Ice. Orca is available for various operating systems and
compiles natively.

[4] introduces the Player/Stage project, a client-server
framework to enable research in robot and sensor systems. It
provides a network interface to a variety of robot and sensor
hardware and to multi-robot simulators. Multiple concurrent
client connections to the servers are allowed. Client applicati-
ons connect over TCP sockets. The project’s server software
and the simulators are limited to unix-like operating systems.

In [5] MARIE is presented, a design tool for mobile and
autonomous robot applications. It is mainly implemented in
C++ and it uses the ADAPTIVE Communication Environment
(ACE)? for communication and process management.

In 2002 Evolution Robotics introduced the Evolution Ro-
botics Software Platform (ERSP) for mobile robots [6]. It is
a behaviour-based, modular and extensible software available
for Linux and Windows systems. The main components that
are included are vision, navigation and interaction.

In [7] a service robot for a biotechnological pilot laboratory
is presented. The mobile platform of this robot is equal to parts
of TASER which is presented in this paper. A seven degrees-
of-freedom arm is mounted on top of the mobile platform.
The system is designed to take samples from a sampling
device, handle a centrifuge, a fridge and other biotechnological
equipment and fullfil the complete process of sample manage-
ment. It releaves the personel of the laboratory of monotonous
time consuming tasks. Nevertheless it operates in a standard
laboratory with standard equipment. An easy-to-use script
language is proposed to define high-level work sequences.
The scripts are parsed by the robot’s control software and
the robot fullfils the defined task. This encourages the idea of
simplifying the programming of robots but lacks the flexibility
of a widespread programming language including network
programming for distributed systems.

Uhttp://www.zeroc.com
Zhttp://orca-robotics.sourceforge.net
3http://www.cs.wustl.edu/~schmidt/ACE.html

III. ROBOT-HARDWARE FOR MULTI-MODAL
INTERACTION AND SERVICE TASKS

A lot of service robots which are described in literature have
in common that they are built from special hardware. Partly,
the hardware is designed for certain robot systems only.

One of the particular objectives of the robot TASER intro-
duced in this paper is to assemble it mainly from off-the-shelf
hardware. This guarantees that most of the solutions developed
for this robot can be transferred to other systems. Two further
advantages are that damaged parts are easily exchangeable and
for most parts of the hardware already existing programs and
libraries are used. The main hardware parts of the system are:

o a mobile base including the power supply*,

o two robot arms with six degrees of freedom,

« two three-finger robotic hands for manipulation,
¢ a stereo vision system including a pan-tilt unit,
« an omnidirectional vision system,

« a monitor with loudspeakers for interaction and
o one Pentium IV computer for control.

The onboard computer contains additional interface hard-
ware, such as: a high-speed serial interface, an ARCNET
interface, a CAN interface, a frame grabber and a wireess
network adapter. As operating system of the computer a
standard Linux derivate is used.

The software architecture introduced in section IV will
encapsulate the different components of TASER’s hardware.
Therefore, these components are analysed in detail in the
following subsections. Their prerequisites, limitations and par-
ticularities constitute the foundations of many design decisions
for the software architecture. They are presented here since
they examplarily show difficulties which are found similarly
met by other service robotic platforms.

A. Mobile Platform

The mobile platform of TASER is a modified MP-L-655
from NEOBOTIX® with a special extension to mount two
robot arms. The platform is equipped with a differential drive
with integrated wheel encoders, two laser-range finders and
a gyroscope for navigation. The parts are accessed via a
Controller Area Network (CAN). The mobile platform is con-
trolled by a C/C++ application developed in [7] and enhanced
for TASER. It provides a TCP/IP interface to trigger motion
commands. Motion commands allow savely moving the robot
forward or backward over a given distance and to rotate the ro-
bot to a given orientation. Additionally, pose information from
the localization algorithm or measurements from the sensors
can be requested. The localization algorithm incorporates an
extended Kalman filter and reaches an accuracy of +1 c¢m in
position and +1 in orientation.

4The service robot is powered by eight lead-acid batteries which supply a
main power of 48 Volts with the total power of 3.84 kW h. This guarantees
an overall independent working time of approximately eight hours.

Swww.neobotix.de



B. Manipulator System

The manipulator system of TASER currently consists of two
Mitsubishi Heavy Industries PA10-6C robot arms. A BH-262
BarrettHand is attached as a tool to each arm. With this design
the system attains a humanlike workspace and silhouette.

