Building Spoken Dialogue Systems for Embodied Agents Lecture 2

Johan Bos

School of Informatics The University of Edinburgh

Outline of the course

- Part I: Natural Language Processing

 Practical: designing a grammar for a fragment of English in a robot domain
- Part II: Inference and Interpretation
 - Practical: extending the Curt system
- Part III: Dialogue and Engagement

Yesterday's Lecture

 Given our grammar, how can we systematically assign semantic representations to expressions of natural language

This Lecture

- How can we map natural language utterance to robot primitives
- How can we extract primitives from semantic representations in a systematic way

A: Foundations

- Let's be serious about semantic interpretation and answer the following questions:
 - Which **semantic formalism** are you going to use?
 - Which tools for interpretation are out there?
 - How are you going to construct representations for expressions of natural language and deal with ambiguities?
- We will first look at the "tools"

Tools for Semantic Interpretation

Theorem Proving

 Useful for drawing inferences, such as checking for inconsistencies or informativeness

• Model Building (Model Generation)

 Useful for checking consistency and building a discourse model

Model Checking

 Useful for querying properties of the constructed discourse model The Yin and Yang of Inference

- Theorem Proving and Model Building function as *opposite forces*
- Suppose $\phi,$ a logical formula, representing a certain discourse δ
 - If a theorem prover succeeds in finding a **proof** for $\neg \phi$, then δ is **inconsistent**
 - If a model builder succeeds to construct a **model** for φ , then δ is **consistent**

Using Model Building

- Example: "I want to fly from Stansted to Paris"
- Formula (First-order logic):
 - ∃e(fly(e)&agent(e,i)&from(e,stansted)&to(e,paris))
- Axioms (travel domain)
 - $\forall x \forall e \forall z (fly(e) \& agent(e, x) \& to(e, z) \rightarrow destination(x, z))$
 - $\forall x \forall e \forall z (fly(e) \& agent(e, x) \& from(e, z) \rightarrow origin(x, z))$
 - And so on…
- Model (D the domain, F the interpretation function):
 - D={d1,d2,d3}
 - F(i)=d1, F(stansted)=d2, F(paris)=d3, F(destination)={d1,d2}, F(origin)={d1,d3},...

Model Checking

- A Model Checker (for FOL) is a tool that checks whether a certain model satisfies certain propositions
- Almost like asking a yes-no question
 - Example: are 'walkers' the same as persons?
 - Query: satisfy($\forall x(walk(x) \leftrightarrow person(x)), M, []$).
- Can also be used to extract information
- Similar to asking a wh-question
 - Example: who is a 'walker'?
 - Query: satisfy(walk(x),M,[g(x,Answer)]).

The Beauty of Finite Models

- Minimal (no redundant information)
- Flat (no recursion)
- Deals naturally with quantification, disjunction, conditionals, negation
 - "I want to fly from either Stansted or Luton, but not from Stansted on Fridays"
- Model Checking tools available
- Useful for many NLP tasks:
 - Question answering
 - Disambiguation
 - Interpretation of Instructions

Now we know what tools are available, what is a sensible choice for semantic formalism?

- First-order logic
 - A lot of tools out there, but relatively bad computational properties
- Higher-order logic
 - Very expressive, but currently no useful inference tools
- Description logics
 - Relatively good computational properties, but limited expressive power

B: Applications

- Spoken Dialogue Systems with Embodied Agents (Small domains, hence feasible)
- Example Applications:
 - Home Automation
 - Godot the Robot
 - Curt (robot simulation)
- Three Examples of the Beauty of Models
- Conclusions

Example Application: Home Automation

- Implemented as society of OAA agents:
 - ASR (speech recognition): NUANCE
 - SYN (synthesis): FESTIVAL
 - RES (resolution): DORIS
 - INF (inference): SPASS, MACE
- XML configuration of domain knowledge
- Application: Home Automation
 - X-10 and HEYU
 - Lights and Radio in 'Smart Office'

Beauty of Models Example 1: Quantification

- Example Instructions:
 - "Clean all the rooms on the first floor!" (Robot)
 - "Turn of every light except the light in the kitchen!" (Home Automation)
- Model builder will produce a model with the number of primitives satisfied by the domain of quantification

• DRS for 'Switch every light in the kitchen on'

Example: First-Order Model

- Instruction: "Switch every light in the kitchen on!"
 - ∃w ∃s ∃x(possible-world(x) & system(w,s) & kitchen(w,x) & ∃v∃a (action(w,a,v) & ∀y (light(a,y) & in(a,y,x) → ∃e∃t(switch(w,e,s,t) & on(t,y)))))
 - Output model:

```
D={d1,d2,d3,d4,d5,d6,d7,d8}
F(possible_world)={d1,d2,d3}
F(system)={(d1,d4),(d2,d4),(d3,d4)}
F(kitchen)={(d1,d5),(d2,d5),(d3,d5)}
F(action)={(d1,d2,d3)}
F(light)={(d1,d6),(d2,d6),(d3,d6),(d1,d7),(d2,d7),(d3,d7)}
F(in)={(d1,d6,d5),(d2,d6,d5),(d3,d6,d5),(d1,d7,d5),(d2,d7,d5),(d3,d7,d5)}
F(poweron={(d2,d6),(d2,d7)}
F(off)={(d1,d6),(d1,d7)}
F(on)={(d3,d6),(d3,d7)}
```

Architecture

Beauty of Models Example 2: Question Answering

- Translate a question ?x(Rx,Sx) into:
 - $\forall x((Rx\&Sx) \leftrightarrow pos-answer(x))$
 - $\forall x((Rx\&\neg Sx) \leftrightarrow neg-answer(x))$
- Example: where are you going to?
 - ?x(location(x), ∃e(go(e)&agent(e,u)&to(e,x)))
- Give this to a model builder
 - The denotations of pos-answer and neg-answer provide the answer to the question
- Use a model checker to generate answer

Beauty of Models Example 3: Learning new Information

- Information of the environment stored in the robot's internal database
- Example Instructions:
 - "Go to the corridor!"
 - "You are in the corridor leading to the emergency exit."
- Model provides more information than the robot's internal database -- update

Summary

- Tools for computational semantics
 - theorem proving
 - model building
 - model checking
- Use first-order logic
- Role of model building

Conclusion: Inference in Dialogue Systems

- Slot-filler or frame-based approaches are oldfashioned
- Model building provides an alternative, opening a wide variety of interpretation tasks
- Three reasons for first-order theorem proving to play a role in future systems
 - Theorem proving is still a promising emerging field
 - Not tuned to linguistic problems
 - Current approach is non-incremental

Practical Session

- The CURT system
- See <u>www.comsem.org</u> (Blackburn & Bos)
- File: robotCurt.pl