

snake-like robot

snake-like robot

LI Guoyuan

Department Informatics, Group TAMS

January 7, 2010

Outline

Outline

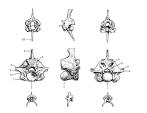
Snakes in the real world snake-like robots inspired from the real world Researches of snake-like robots Classification of snake-like robots Control approaches of snake-like robots Conclusion

Snakes in the real world

MIN Faculty Department of Informatics

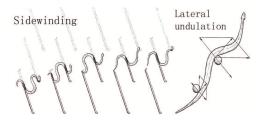
snake-like robot

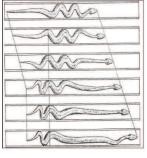
Snakes and other limbless animals

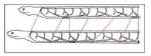


Snakes skeletal structure

- Skull
- Backbone
 - Consist of 100-400 vertebrae
 - Allow rotation of 10-20 degrees in the horizontal plane, and between 2-3 degrees in the vertical plane
 - Act as compliant universal joints
- Ribs

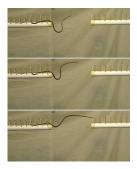





Forms of snake Locomotion

- Lateral undulation
- Sidewinding
- Concertina
- Rectilinear

Concertina


Rectilinear

Advantages of snake locomotion

- Easy to move through thin holes and gaps
- Able to climb up and over obstacles
- Versatile and can act as both locomotors and manipulators
- Stable gaits for locomotion

Outline

Snakes in the real world

snake-like robots inspired from the real world

Researches of snake-like robots

Classification of snake-like robots Control approaches of snake-like robots Conclusion

Research groups

- Adaptive Cord Mechanism (ACM)
- M-TRAN
- Polybot
- CMU
- Amphibot
- NTNU Aiko

snake-like robot

MIN Faculty

Department of Informatics

Features of snake-like robots

- Stability
 - Low center of mass
 - Not lift their bodies off the ground much during locomotion
- Terrainability
- Good traction
 - Distribution of mass
 - Large contact area
 - Forces can be below the thresholds of the plastic deformation of the soil
- High redundancy
 - Loss of short segments would still permit mobility and maneuverability

Applications

- Exploration
 - Extreme terrains
- Inspection
 - Determination for pipe blockage
 - Nuclear reactor detection
- Medical technology
 - Minimally-invasive surgery
- Search and rescue
 - Mine accident probe
 - Survivors search from disasters
- Reconnaissance

snake-like robots inspired from the real world - Classification of snake-like robots

Outline

Snakes in the real world snake-like robots inspired from the real world Researches of snake-like robots Classification of snake-like robots Control approaches of snake-like robots

MIN Faculty Department of Informatics

snake-like robots inspired from the real world - Classification of snake-like robots

snake-like robot

Classification of snake-like robots

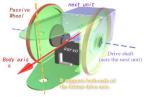
- Passive wheels
- Active wheels
- Active treads
- Undulation using body waves
- Undulation using linear expansion

snake-like robo

snake-like robots inspired from the real world - Classification of snake-like robots

I: Robots with passive wheels

- Design
 - Place small wheels on casters at the bottom of each link, facing in the tangential direction of the length of the robot
- Function
 - Using passive wheels to resist lateral movement of the robot's segments
- Locomotion
 - Lateral undulation
- Examples
 - ACM family
 - Gavin Miller's robots
 - Amphibot


snake-like robot

snake-like robots inspired from the real world - Classification of snake-like robots

ACM family

- ACM III
- ACM R2
- ACM R3
- ACM R5

snake-like robots inspired from the real world - Classification of snake-like robots

Gavin Miller's robots

- S1-S6
- Utilize passive wheels at the bottom to assist in movement using a lateral serpentine gait

S5 Diagram

snake-like robots inspired from the real world - Classification of snake-like robots