The PA10-6C has six degrees of freedom (DoF) and a
kinematic length which is similar to the length of a human
arm. The manipulator is capable of carrying a payload up to
10 kg although its weight is only about 38 kg®. It is accessed
through an ARCNET interface and controlled by the Robot
Control C Libraray (RCCL). RCCL was developed by [8]. [7]
extendend RCCL to control the PA10 robot series.

The BarretHand is a three-finger robot hand with 8§ DoF.
The inner joints of each finger are coupled to the outer by a
TorqueSwitch™similar to a human hand [9]. Two fingers are
linked by a spread joint. A serial interface and the controllers
for the four motors are integrated in the housing of the hand. A
self-programmed C++-class library controls the BarrettHand.
A real-time control cycle is integrated in the library to make
the input from the force sensors of the hand available to other
applications.

Another self-programmed library encapsulates the arm con-
trol and the BarrettHand control. It allows a coupling of the
force-sensor measurements of the hand with the arm control.
This way, the arm motions can be force-controlled and supervi-
sed. The library provides high-level access to the manipulator
system. High-level functionality includes cartesian motions
of the manipulators and a series of different grasps with
the hands. Figure 2 illustrates two of the available grasps.
Additionally, some predefined complex motions and work
sequences are available.

A micro-head camera is mounted on each palm of the
BarrettHand. The camera is used as an input device for visual
servoing, to fine-position the arm and hand when operations
are performed.

C. Interaction

The Robot is equipped with a versatile multimodal interface
for human-robot interaction which uses video, audio and
laser range data gathered by the robots active vision system,
omnidirectional cameras, microphones and laser-range finders.
The passive setup does not interfere with the environment
besides the robot itself. There is no need for special hardware
that is cumbersome to setup and use like data gloves or
magnetic field sensors. The interface is intended to make the
interaction between the robot and humans simpler and more
intuitive.

The main sensors for the interaction are several camera
systems mounted on the robot. Beside the micro-head cameras
on the hands, the system has a stereo-camera system mounted
on a pan-tilt unit. The third vision system of the robot is
an IEEE1394-camera that is combined with an hyperboloidal
mirror. This combination forms the omnidirectional vision
system.

OThis is the weight when running the arm at a power of 100 Volts. We
use 48 Volts so the payload might be less than 10 kg

(b)

Fig. 2. The images show different grasps that can be accomplished by the
BarretHand. These grasp are available as high-level functions through the
library encapsulating the control software of the BarretHand.

IV. SOFTWARE ARCHITECTURE

In the previous section we introduced some of the capa-
bilities of TASER’s different subsystems. In this section we
propose a novel software architecture to ease the development
of high-level programs combining the functionality of robotic
subsystems.

A. Roblets

The basics of the proposed framework are realised with Java
and use Roblet-Technology, a concept firstly introduced in
[10]. Roblet-Technology is a client-server architecture where
clients can send parts of themselves, referred to as Roblets,
to a server. The server, referred to as Roblet-server, then
executes the Roblets with well-defined behavior in case of
malfunctions. Notice that not only data is transmitted between
the client and server but complete executable programs. This
can be compared to Java Applets but with the difference that
Roblets are not downloaded but sent. Complex setups can
consist of multiple client applications and Roblet-servers. A
Roblet terminates if the execution of its code finishes normally
or throws an exception. Exceptions are sent back to the client
application. In addition, a Roblet can be terminated by a client
application remotely or by the Roblet-server directly. After
a Roblet terminates, the Roblet-server resets itself to a well
defined state.

Roblet-Technology is applicable to all kinds of distributed
systems but it has several features that make its integration into
robotic applications useful. In general, high-level applications
in service robotics are mostly distributed systems. Besides one
or multiple mobile robots, there are visualisation- and control
applicatons that run on workstations in a local area network.
Sometimes there is no direct access to the robot systems via
keyboard, mouse and monitor but only through a wireless
network. Roblet-Technology introduces the possibility to de-
velop, compile and execute an application on one workstation.
When the application is executed it will send parts of itself to
available servers and spread in the local network. Roblets may
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The software architecture of the presented robotic system: Roblet-servers (RS) are used to provide a hardware abstraction layer. Generalization

is realized by this hardware abstraction. Distributed applications are independent of the particular hardware of the robot system. Some Roblet-servers and

connections are left out for clarity.

send parts of themselves to other servers as well. The network
communication is hidden from the programmer by the Roblet
library, which simplifies the overall development. That means,
the network is transparent and developing distributed appli-
cations based on Roblet-Technology is like developing one
application for one workstation. Access to the remote servers
is encapsulated in a client library, reducing the execution of a
Roblet on the remote system to one method call.

B. Modules

For robotic applications we propose modules to extend the
basic Roblet-server provided by the Roblet framework. A
module is loaded when the Roblet server is started. It is meant
to encapsulate a class of similar functionality. For the robot
TASER we developed several modules: One module merges
the functionality of the mobile platform, a second module
wraps the manipulator system including the robot arms and the
hands. There are modules for the different vision systems, the
pan-tilt unit, a speech module and other parts of the interaction
subsystem. Figure 3 gives an overview of the main parts
of the current software architecture for TASER. The system
incorporates several smaller Roblet-servers and multiple client
applications not shown in the figure for clarity. Notice that
the map server and the pathplanning server don’t run on the
robot’s control computer but on a workstation in the local
network. This allows the integration of information gathered
by multiple robots. For example, in the case of dynamic
map adjustment this relieves the robot’s onboard computer of
some computationally expensive tasks which need no real-time
capabilities.

C. Units

Modules are further devided in units. Units are Java interfa-
ces that are implemented within the modules. Units build the
hardware abstraction layer in our framework. For example, a
module encapsulates the localization subsystem of a mobile
robot and a Roblet wants to query the current pose estimate’
of the robot. Then the module would implement a unit which
defines a method to get the pose. On another robot there
may be another localization system encapsulated by another
module. But, if the module implements the same unit, the
same roblet can be executed on both robots and works without
changes. Nonetheless, special features of a subsystem are
made available to Roblets if module-specific units, e.g. to
change special parameters of a subsystem, are implemented.
Therefore a roblet has only access to units, it does not know
anything about a module and a module’s implementation of
the interface. The whole concept is strictly object-oriented.

By introducing units, the framework is able to generalize
access to similar classes of subsystems without loosing ac-
cess to their special features. Additionally, units introduce a
possibility of versioning into the system. If new features are
integrated into a module then new units will be introduced. As
long as older units are still available, all client applications and
their Roblets using these old units still work. This has proven
to be of great use since complex applications often consist of
dozens of client applications and Roblet-servers. A transition
to new units can be accomplished step by step for each client
application.

Figure 4 shows a chart of the structure of a Roblet-server.

7A pose is the triple of 2D position coordinates and the robot’s orientation.
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Fig. 4. The chart shows the structure of a Roblet-server and how it hides
the hardware from a Roblet.

D. Platform Independence

There were several reasons to use Java to implement the
concept of Roblet-Technologie: First of all, Java virtual ma-
chines and compilers are available for a variaty of different
platforms from embedded system over PDAs to workstation
computers. All these different systems can be found in the
field of robotics. Since Java source code is compiled into
bytecode, the programs can be compiled on any of these
systems and executed on another system without change.
Besides, Java provides a vast standard library available on all
of these systems. The standard libraries include techniques
for network communication like RMI or Jini used within the
Roblet framework. These well-tested libraries ensure reliable
operation of the framework since they are used in millions of
internet applications as well.

In contrast, using other programming languages like C/C++
would require the compilation of the source code for each
target machine. Additional libraries, e.g. CORBA, Ice or ACE,
are required for network communication, which demand addi-
tional knowledge of the programmer. Further on, these libraries
may sometimes be only available for a subset of systems
present in a robotic scenario. In future, the .NET framework
from Microsoft may become an alternative to Java since it
also compiles source code into a bytecode first. Nontheless,
to date .NET is only available for Windows platforms. The
open-source projects implementing .NET for other platforms
do not provide full support yet.

Since Java has no real-time capabilities, programs written
within a Roblet are not intended to contain real-time con-
trol loops. There exists a specification for a real-time java
virtual machine but at present no implementation [11]. The
Roblet framework allows less skilled programmers to design
and develop robotic applications without in-depth knowledge
about the used subsystems. First experiences using the Roblet
framework in lectures for graduate students have proved this.