II: Robots with active wheels

- Motivation
 - Main propulsion of a moving snake came from hundreds of tiny scales that are on the bottom side of the snake
- Design
 - Each unit is supported by an independently powered single wheel, which is driven by motors
- Locomotion
 - Rectilinear motion
- Examples
 - Koryu-II
 - ACM-R4

snake-like robot

snake-like robots inspired from the real world - Classification of snake-like robots

III: Robots with active treads

- Design
 - Utilize powered treads to traverse extremely rough terrain
- Function
 - Increase contact area
 - Provide propulsion
- Locomotion
 - Rectilinear motion
- Examples
 - IRS soryu
 - OmniTread OT-4
 - JL-I
 - Moira 2

snake-like robots inspired from the real world - Classification of snake-like robots

snake-like robot

IV: Undulation using body waves

- Design
 - modular robots
 - Each module consists of a single servomotor, which provided the torque to move and maintain angles
- Function
 - Using pure undulation in body shape to generate waveforms
- Locomotion
 - Lateral undulation, Sidewinding, Concertina, Rectilinear...
- Examples
 - M-TRAN III
 - CMU's snake robot
 - NASA's snakebot

۰...

snake-like robots inspired from the real world - Classification of snake-like robots

V: Undulation using linear expansion

- Motivation
 - Muscular contractions are capable of producing tensions between the vertebral column and the ventral skin and thus propel the ventral surface forward against frictional resistance
- Design
 - Modular robot
 - Contracting and expanding
 - Connecting and disconnecting
- Locomotion
 - Rectilinear motion
- Examples
 - Crystal robot
 - Telecubes

Outline

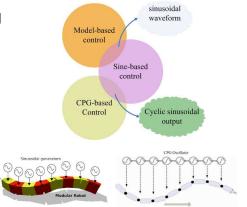
Snakes in the real world

snake-like robots inspired from the real world

- Researches of snake-like robots
- Classification of snake-like robots

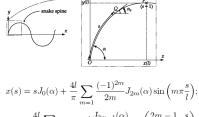
Control approaches of snake-like robots

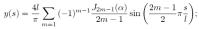
Conclusion

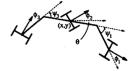

MIN Faculty Department of Informatics

Control approaches

- Model-based control
- Sine-based control
- CPG-based control




snake-like robot


snake-like robots inspired from the real world - Control approaches of snake-like robots

Model-based control

- Use kinematical or dynamic models of snake-like robot to design control laws for gait generation
- Offer a way to identify fastest gaits for a given robot by using kinematical constraints

A model for the kinematic snake

serpenoid curve

snake-like robots inspired from the real world - Control approaches of snake-like robots

Model-based control (cont')

- Advantage
 - Useful for helping to design controllers
- Limitations
 - Not always suited for interactive modulation by a human operator
 - Performance deteriorate when models become inaccurate
- Example
 - NTNU Aiko

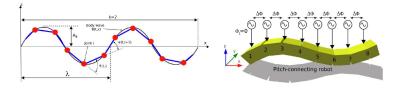
Sine-based control

Use simple sine-based functions for generating traveling waves

- Advantages
 - Simple expression
 - Explicitly defined important quantities such as frequency, amplitude and wavelength

$$\varphi_{i}(t) = A_{i}sin\left(\frac{2\pi}{T_{i}}t + \phi_{i}\right) + O_{i} \quad i \in \{1...M\}$$

Symbols	Descriptions	Range
$\varphi_i(t)$	Bending angle of the module <i>i</i>	[-90,90] degrees
A_i	Amplitude of generator <i>i</i>	[0,90] degrees
$T_i(t)$	Period of generator i	Time units
$\phi_i(t)$	Phase of generator <i>i</i>	(-180,180]
<i>O</i> _i	Offset of generator i	[-90,90] degrees
М	Number of modules of the robot	M>=2

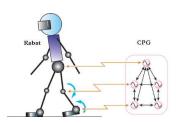

snake-like robot

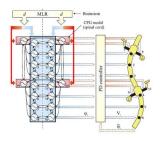
snake-like robots inspired from the real world - Control approaches of snake-like robots

Sine-based control (cont')

Disadvantages

- Not offer simple ways of integrating sensory feedback signals
- Lead to discontinuous jumps of setpoints during online modifications
- Example
 - TAMS modular robot

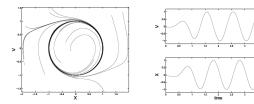



snake-like robot

snake-like robots inspired from the real world - Control approaches of snake-like robots

CPG-based control

- What is CPG?
 - Central pattern generators (CPG) are neural circuits found in both invertebrate and vertebrate animals that can produce rhythmic patterns of neural activity without receiving rhythmic inputs. (Wikipedia)



CPG-based control (cont')

- Interesting properties
 - Exhibit limit cycle behavior
 - Suited for distributed implementation
 - Use a few control parameters
 - Suited to integrate sensory feedback signals
 - Offer a good substrate for learning and optimization algorithms

snake-like robo

snake-like robots inspired from the real world - Control approaches of snake-like robots

CPG-based control (cont')

- CPG-based approach
 - Use dynamical systems for generating the traveling waves necessary for locomotion
 - Implemented as differential equations integrated over time
- Example
 - AmphiBot II

snake-like robo

snake-like robots inspired from the real world - Control approaches of snake-like robots

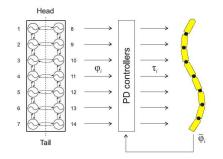
AmphiBot II: mechanism

Actuated elements

- Three printed circuits
 - A power board
 - A PD motor controller
 - A small water detector
- A flat cable
- A DC motor
- A set of gears
- A rechargeable Li-Ion battery
- Head element
 - A PIC18F2580 microcontroller

Power and motor circuits Microcontroller circuit

Water sensor



snake-like robots inspired from the real world - Control approaches of snake-like robots

snake-like robot

AmphiBot II: locomotion control

- The central pattern generator structure
 - Inspired from the lamprey
 - A double chain of oscillators with nearest neighbor coupling

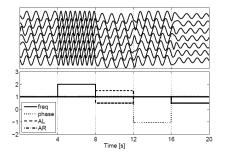
snake-like robot

AmphiBot II: locomotion control (cont')

Amplitude controlled phase oscillator

$$\begin{cases} \dot{\theta}_i &= 2\pi\nu_i + \sum_j w_{ij} \sin\left(\theta_j - \theta_i - \phi_{ij}\right) \\ \ddot{r}_i &= a_i \left(\frac{a_i}{4} (R_i - r_i) - \dot{r}_i\right) \\ x_i &= r_i \left(1 + \cos(\theta_i)\right) \end{cases}$$

- θ_i and r_i : The phase and the amplitude of the *i*th oscillators
- v_i and R_i: The intrinsic frequency and amplitude
- ▶ *w_{ij}*: Connecting weight
- ϕ_{ij} : The phase biases between oscillators
- x_i: The rhythmic and positive output signal


snake-like robots inspired from the real world - Control approaches of snake-like robots

snake-like robot

AmphiBot II: locomotion control (cont')

$$\begin{aligned} \varphi_i &= x_i - x_{N+i} \\ e_i &= \varphi_i - \tilde{\varphi}_i \\ \tau_i &= K_p e_i + K_d \dot{e}_i \end{aligned}$$

- φ_i: The desired angles for the i_{th} actuated joints
- *e_i*: The tracking error
- τ_i: The voltage (i.e. torque) applied to the motor

- ▶ t=4s v =2.0 Hz
- t=8s AL=0.5, AR=1.5
- t=12s △φ =-1.0
- t=16s AL=0.5, AR=0.5

Conclusion

- Achievements of snake-like robots
 - Different types of snake-like robots
 - A number of useful gaits
- Challenges of snake-like robots
 - Small cross-sections
 - Multi-gait functionality
 - High velocities
 - Much longer operational time

Conclusion

MIN Faculty Department of Informatics

snake-like robot

Thanks for your attention!

Any questions?