V. APPLICATIONS IN SERVICE ROBOTICS

In this section we will describe two preliminary experi-
mental applications which emphazise the capabilities of the
proposed architecture. The applications control TASER when
it accomplishes high-level tasks using a combination of its
various components.

The first example is a combination of localization, planning
of paths, object manipulation and interaction where the robot
is instructed to operate a light switch. An operator chooses a
light switch and commands the robot via speech commands or
an interactive dialog to operate it. The application uses various
Roblet-servers shown in figure 3.

First, a Roblet on the Roblet-server for the speech IO
informs the client application that a light switch is to be
operated by the robot. Then the position of the light switch
which is stored as a point of interest in a map is requested
from a map server. This Roblet-server encapsulates a database
in which map elements like obstacles and points of interest
are stored. Multiple applications can get, alter or add map
elements of the database concurrently through this Roblet-
server. Then, a Roblet is sent to the pathplanning server to get
a path to the light switch. The Roblet sends a new Roblet to the
robot. There, the new one drives the robot to a suitable position
at the light switch, so that the arm can reach the switch.
The position of the arm relative to the switch is obtained
form a method call to the arm-operations library which is
provided by the corresponding Roblet-server. By solving the
kinematic chain, the robot computes a position and orientation
suitable to operate the switch. After this position has been
reached by the robot arm, a Roblet tries to fine-position the
manipulator in front of the light switch with the hand camera
by visual servoing. A seperate Roblet-server for the hand
camera provides positioning errors calculated on the observed
images. When the arm is centered in front of the switch, an
approach move is made by the arm which is force controlled
by sensor input of the BarrettHand. The sensors of the hand
are precise enough to stop the movement of the arm when the
finger touches the switch. In the final step the finger operates
the switch. By using a final movement of the finger, even
switches like the double-switch shown in figure 5(a) can be
operated independently.

The second example is given by the task of object grasping
and transport. The user can advise the robot to fetch and
carry objects lying on a table via an interactive dialog. Each
source of information about humans interacting with the robot
is encapsulated into its own Roblet-server and can thereby
be employed by Roblets. The robot plans its path to the
object using the Roblet-server for pathplanning. After reaching
a position suitable for object grasping, the robot tries to
identify the object by means of object recognition. In case of
ambiguities the interaction system is used with other Roblet-
servers to resolve the situation. For example, if the robot
cannot distinguish objects on the table, it uses the active vision
system to recognize pointing gestures and gaze to resolve the
position the manipulator of the robot is intended to move to.
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instructed to graps a cup by speech and gesture.
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Such a situation is shown in figure 5(b). Additionally, the user
can teach the robot new grasping motions and grasps [12].

When the object is successfully recognised, the robot selects
a suitable grasp for the object from an internal grasp database
and executes it. After grasping the object the robot moves
the manipulator back into a safe transporting position. If the
transport position has influence on the security outline around
the robot, this outline is modified and a path to where the
object is to be placed will be calulated based on the new
outline. When the final position has been reached the robot
will set down the grasped object and is available for new tasks
again.

Both examples incorporate serveral different Roblets. In
both cases the programmer only had to concentrate on the
overall work sequence, a still not trivial task. The complex
control of the individual actions accomplished by the service
robot were only triggered through the various Roblet-servers.
The subsystems hidden by the servers executed the control
autonomously. Therefore, the Roblet framework introduces a
seperation in the development of service robotic applications.
On the one hand, there are close-to-hardware programmers
providing high-level functionality through Roblet-servers. On
the other hand, there are task-oriented programmers using mul-
tiple Roblet-server to create complex distributed applications
for service robotics.

VI. CONCLUSION

The presented software architecture reveals a possibility to
build high-level applications for service robots using standard
components of the robot as well as specialized hardware. The
software architechture of the robot based upon the Roblet-
Technologie is a powerful medium for robots. The feature of
running client programs as a distributed software offers the
possibility to run algorithms which need great computation
power on different machines which provide this power. The
next step will be to implement further software to improve
the usability of the robot system and create a toolbox of re-
usable program parts. In this step the variety of the high-
level functions like object grasping and multimodal interaction
will be increased. First results for this are shown in [12].
Furthermore, the possibilities of autonomous navigation and
map building will be extended.
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